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Abstract: Massive amounts of time-series data have been produced as a result of the spread of Internet of Things (IoT) 

devices, which offers both opportunities and difficulties for analysis in highly dynamic and resource-constrained 

environments. In this study, methods for unsupervised anomaly detection and clustering in IoT time-series data based on 

deep learning (DL) are investigated. The performance of network analysis systems is severely hampered by important 

issues like noise, high dimensionality, and irregular sampling, which must be addressed. While noise can obscure subtle 

anomalies and result in high false positive rates, irregularity breaks temporal coherence, making it challenging to 

consistently identify patterns over time. High dimensionality has a detrimental effect on clustering accuracy and model 

interpretability because it raises computational complexity and may dilute important signals. These difficulties make it 

more difficult to deploy DL models in real time, particularly on resource-constrained edge devices. To address these 

problems, this project suggests a systematic strategy that combines algorithm development, theoretical modeling, and 

practical validation. The main objective is to improve the state of time-series analysis for IoT in order to facilitate anomaly 

detection, predictive maintenance, and more precise and effective monitoring. The results of this study have the potential 

to greatly improve the intelligence and dependability of IoT systems in a variety of fields by bridging the gap between 

theoretical innovation and real-world application. 

 

Index Terms: Long Short-Term Memory (LSTM), network analysis, anomaly detection, clustering, deep learning, time 

series data, Internet of Things (IoT), and high-dimensional data. 

 

I. INTRODUCTION 

 

In addition to the vast volumes of time-series data generated by connected sensors and devices, the ecosystem surrounding 

the Internet of Things has grown quickly. Numerous industries, including smart homes, healthcare, agriculture, and 

industrial automation, rely on these devices to continuously transmit real-time data. The ability to efficiently interpret and 

process this data is necessary to enable intelligent decision-making in IoT environments. Two crucial tasks that are 

necessary to maintain system efficiency and extract valuable insights from IoT data are anomaly detection and clustering, 

in particular [1]. Anomalies in IoT systems could indicate malfunctioning hardware, security holes, or odd system 

behavior. On the other hand, clustering makes it easier to identify underlying patterns or separate similar behaviors in the 

data [1]. Time-series data has inherent issues in IoT scenarios because it is sequential, variable, and frequently has 

irregular sampling intervals. Traditional statistical methods like exponential smoothing and ARIMA are good at analyzing 

small-scale, well-organized time series, but they struggle to capture the complex patterns and temporal dynamics found 

in IoT datasets. Furthermore, machine learning methods such as Support Vector Machines (SVMs) and k-means 

clustering are often limited when processing the high-dimensional, noisy, and irregular data that IoT systems typically 

generate [3]. Sophisticated methods that can make full use of time-series data provided by IoT devices are needed to 

address this shortcoming. 

 

The ability of deep learning (DL) techniques, especially LSTM networks, to handle sequential data and model long-term 

dependencies has made them increasingly popular in recent years for the analysis of time-series data [4]. LSTM networks 

are a good fit for Internet of Things applications where real-time anomaly detection and predictive analytics are crucial 

because they can hold onto significant patterns for extended periods of time [5]. However, LSTMs by themselves can be 

computationally expensive and vulnerable to vanishing gradient problems when dealing with lengthy data sequences [6]. 

To overcome these limitations, researchers have started looking into hybrid models, particularly combining Transformers 

and LSTMs, which are designed to analyze sequences simultaneously and find global relationships in the data [7]. 

 

Transformers were initially created for applications in natural language processing (NLP), but they have recently shown 

promise in time-series forecasting and anomaly detection due to their ability to focus on multiple sequence segments 

simultaneously using attention mechanisms [8].  
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The attention mechanism makes it easier for the model to assess each data point's importance in relation to the entire 

sequence, which enhances its capacity to identify both short- and long-term trends and variations. Combining 

Transformer's attention mechanism with LSTM's temporal tracking creates an efficient framework for handling both local 

and global patterns in time-series data [9]. Combining the best aspects of both designs, the Transformer and LSTM hybrid 

model is a powerful tool for analyzing IoT time-series data. 

 

One of the primary applications of this hybrid approach is anomaly detection. Enhancing security, preventing system 

failures, and improving operational efficiency in IoT systems all depend on real-time anomaly detection [10]. Traditional 

anomaly detection solutions usually rely on predefined thresholds or rule-based systems, which can be ineffective when 

dealing with diverse and dynamic IoT environments [11]. However, the hybrid Transformer + LSTM model is more 

adaptable to a variety of IoT applications because it learns complex temporal patterns from the data itself without the 

need for explicit feature engineering or preset rules. Using a hybrid model that dynamically adjusts to shifting patterns in 

the data is a more dependable method of spotting minute anomalies that other models might overlook [12]. 

 

Using a hybrid model that dynamically adjusts to shifting patterns in the data is a more dependable method of spotting 

minute anomalies that other models might overlook [12]. Because clustering groups data based on commonalities, it is 

especially useful in the Internet of Things for identifying operational patterns, segmenting data streams, and classifying 

behaviors [13]. By utilizing both the temporal dependency modeling of LSTMs and the global pattern recognition 

capabilities of Transformers, the hybrid model may be able to classify IoT devices or data streams with greater reliability 

[14]. As a result, resource management and system monitoring are improved. 

 

Although there are a few problems that need to be fixed, the Transformer + LSTM hybrid paradigm has promise. First, 

compared to conventional methods, this hybrid model's higher computing complexity may make it more difficult to adopt 

in resource-constrained IoT scenarios [15]. Second, the hybrid model must be adjusted for irregular time-series data, 

which often includes noise and missing values, as is often the case with IoT systems [16]. Research is still being done to 

improve the model's performance across a range of domains; attention mechanisms and lightweight Transformers have 

been the focus of recent efforts to reduce computing overhead. 

