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Abstract: Community detection in complex networks remains a fundamental problem in network science, with wide-

ranging applications from sociology to biology and recommendation systems. Building on recent advances in label 

diffusion techniques, we propose a novel hybrid approach—GraphSAGE-LBLD—that combines the structural 

awareness of the GraphSAGE embedding model with the local balance and speed advantages of the Label Balanced 

Label Diffusion (LBLD) algorithm. Our method integrates representation learning into the label propagation process, 

allowing for more semantically meaningful diffusion and improved stability across diverse network topologies. 

 
We empirically evaluate GraphSAGE-LBLD on multiple real-world SNAP datasets and benchmark against Louvain, 

classic Label Propagation, and the original LBLD. Results demonstrate that our model consistently achieves higher 

modularity and Normalized Mutual Information (NMI) scores, while maintaining comparable runtime. The integration 

of GraphSAGE enhances the representation of local neighbourhoods, resulting in finer community boundaries and better 

detection of small or overlapping clusters. Our method offers a practical, scalable, and more accurate alternative for 

modern community detection tasks. 
 

Keywords: Community Detection, GraphSAGE, Label Propagation, Graph Neural Networks, Node Embeddings, K-
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I. INTRODUCTION 

 

The rapid proliferation of large-scale graph-structured data across domains such as social media, biological networks, e-

commerce platforms, and citation systems has necessitated the development of scalable and efficient community 

detection algorithms. As networks continue to grow in size and complexity, traditional global algorithms struggle to 

maintain both computational efficiency and structural accuracy. This challenge is especially pronounced in scenarios 

where real-time or near real-time analysis is required, such as in recommendation engines, fraud detection, or dynamic 

social trend monitoring. 

 

In complex networks, nodes typically represent entities—such as users, proteins, or publications—while edges signify 

various forms of relationships or interactions. Communities, or densely connected node groups, serve as critical structures 

for understanding the latent organization and behaviour of the network. Identifying these communities provides insight 

into functional modules in biology, interest groups in social networks, and topic clusters in citation graphs. However, 

designing algorithms that can efficiently uncover these communities while preserving accuracy across diverse datasets 

remains an open and active area of research. 

 

While global methods such as modularity maximization and spectral clustering have shown promising accuracy in 

moderate-sized networks, they are computationally prohibitive for networks with millions or billions of nodes and edges. 

Furthermore, their dependence on complete graph traversal renders them impractical for streaming or dynamically 

evolving graphs. On the other hand, local methods—particularly label propagation techniques—have gained traction due 

to their linear complexity and potential to scale to massive networks. Nevertheless, these methods often suffer from 

instability, randomness in community assignment, and limited adaptability to topological variations across network 

regions. 

 

To address these limitations, recent research has explored the use of node embeddings and learned representations to 

inform community detection. Among these, GraphSAGE (Graph Sample and Aggregate) stands out as a powerful 

inductive framework that can learn low-dimensional feature vectors for nodes by aggregating information from their local 
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neighbourhoods. By embedding structural and feature-based information into dense vectors, GraphSAGE facilitates the 

identification of both local and global patterns while supporting generalization to unseen nodes and subgraphs. 

 

In this paper, we propose a novel approach—GraphSAGE-Enhanced Label Diffusion (SELD)—that integrates learned 

node representations with a refined label diffusion mechanism to achieve scalable, stable, and accurate community 

detection. Our approach leverages the strengths of both neural embeddings and fast label diffusion, combining the 

robustness of feature-based analysis with the computational advantages of local propagation. Unlike existing diffusion 

techniques that rely solely on topological cues, SELD utilizes embedding similarities to guide the label update process, 

resulting in more coherent and semantically meaningful communities. 

 

Moreover, we introduce a neighbourhood-aware initialization scheme that ensures stable seeding of communities, 

mitigating the randomness observed in conventional label propagation. The label diffusion process is augmented with a 

similarity-weighted propagation strategy that incorporates both edge strength and embedding proximity. To ensure 

scalability, the entire pipeline is designed with linear time complexity in mind, utilizing batch-wise neighbourhood 

sampling, efficient memory structures, and asynchronous updates. Finally, a post-processing phase is applied to merge 

fragmented clusters and refine community boundaries, further enhancing structural quality. 

 

The main contributions of this paper can be summarized as follows: 

 

We present a novel community detection framework that fuses GraphSAGE embeddings with label diffusion to enhance 

accuracy and scalability in large networks. We propose a stable seeding strategy using embedding-space clustering to 

generate robust initial community assignments. We design a similarity-weighted diffusion process that leverages learned 

node representations to improve propagation coherence and reduce instability. We incorporate a scalable architecture that 

ensures the method remains practical for graphs with millions of nodes and edges. We validate the effectiveness of our 

method through extensive experiments on real-world and synthetic datasets, demonstrating superior performance over 

baseline algorithms in terms of both accuracy and runtime. 

 

The remainder of this paper is organized as follows. In Section 2, we review related work in community detection and 

graph neural embeddings. Section 3 details the architecture and components of the proposed SELD method. Section 4 

presents experimental results, comparisons, and ablation studies. Finally, Section 5 concludes the paper and outlines 

directions for future research. 