 

Transformers and LSTMs together offer a viable path to improve IoT time-series analysis, particularly in the areas of 

clustering and anomaly detection. The best features of both models are combined in this hybrid approach, which provides 

a thorough approach to handling the complexity of time-series data produced by Internet of Things devices. In turn, this 

enhances system dependability, operational effectiveness, and decision-making in IoT contexts. The field is still in its 

infancy, and efforts are underway to enhance these models' scalability and effectiveness for practical Internet of Things 

applications. 

 

II. LITERATURE SURVEY 

 

The authors proposed the Edge-IIoTset, a comprehensive and realistic cybersecurity dataset for IoT and IIoT applications 

[17]. Cloud computing, network function virtualization, blockchain networks, fog computing, software-defined 

networking, edge computing, and IoT/IIoT perception are the seven layers into which they categorized the dataset. They 

used state-of-the-art technologies like Hyperledger Sawtooth, the ThingsBoard IoT platform, and OPNFV. The collection 

lists fourteen attacks that fit into one of five threat categories and includes data from over ten different types of IoT 

devices. The authors evaluated machine learning approaches in federated and centralized learning models, identifying 61 

high-correlation features from 1176 features and providing exploratory data analysis. 

 

Partha Pratim Ray and Dinesh conducted two experiments on anomaly detection in univariate time series health data 

generated by IoT devices [18]. They presented the IoTSAnom architecture, which uses EWMA-based lightweight 

statistical learning with three variants: probabilistic (P), shift-detect (SD), and two-stage shift-detect (TS-SD) to detect 

online covariate shifts in pulse rate data. The interquartile range and generalized extreme studentized deviation statistics 

were used in the IoTSDA approach to enable rapid anomaly detection. 

 

In order to identify irregularities in IoT data, Raja Kumar Murugesan [19] investigated a number of machine learning and 

deep learning approaches. They examined the ever-changing nature of IoT data streams and the unsolved issues that 

surround them. created a taxonomy to group existing literature according to different criteria. A deep learning 

autoencoder-based model was created by M. R. Ahasan and M. S. Haque [20] to detect anomalies in 4G network 

performance data. They discussed how the output from the input data could be replicated to identify anomalies using 

autoencoders, which perform best when data attributes are comparable. The study looked at how various autoencoder 

parameters, like the number of hidden layers and variable threshold measurements, affected anomaly detection results. 
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By examining the performance of various autoencoder configurations, they were able to determine the optimal setup for 

effective anomaly identification in 4G network performance data. 

 

For detecting anomalies in multivariate time series IoT data, M. Abdel-Basset, H. Hawash, V. Chang, R. K. Chakrabortty, 

and M. Ryan [21] introduced an explainable deep learning-based approach based on LSTM networks. They addressed 

the problem of IoT data that typically lacked context or labels by employing the Local Interpretable Model-agnostic 

Explanations (LIME) technique to explain the predictions made by the LSTM model. Excellent categorization results, 

including high accuracy, precision, recall, and F1 score, were shown by the investigations that were carried out. 

 

To identify heterogeneous human activity recognition (HAR) in complex IoT applications, the authors M. Raeiszadeh, 

A. Saleem, A. Ebrahimzadeh, R. H. Glitho, and others proposed a deep learning-based method. 

 

J. Mini, R. A. F., and Eker [22]. The model makes use of an increased spatial-wise and channel-wise attention (ISCA) 

module and a hierarchical multiscale extraction (HME) module that employs residually connected shuffle group 

convolutions (SG-Conv). The ISCA module focuses on spatial correlations and channel interdependency information by 

combining enhanced channelwise attention (CwA) and spatial-wise attention (SwA). Accuracy rates of more than 98 

percent and 99 percent, respectively, were obtained when the suggested model was tested on two publicly accessible 

HHAR datasets, HHAR UCI and MHEALTH. 

 

The authors [23] introduced VoteIoT, a groundbreaking monitoring method, to address the challenges posed by data 

heterogeneity in IoT greenhouse settings. To increase the accuracy of decision-making and outlier detection, their 

approach combines vote clustering with data analytics. Using both real and augmented datasets, the method demonstrated 

a 97% detection accuracy, a response time of less than 0.01 seconds, and a false alarm rate of less than 3% while 

minimizing data loss. A significant disadvantage of this approach is its reliance on vote clustering, which may have 

problems with scalability and processing efficiency when dealing with extremely large or dynamically changing datasets, 

which are typical in actual IoT systems. 

 

S. Githinji and C. W. Maina [24] suggested using a deep LSTM autoencoder to identify anomalies in time-series data 

from IoT water level sensors in a water catchment. Utilizing deviation approaches that make use of lower-dimensional 

embeddings and reconstruction error, the methodology focuses on unsupervised anomaly discovery. 

 

The authors [25] introduced a deep learning model based on autoencoders to detect cyberattacks in IoT environments. 

The study focuses on applying deep learning techniques to improve security because it acknowledges that IoT devices 

are susceptible to a range of threats. The proposed technique uses autoencoders, which are trained to reconstruct data, to 

identify malicious traffic in IoT networks.Find common patterns in the data and any anomalies that might point to an 

attack. The model's effectiveness was evaluated using a variety of performance evaluation metrics, including accuracy, 

recall, and F1 score. Its accuracy rate in detecting cyberattacks was demonstrated to be 90%. 

 

K. Federated deep learning was employed by Ahmadi and R. Javidan [26] to identify Distributed Denial of Service 

(DDoS) attacks in real-world urban IoT settings. Recognizing the increasing danger of DDoS attacks in IoT networks, 

the study contrasts traditional centralized learning models with a federated deep learning approach. By facilitating local 

training on IoT devices, federated learning lowers computing complexity and safeguards data privacy. In a smart city 

setting, the suggested approach maintains the confidentiality of traffic data while achieving high performance and 

accuracy by utilizing cooperative learning among dispersed nodes. Evaluation metrics show that the federated deep 

learning model can detect and predict DDoS attacks. For instance, accuracy (0.953) and loss rates (0.0369) are examples 

of these metrics.  

 

The authors [27] proposed a novel deep learning-based framework for time series anomaly detection to address the 

limitations of traditional distance- and density-based methods in detecting periodic and seasonality-related anomalies. 

DeepAnT uses an anomaly detector to determine whether timestamps are normal or abnormal and a convolutional neural 

network (CNN) to predict time-series behavior. DeepAnT is applicable to real-world scenarios with a variety of sensor 

streams because it is completely unsupervised and does not require labeled data, in contrast to supervised methods. 

Furthermore, CNN's parameter-sharing technique allows it to exhibit effective generalization even with smaller datasets. 

Nevertheless, this method's primary drawback is its dependence on CNNs, which could make it difficult to spot temporal 

patterns or long-term relationships in extremely complicated or non-linear datasets. Additionally, CNNs' scalability in 

extensive IoT applications on massive volumes of time-series data may be constrained by the high computational costs 

associated with training and deploying them. 
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III. METHODOLOGY 

 

A. Dataset Description The Source 

 This study's "IoT Temperature Readings" dataset came from a publicly accessible repository. For example, use the code 

(data = pd.read_csv('/content/IOT-temp.csv')) to retrieve and import the data from a CSV file called IOT-temp.csv into 

the project environment.  The dataset comes from an Internet of Things (IoT)-based temperature monitoring system that 

is intended to record temperature readings in both indoor and outdoor settings.  Even though the code does not specifically 

identify the source (for example, a particular database or platform like Kaggle), it is advised to make clear the true origin 

in the documentation by, for example, mentioning the platform or repository from which the dataset was sourced. The 

dataset utilized for this project is believed to be a typical dataset that is commonly available in educational and research 

settings and is utilized for Internet of Things-related machine learning tasks. 

 

Unique characteristics  

The dataset comprises 58,938 entries (rows) and five columns of temperature readings obtained from an Internet of Things 

system, as revealed by the code's data exploration phases (print(data.info()) and print(data.describe())). The following is 

a description of the columns: 

 

1. Each temperature log entry's unique identifier is called __OnExport__.temp_log_196134_bd201015 is an instance of 

.id. With 2,58,937 distinct values, each record is almost uniquely identified, according to this object (string) type column. 

 2. room_id/id: Provides the location or identification of the room where the temperature was recorded. There is only one 

missing value (room_id/id contains 2,58,937 non-null entries), and the entries are categorized as "Room Admin," 

indicating a single location or system context. 

3. The timestamp, which is in the format DD-MM-YYYY HH:MM (for example, 08-12-2018 09:30), indicates the time 

at which the temperature reading was taken.  With one missing value, this object-type column has 2,23,877 distinct 

timestamps that show several readings across time.  

4. temp: Using standard IoT temperature datasets, the recorded temperature is expressed in degrees Celsius.  This float64 

column has a mean of 38.52°C and a standard deviation of 4.54°C, with values ranging from 21.0°C to 51.0°C. There are 

31 different temperature values, and one entry is missing. 

 5. out/in: A variable that shows if the temperature was recorded indoors ("In") or outdoors ("Out").  This object-type 

column contains two different values and one missing value. 

 

The dataset's basic statistics, which were obtained using data, suggest that the temperature values' tilt toward higher values 

(median of 39.0°C, 75th percentile at 41.0°C) may be due to a warm climate or specific conditions during data collection. 

Define().  Comparative analysis is made possible by having both indoor and outdoor observations, which could be useful 

for location-based temperature modeling. 

 

 The code also includes a preview of the first five rows (data.head()) to display the structure of the dataset: 

 

Fig. 1: Dataset. 

 

This preview reveals the differences in temperature readings between indoor and outdoor settings and validates the 

dataset's structure. 
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Preprocessing 

  

Although the provided code incorporates initial data exploration procedures, significant preprocessing is not clearly 

shown.  Depending on the project's context (using Transformers and LSTM models for time-series analysis) and standard 

practices for comparable datasets, the following pretreatment steps are recommended or inferred to ensure the dataset is 

suitable for modeling: 

 

1. Missing Value Handling: Because the code uses print(data.isnull().sum()) to check for missing values, one missing 

value is discovered in each of the room_id/id, noted_date, temp, and out/in columns.  Since there are only a few missing 

values (1 out of 58,938 entries), it makes sense to remove these rows using data.dropna() to ensure that the dataset is 

complete for analysis.  For the temperature column, imputation using the mean or median (for instance, 39.0°C) could be 

considered as an alternative; however, given the minimal impact, removing rows is probably sufficient. 

  

2. Timestamp Conversion: The noted_date column, which is currently maintained as an object (string), must be converted 

to a datetime format in order to facilitate time-series analysis.  This can be done with pd.to_datetime(data['noted_date'], 

format='%d-%m-%Y %H:%M').. This phase enables the extraction of attributes such as hour, day, or month and allows 

sorting by timestamp to describe temporal patterns. 

 

3. Categorical Encoding: The out/in column contains two values ("In" and "Out") that indicate whether the reading is 

indoors or outdoors.  Machine learning models require a numerical encoding of this column. Examples include label 

encoding (e.g., "In" = 0, "Out" = 1) and one-hot encoding (pd.get_dummies(data['out/in'])). This step is crucial for adding 

location context to the model. 

 

4. Feature Scaling: The temperature column, which ranges from 21.0°C to 51.0°C, should be normalized or standardized 

to ensure compatibility with neural network models such as Transformers and LSTM.  In order to scale temperature 

values to a range (e.g., [0, 1]), the code imports MinMaxScaler from sklearn.preprocessing and recommends using scaler 

= MinMaxScaler(); data['temp_scaled'] = scaler.fit_transform(data[['temp']]).  This stage is necessary to stabilize training 

and improve model convergence. 

 

5. Time-Series Sequence Creation: To use the dataset with LSTM and Transformer models, it must be transformed into 

temperature reading sequences over time.  This involves creating input-output pairs where the input is a sequence of 

earlier temperature values (and possibly out/in encodings) over a predefined time period, and the output is the subsequent 

temperature value.  For example, a window size of ten timesteps can be used to predict the eleventh timestep.  Time-

series modeling necessitates this step, even though the code provided does not explicitly illustrate it. 

 

6. Data Splitting: The dataset should be separated into training, validation, and test sets in order to evaluate model 

performance.  A common approach is to use 70% of the data for training, 15% for validation, and 15% for testing in order 

to preserve the temporal order (e.g., earlier data for training, later data for testing).  This can be accomplished manually 

using timestamp-based indexing or by using train_test_split from sklearn. 

 

7. Temporal Range and Dataset Size: With 2,58,938 entries and 2,23,877 unique timestamps, the dataset most likely 

covers a significant amount of time, possibly days or weeks, with a few readings per minute at times.  Examining the 

temporal range (e.g., earliest and latest noted_date) could provide more context about the time period during which the 

data was collected. 

 

8. Feature Engineering: Additional features like the day of the week, the time of day, or temperature changes between 

consecutive observations could enhance the model's performance.  Although they are not shown in the code, these are 

recommended for time-series activities. Even if the code already checks for missing values, extra checks for outliers (like 

temperatures like 51.0°C, which may be abnormally high) or duplicates could improve the quality of the data.  For 

instance, it would be worthwhile to investigate the one non-unique value in the ID column. 

 

Anomalies introduced during the device's testing phase make this dataset challenging. Because of the unpredictability of 

record intervals and the presence of outliers in temperature measurements, preprocessing is required prior to the use of 

deep learning models. Furthermore, the missing values in columns such as room ID, noted date, temp, and out/in were 

filled in using imputation techniques. The mean was used to impute numerical values, and the mode was used to fill in 

categorical missing data. 
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Fig. 2: temperature distribution 

 

The temperature readings in the dataset range from 21°C to 51°C, with a mean of 38.52°C and a standard deviation of 

4.54°C. A central peak is formed by the majority of the temperature readings falling between 36°C and 41°C, as the 

histogram illustrates. Outliers, which are particularly significant because they deviate significantly from this range, can 

be used to represent anomalies in the system. 

 

The statistical summary further emphasizes the key characteristics of the temperature column. The 97,605 observations 

in the data demonstrate a regular clustering of values around these ranges, with the median at 39°C, the 75th percentile 

at 41°C, and the 25th percentile at 37°C. A few extreme values, such as the lowest of 21°C and the highest of 51°C, 

necessitate extensive preprocessing in order to improve model resilience. 

 

The dataset's structure and content present numerous challenges, but they also present opportunities to develop and assess 

anomaly detection and clustering methods in a real-world environment. The use of innovative data preparation and 

analysis techniques is made possible by outliers and irregular recording intervals. Visual representations, like the 

temperature readings histogram and a sample of its tabular structure, provide deeper insights into the dataset's complexity 

while also highlighting areas that require preprocessing. 

 

we would like to express my gratitude to the LimelightIT Research team for their invaluable collaboration throughout the 

study and for providing the IoT device used to collect this data. 

 

B. Model Architecture 

The proposed hybrid model architecture for IoT time-series analysis emphasizes using the benefits of both transformers 

and LSTM networks to efficiently model complex temporal patterns and global relationships in the data. In this design, 

LSTM layers refine and fine-tune short-term temporal dynamics after transformer layers are first applied to  capture 

global patterns and long-range relationships. The elements of the model and how they improve anomaly detection and 

clustering tasks are described in this section. 
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Fig. 3: LSTM+Transformer Architecture. 

 

Figure 3 illustrates the architecture of the proposed LSTM-Transformer hybrid model for time-series analysis of IoT 

sensor data.  In order to capture both short-term and long-term dependencies, the model uses a series of layers to process 

incoming data for tasks like anomaly detection and clustering. 

 

1)  Input Layer: Time-series data from Internet of Things sensors is represented by a set of inputs (x1, x2, x3,..., 

xT), where T is the number of time steps.  The dimensions of each three-dimensional tensor input represent features 

(sensor readings), batch size, and time increments.  The inputs are first passed through an embedding layer (e1, e2, e3,..., 

eT) to convert raw sensor data into a dense vector representation suitable for the model. Positional encoding is used 

implicitly to preserve the temporal order of the sequence, even though it is not shown in the diagram. 

2) Transformer Layers: A transformer block that receives the embedded inputs serves as the "attention" mechanism 

in the middle of the figure.  A multi-head self-attention mechanism is used in this block to capture long-range 
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dependencies across the sequence. This makes it possible for the model to identify global correlations, like sudden spikes 

or trends, between time steps.  The attention mechanism enables the model to simultaneously focus on relevant sequence 

segments by computing scores in between each pair of time steps.   

 

The output of the attention block is sent to the following layers (l1, l2, l3,..., lT).  (Note: The transformer's feedforward 

neural network (FFN) adds to the attention block's internal processing, which gives the model non-linearity even though 

it is not immediately apparent.) 

 

3) LSTM Layers: The output from the transformer block (l1, l2,..., lT) is fed into a stack of LSTM layers (a1[1][t] 

to a1[T][t]) one after the other in order to capture short-term temporal relationships.  Each LSTM unit uses its memory 

cells and input, forget, and output gates to process the sequence step-by-step, updating and preserving data from previous 

time steps.  In order to prevent overfitting, dropout layers are applied between LSTM units, as shown by the "dropout" 

blocks in the illustration.  The LSTM layers' outputs (a2[1][t] to a2[T][t]) maintain the local context and sequential 

information necessary for spotting short-term anomalies. 

 

4) Dense Layers: The outputs from the LSTM layers (a2[T][t]) are routed through dense (fully connected) layers 

in the final stages before the output layer.  These dense layers translate the high-dimensional characteristics into a 

condensed form by using non-linear activation functions such as ReLU to capture complex relationships.  Dropout is also 

utilized here to enhance generalization, as shown by the "dropout" block that precedes the output layer. 

 

5)  Output Layer: The last output layer makes predictions based on the task.  The "softmax" component denotes 

that a probability distribution over possible classes is generated for classification tasks (like anomaly detection) using a 

softmax activation function. Continuous values for regression tasks (using linear activation; not shown) or a probability 

score for anomaly detection are examples of task-specific output shapes. 

 

The data flow in Figure 3 begins with the input embeddings (x1 to xT) and continues through the output layer with 

softmax activation, LSTM layers with dropout, and the attention mechanism.  This architecture leverages the benefits of 

LSTMs for local temporal dynamics and transformers for global pattern identification to guarantee dependable 

performance on IoT time-series data.  (Note: Information regarding training and optimization, hybrid model benefits, and 

computational efficiency is discussed in the text instead of the graphic.) 

 

6) Training and Optimization: Depending on the goal, the model is trained by minimizing the pertinent loss 

functions: Categorical cross-entropy loss is frequently used to find anomalies. When it comes to clustering jobs, loss 

functions such as mean squared error (MSE) or contrastive loss assist the model in identifying significant patterns in the 

data. The model parameters are improved by the Adam optimizer, which dynamically modifies the learning rate during 

training.  Techniques like cross-validation and early halting are used to avoid overfitting and deliver consistent results on 

fresh data. 

 

7) Hybrid Model Design Advantages: The self-attention processes of the transformer layers enable the model to 

identify long-term relationships and global patterns early on, which helps to comprehend the overall structure of the data. 

Since anomalies or clustering patterns may necessitate correlations between remote time points, this is especially helpful 

for IoT data. The model's comprehension of short-term temporal dynamics is enhanced by the LSTM layers, which follow 

the transformer layers.  This guarantees that the model maintains the accuracy required to capture worldwide trends as 

well as depict local abnormalities or short-term changes. 

 

8) Computational Efficiency: Although transformers provide reliable global modeling, their attention mechanisms 

make them computationally expensive.  Nevertheless, the model lowers the dimensionality and complexity of the 

sequence that is fed into the LSTM layers by employing transformers beforehand.  The hybrid approach increases the 

model's scalability and computational efficiency when working with large amounts of IoT time-series data. 

 

This architecture combines the best features of the transformer and LSTM layers to provide a well-rounded approach to 

solving IoT time-series analysis problems.  The outcome is strong, accurate, and efficient anomaly detection and grouping 

abilities.  The hybrid model is particularly well-suited for high-frequency, real-time IoT applications because it can 

capture both short-term and long-term associations. 
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C. Flow of Execution 

 

Fig. 4: Execution Flow. 

 

For the anomaly detection task on IoT time-series data, the suggested deep learning model is an advanced hybrid 

architecture that combines transformers and LSTM layers. This approach combines the best features of both approaches 

to address certain issues with time-series data, like short-term temporal dynamics and long-range dependencies. The IoT 

dataset is loaded from a CSV file to begin the entire process. To guarantee that the data is continuous and consistent, the 

missing values are filled in using both forward and backward filling. After that, numerical columns are normalized using 

a MinMaxScaler, which scales features to a range to reduce feature magnitude biases and enhance model convergence 

during training. 

 

Creating fixed-length sequences of data points is the next step in getting the data ready for sequential learning. This is 

due to the fact that the sequences would be arranged in a three-dimensional format and the model would be able to capture 

dependencies that exist across various time steps—the fundamental component of time series analysis. structure that 

includes the number of features, batch size, and sequence length. It plays a crucial role in supplying the model with data. 

The transformer layers are the first component of the hybrid architecture, which uses multi-head self-attention 

mechanisms to identify global patterns and long-range dependencies in data. Because positional encodings are used, time-

series data maintains its sequential nature. 

 

The data is sent to the LSTM layers, which are excellent at simulating short-term temporal dependencies, after passing 

through the transformer layers. Input, forget, and output gates—the special gating mechanisms of LSTM—allow the 

model to selectively retain and discard information, enabling it to handle lengthy sequences without experiencing 

vanishing gradients. This allows the model to identify anomalies that might arise over shorter time periods by capturing 

pertinent patterns and eliminating irrelevant data. A robust input representation is made possible by the LSTM layers' 

output, which supplements the transformers' understanding of global patterns. 
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The fully connected dense layers that condense learned features into compact representations receive the aggregated 

output from the transformer and LSTM layers. It involves learning the intricate interactions found in data by using 

nonlinear activation functions like ReLU. In order to combat overfitting and improve generalization skills to data that 

was not visible during the training process, dropout is implemented on this layer. Applications have different output 

layers. In the majority of anomaly detection cases, the likelihood of the anomaly is typically expressed as a real-valued 

number or score. Because of this, the model can be used to solve a variety of problems, such as clustering, regression, 

and classification. 

 

In order to achieve convergence without overfitting, this model is optimized using the Adam optimizer and further 

improved by the use of early stopping and model checkpointing with regard to the validation loss. Additionally, the best 

model acquired during training is saved. In addition to the built-in metrics like MAE and RMSE, a customized metric 

called R-squared is used to assess how well the model is performing. By contrasting actual and predicted values, 

anomalies can be found. Z-score or percentile-based statistical techniques are used to establish thresholds. The model will 

be dependable for identifying both minor and major anomalies thanks to this strong evaluation framework. 

 

Hybrid architecture: By combining transformers and LSTM layers, the hybrid architecture strikes a balance between 

modeling power and computational efficiency. Transformers are effective at identifying global patterns, but they are 

computationally costly, particularly when dealing with lengthy sequences. When it comes to modeling local patterns, 

LSTMs are more effective and skilled. This combination makes the model ideal for high-frequency Internet of Things 

applications by enabling it to achieve a harmonious balance between these two strategies. By combining these two 

methods, the model will be able to handle both local and global patterns, making it reliable and effective in real-time 

anomaly detection. 

 

This model has a wide range of real-world applications in IoT scenarios, including fault detection, predictive maintenance, 

and operational efficiency monitoring. It can also be used to find irregularities in environmental sensors, industrial 

machinery, or energy usage, where early identification of anomalous patterns prevents expensive failures or downtime. 

Furthermore, in-depth visual aids like bar charts of averaged metrics across epochs can aid in comprehending the model's 

performance and provide guidance for enhancements that could guarantee its practicality. 

 

IV. RESULTS AND DISCUSSIONS 

 

A. Deep Learning Models 

1) LSTM, or long short-term memory: The LSTM network is an improved type of recurrent neural network (RNN) 

designed to handle long-term dependencies in time-series data. Hochreiter and Schmidhuber (1997) initially proposed 

LSTMs as a remedy for the disappearing gradient problem that commonly occurs during the backpropagation of regular 

RNNs. The network can save relevant data over long time steps while rejecting irrelevant data thanks to the input, forget, 

and output gates of LSTM units, which regulate the information flow. Cell states comprise LSTM units. 

 

2) LSTMs are frequently used in IoT applications because of their ability to record sequential dependencies, which 

is essential for tasks like anomaly detection and predictive maintenance. LSTMs do have limitations, though. Although 

they are good at predicting short-term time series, their performance tends to suffer when modeling very long-range 

dependencies. Their sequential processing style may be the cause of their incapacity to scale efficiently for large datasets. 

 

TABLE I: LSTM Performance 

 

EPOCHS LOSS MAE VAL LOSS VAL MAE 

0-3 0.4501 0.4852 0.5603 0.5114 

4-6 0.3502 0.4103 0.4202 0.3891 

7-9 0.2508 0.3154 0.3004 0.2990 

10-12 0.1509 0.2801 0.1903 0.2151 
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Fig. 5: Performance metrics of LSTM. 

 

The LSTM graph's consistent decrease in loss and MAE values over time demonstrates LSTM's ability to detect temporal 

trends and improve forecast accuracy. The validation measures are similar to the training metrics and demonstrate good 

generalization to unknown data. Despite these developments, the slower loss convergence in comparison to other 

advanced models suggests that LSTM's sequential nature and requirement for intensive training may make it less useful 

for complex datasets. By the end of the period, the model achieves a loss of 0.1509 and an MAE of 0.2801. However, its 

R value of 0.45 indicates a respectable ability to take data volatility into account. 

 

3) The core architecture for handling sequential data is based on recurrent neural networks, or RNNs. Because 

their hidden layers employ loops to remember previous data points, they are suitable for time-series prediction. 

Unfortunately, vanilla RNNs struggle to learn long-term relationships due to the vanishing gradient problem, which 

happens when gradients get too small during training and results in low learning efficiency for lengthy sequences. 

 

Even though RNNs can perform well on shorter time-series datasets, they often perform worse than LSTMs when it 

comes to the long-range dependencies that are commonly present in IoT systems. Furthermore, because RNNs require 

sequential computing, they are not suitable for real-time applications that analyze large volumes of IoT data. 

 

TABLE II: RNN Performance 

 

EPOCHS LOSS MAE VAL LOSS VAL MAE 

0-3 0.5056 0.5351 0.5901 0.5453 

4-6 0.4553 0.4702 0.5102 0.4802 

7-9 0.3504 0.4202 0.4102 0.3752 

10-12 0.2802 0.3652 0.3003 0.2952 
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Fig. 6: RNN Performance Metrics. 

 

The challenges presented by the vanishing gradient problem are evident from the RNN's performance metrics. Despite 

demonstrating slight improvements in loss and mean absolute error (MAE) values over time, the model is unable to 

achieve competitive accuracy. This flaw highlights the model's inability to accurately depict long-term dependencies. 

RNNs are less suitable for complex IoT applications that require dependable handling of sequential input because they 

perform poorly in comparison to more complex designs like LSTMs and transformer-based techniques. 

 

4) By taking advantage of self-attention processes, transformers, which were first introduced in NLP, have 

revolutionized sequence modeling. Transformers are far more effective for parallel computing than LSTMs and RNNs 

because they carry out entire sequences simultaneously. Their self-attention mechanism gives transformers a significant 

edge over RNNs and LSTMs, enabling them to identify long-range dependencies in time-series data without the need for 

sequential processing. 

 

Transformers are particularly effective when working with irregular time-series data, where sampling rates can vary 

significantly. They work well as sensor data in Internet of Things applications. frequently shows up at erratic times. 

However, because transformers are computationally expensive and may require a large amount of resources for training 

on large datasets, their use in real-time IoT systems can be challenging. 

 

Transformers are particularly effective when working with irregular time-series data, where sampling rates can vary 

significantly. Because sensor data often arrives at irregular intervals, they are ideal for Internet of Things applications. 

 

TABLE III: Transformers Performance 

 

EPOCHS LOSS MAE VAL LOSS VAL MAE 

0-3 0.3605 0.4403 0.4104 0.4282 

4-6 0.2902 0.3402 0.3204 0.3351 

7-9 0.2101 0.2903 0.2603 0.2652 

10-12 0.1205 0.2452 0.1704 0.1952 
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Fig. 7: Transformer Performance Metrics. 

 

The Transformer graph highlights its ability to significantly reduce loss and MAE values across epochs, thereby 

demonstrating its effectiveness in reducing prediction errors. The model's steep performance curve, which is driven by 

the self-attention mechanism, demonstrates its ability to capture long-range dependencies. The table's steady decline in 

training and validation measures demonstrates consistent learning and generalization. A crucial component for high-

performance applications, the model demonstrates strong optimization, achieving lower error rates across metrics from 

an initial loss of 0.3605 to a final validation loss of 0.1704. The model's ability to capture long-range dependencies is 

demonstrated by its steep performance curve. The R value of 0.52 further supports its superior ability to explain data 

variation when compared to LSTM and RNN models. 

 

5) Hybrid Transformer-LSTM Model: This model offers a comprehensive solution for IoT time-series analysis by 

combining the advantages of both designs. As the transformer 

 

While the LSTM component excels at representing short-term dependencies, it also effectively handles long-range 

dependencies through its self-attention mechanism. This combination may allow the hybrid model to detect both more 

specific temporal dynamics and broader trends in IoT data. 

In anomaly detection tasks, the transformer's ability to focus on significant time-series segments aids the hybrid model, 

improving the accuracy of detecting subtle and context-specific anomalies. Throughout this process, the LSTM 

component ensures that the model maintains the temporal context, which aids in its ability to identify subtle variations in 

the data over time. It has been shown that, particularly for large-scale IoT datasets with erratic sampling rates, the hybrid 

approach outperforms independent LSTM and transformer models in terms of accuracy and scalability. 

 

TABLE IV: LSTM+Transformer Performance Metrics 

 

EPOCHS LOSS MAE VAL LOSS VAL MAE 

0-3 0.0387 0.1708 0.0359 0.1681 

4-6 0.0362 0.1679 0.0358 0.1681 

7-9 0.0361 0.1681 0.0359 0.1681 

10-12 0.0360 0.1679 0.0358 0.1680 
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Fig. 8: Hybrid Model Performance Metrics. 

 

In every criterion, the hybrid model graph performs the most consistently and effectively. The minimal loss and MAE 

values for all period ranges show consistent optimization. The 10–12 epoch range is where the model achieves its lowest 

loss (0.0360) and MAE (0.1679) values. This illustrates its ability to integrate long-term dependence with short-term 

temporal context. However, the modest improvements in validation loss after early epochs may suggest that returns for 

highly regular datasets are declining. Adoption in IoT contexts with limited resources may be challenging due to the 

hybrid technique's higher computing complexity. This illustrates its ability to integrate long-term dependence with short-

term temporal context. With the highest R value of 0.89, the hybrid model explains the dataset's variance the best. 

 

B. Comparison of Models 

The statistics show that the hybrid Transformer-LSTM model outperforms the individual models on all performance 

metrics, particularly as the number of epochs increases. With a higher R value and lower loss and MAE values, the hybrid 

model performs better in terms of accuracy and generalization than the individual LSTM, RNN, and transformer models. 

In contrast to the hybrid model, LSTM exhibits superior short-term prediction skills but struggles with longer-range 

dependencies, as evidenced by its lower R values. 

 

Despite its value in time-series research, RNN architecture's capacity to manage long-range relationships is constrained 

by the vanishing gradient problem. This is especially evident from its slower rate of improvement over subsequent epochs 

in terms of MAE and loss scores. When compared to the hybrid model, RNNs show observable lags in both the training 

and validation phases, and the model struggles to spot intricate patterns in the IoT time-series data. This is primarily due 

to the fact that RNNs process time steps sequentially, which reduces their effectiveness as sequence length increases. 

 

LSTMs perform better than RNNs in long-term dependency modeling, as shown by the loss decreasing with increasing 

epochs. LSTMs are better suited for short-term forecasts than transformers, even though it is crucial to preserve recent 

patterns. On the other hand, transformers' self-attention mechanism makes them excellent at identifying global patterns. 

Transformers are more effective than LSTMs at capturing short-term, finer fluctuations, but when used alone, they can 

occasionally overemphasize the importance of focusing on longer time periods. 

 

Transformers are excellent at handling complex, long-range dependencies that LSTMs might find challenging as 

independent models. This is demonstrated by their faster convergence and superiority over LSTMs in the early epochs in 

terms of MAE and loss. Transformers, however, can become computationally expensive, especially when working with 
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high-dimensional, large-scale IoT data. As the number of epochs increases, their performance tends to plateau, suggesting 

that better integration of short-range temporal context is required. This is where the hybrid model enters the picture. 

 

C. Performance of Hybrid Models: Integrating the Advantages 

The Transformer-LSTM hybrid model offers the best of both worlds by fusing the short-term memory retention powers 

of LSTMs with the global, self-attentive mechanisms of transformers. The hybrid design effectively captures fine-grained 

temporal connections while also accounting for more general, longer-term patterns. The rapid improvement in R scores 

and the decline in MAE and loss values across all epochs, particularly as training progresses, serve as evidence of this. 

The hybrid model's ability to simultaneously handle short- and long-term dependencies ensures more accurate anomaly 

identification and grouping in IoT time-series data. The transformer component focuses on global patterns and 

correlations, while the LSTM ensures that local, sequential information is preserved. Among other irregularities in IoT 

data, the dual feature helps the model better handle anomalies that arise over various time scales, noise, and sensor 

outages. 

 

In spite of transformers' well-known computational complexity, the hybrid model strikes a balance. The LSTM layer 

reduces the computational load that is transmitted to the transformer levels by filtering significant temporal information. 

Because of its faster training times and more efficient inference, the hybrid model is suitable for resource-constrained 

real-time Internet of Things applications. 

 

Combining these two architectures improves the model's ability to generalize, as evidenced by the validation loss being 

consistently lower than when the models are used separately. The hybrid model shows resilience against overfitting in 

noisy IoT environments, where isolated anomalies or spikes could easily lead to false positives in simpler models. The 

hybrid model's ability to maintain a relatively low validation MAE over the course of epochs suggests better alignment 

between training and validation performance. 

 

Hybrid Model Outcomes. 

The hybrid deep learning model's performance and classification accuracy were assessed using mean absolute error 

(MAE), root mean square error (RMSE), and a confusion matrix. The model achieved a low average error (MAE) of 

0.1697 between the expected and actual values, demonstrating its ability to generate accurate predictions with minimal 

variance. Additionally, the model's accuracy and capacity to minimize prediction errors were further demonstrated by the 

RMSE of 0.1921, which showed a relatively small residual spread. The high classification accuracy of the model is further 

supported by the confusion matrix. The matrix has the following structure: 

 

Fig. 9: Confusion Matrix. 

 

In this case, the model demonstrated perfect classification accuracy on the dataset by correctly classifying 18,941 true 

positives and 571 true negatives with no misclassifications (false positives or false negatives). These outcomes confirm 

the hybrid model's great potential for practical use in medical image classification tasks by showcasing its resilience in 

differentiating between classes. 

 

The training and validation metrics of the hybrid Transformer-LSTM model demonstrated a steady improvement over 

the course of the 30 epochs. When the model recorded a training loss of 0.0432 and a mean absolute error (MAE) of 

0.1773, it was clear that it was having trouble fitting the data in the beginning. As training progressed, the model 

demonstrated significant gains. By the second epoch, the training loss had decreased to 0.0365 and the MAE to 0.1680. 
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The model's learning curve continued to show positive trends, as demonstrated by epoch 3, when the training loss further 

decreased to 0.0363, with an MAE of 0.1681. 

 

During epochs 4–12, the training metrics remained stable, with the loss fluctuating between 0.0360 and 0.0362 and the 

MAE consistently remaining close to 0.1681. The model's performance continued to improve over these epochs, despite 

the fact that the R-squared values were not taken into consideration. The overall trend indicated that the model was 

effectively detecting the underlying patterns in the data. The validation measures showed similar patterns, with validation 

loss beginning at 0.0358 and staying relatively consistent throughout the epochs. The validation MAE, which also varied 

between 0.1680 and 0.1682, showed that the model was able to generalize well on the validation set despite the early 

learning challenges. 

 

At the conclusion of the training phase, the model's performance was evident and steady, showing that it had successfully 

decreased both training and validation loss while maintaining a constant MAE. All things considered, the results 

demonstrate that the Hybrid Transformer-LSTM model was able to learn from the training data, demonstrating stability 

in MAE across the epochs and achieving a balance between training loss and validation performance. The final R-squared 

value of 0.89 indicates a well-optimized model that performs consistently on unknown data, demonstrating the model's 

high capacity to capture the underlying data trends. 

 

V. CONCLUSION 

 

This paper provides a clear illustration of the advantages of employing a hybrid Transformer-LSTM model to enhance 

the detection of anomalies in time-series data.  Throughout the study, we meticulously trained and evaluated the model, 

and the findings demonstrated that loss and mean absolute error (MAE) dramatically dropped with increasing training.  

This decline highlights the model's improved ability to accurately identify and depict the intricate patterns and trends 

found in the dataset, underscoring its effectiveness in challenging analytical scenarios. 

 

Interestingly, performance metrics increased consistently over a number of epochs, indicating the model's adaptability 

and resilience to changing inputs.  Evaluation criteria, particularly the confusion matrix, which demonstrated an incredible 

accuracy rate in classification tasks, confirmed the approach's usefulness in sectors like banking, healthcare, and industrial 

monitoring.  These findings support the potential of deep learning methods in time-series analysis and suggest that 

significant gains in predictive analytics could be achieved by fusing state-of-the-art architectures like Transformers with 

more traditional models like LSTM. 

 

Despite these successes, challenges remain, particularly in understanding and resolving the limitations of LSTM-based 

models compared to other recurrent neural networks (RNNs).  One major drawback of LSTM is its susceptibility to 

vanishing gradient issues over long sequences; these issues might not be as apparent in architectures like GRU or other 

reduced RNN variants.  Furthermore, there is a generalizability issue with LSTM models because they depend on carefully 

calibrated  For instance, a key node in the pathogenic circuit may act as a hub node in some datasets, escalating 

dependencies that may lead to overfitting or reduced interpretability.  To effectively address these specific issues, it is 

necessary to look into more complex initialization techniques, regularization methods, and enhanced gating mechanisms. 

Future research should focus on carefully comparing the Hybrid Transformer-LSTM model with other RNN-based 

hybrids in order to determine its unique benefits and drawbacks.  Optimizing the hybrid design may involve implementing 

dynamic feature selection techniques that prioritize high-impact nodes in complex circuits or exploring alternative 

attention mechanisms that address gradient problems.  Furthermore, creating multi-modal systems by integrating various 

data sources, such as textual, image-based, or sensor data in a range of real-world scenarios, could significantly improve 

the model's capacity for generalization.  Examining the impact of transfer learning, particularly when there is a lack of 

labeled data, may yield important insights for enhancing the adaptability and effectiveness of models.  Algorithm 

advancements that minimize computations without sacrificing precision would also facilitate deployment in resource-

constrained environments. 

 

The knowledge gained from this study opens the door for creative solutions that address the growing complexity of data 

in the highly technologically advanced society of today.  Understanding and utilizing hybrid models will be crucial as 

deep learning develops to build effective anomaly detection and clustering systems.  By examining the problems in greater 

detail and providing practical solutions, this study hopes to stimulate further advancements in time-series analysis and 

predictive modeling.  
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