 

II. LITERATURE SURVEY 

 

Community detection is a fundamental task in network science, and the literature comprises a wide variety of approaches 

ranging from heuristic local expansion algorithms to embedding-based and spectral methods. This section surveys 

relevant methods in three main areas: label propagation and local expansion, modularity and spectral optimization, and 

graph neural network (GNN) based embedding methods. 

 

Label propagation methods form one of the earliest families of fast community detection algorithms. The Label 

Propagation Algorithm (LPA) by Raghavan et al. [1] is notable for its simplicity and near-linear time complexity. 

However, LPA suffers from instability due to its randomness in label initialization and update order. To mitigate this, 

later works proposed importance-based variants, such as K-shell decomposition [2], Bayesian influence [3], and link 

influence models like LP-LPA [4] and NI-LPA [5], which introduce deterministic node ordering and local similarity 

heuristics to guide label updates. 

 

Another branch of local algorithms emphasizes core node identification. These methods first identify highly influential 

or central nodes ("seeds") and then expand communities outward using structural cues. Ding et al. [6] proposed RTLCD, 

a robust two-stage method for local expansion from identified cores. ECES [7], CFCD [8], and CDME [9] similarly rely 

on structural centrality, core fitness, or the Matthew effect to seed initial communities. More recent variants like LCDR 

[10] apply charge conservation analogies to rank nodes. Alternative expansion strategies include FluidC [11], which 

simulates fluid dynamics, and CenLP [12], which incorporates centrality in propagation. 

 

Beyond these, hierarchical and affinity-based approaches have emerged. GCN [13] and its improvements update labels 

using graph convolution-like mechanisms, while HACD [14] uses agglomerative merging guided by local scores. APAS 

[15] introduces adaptive affinity matrices to capture asymmetric leadership dynamics. LSMD [16], in contrast, starts 

from low-degree nodes and propagates labels outward in multilevel diffusion without explicit core detection. 
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Modularity optimization represents another classical approach. Newman [17] introduced spectral modularity 

maximization, and CNM [18] proposed a fast greedy version. Louvain [19] and Leiden [20] algorithms further improved 

modularity optimization using multi-phase node merging and refinement strategies. Methods like TJA-net [21] combine 

label propagation with mutual membership merging, and Shang et al. [22] propose node-membership based cluster 

integration. Evolutionary methods such as ELCD [23], PSO [24], and RMOEA [25] use modularity or information-

theoretic objectives but are typically computationally expensive. 

 

Matrix factorization and graph embedding methods have gained traction in recent years. NMF-based algorithms [26], 

community embedding models [27], and GANs such as CommunityGAN [28] combine representation learning with 

detection. Node2vec [29] and DeepWalk capture communities implicitly via random-walk-based embeddings, and recent 

work has shown that such embeddings encode community boundaries near theoretical detectability limits [30]. 

 

Graph Neural Networks (GNNs) offer a powerful paradigm for learning community-aware node representations. Jin et 

al. [31] proposed MRFasGCN, a semi-supervised GCN integrated with a Markov Random Field. He et al. [32] extended 

this with community-centric decoders in a fully unsupervised setting. However, GNN pooling methods often 

underperform for unsupervised clustering, leading to DMoN [33], which optimizes modularity-inspired objectives end-

to-end. 

 

Finally, GraphSAGE [34] introduces inductive aggregation-based embeddings suitable for large graphs. By sampling 

neighborhoods and learning aggregation functions, GraphSAGE generalizes to unseen nodes and scales effectively. Its 

unsupervised training framework, using reconstruction or random-walk losses, forms the foundation of our proposed 

GraphSAGE-LBLD+ model. 

 

III. METHODOLOGY 

 

Algorithm: GraphSAGE-LBLD+ 

Input: 

• Graph G = (V, E) 

• Ground-truth labels Y (used only for evaluation) 

• Hyperparameters: number of epochs T, threshold θ, maximum iterations I 

Output: 

• Final community assignments C 

Step 1: Load Graph 

• Load graph G and true labels Y from dataset. 

• Construct undirected edge list E′ by adding reversed edges. 

Step 2: Preprocess Structure Information 

• Compute: 

o Degree 𝑑𝑣 = deg(𝑣) ∀𝑣 ∈ 𝑉 

o k-core number core(v) using nx.core_number(G) 

• Compute normalized degree feature: 

𝑥𝑣 =
𝑑𝑣 − μ𝑑

σ𝑑 + ϵ
 

where μd and σd are mean and std of degrees. 

Step 3: Train GraphSAGE with GAE 

• Use node features xv as input to a 2-layer GraphSAGE encoder inside a Graph Autoencoder (GAE): 

𝑧𝑣 = SAGE(𝑥𝑣) 

 

• Optimize with reconstruction loss: 

ℒ = − ∑  

(𝑢,𝑣)∈𝐸

log σ (𝑧𝑢
⊤𝑧𝑣) 

 

• Normalize embeddings: 

𝑧𝑣̂ =
𝑧𝑣

|𝑧𝑣|
 

 

Step 4: Seed Initial Labels 
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• Rank all nodes by descending tuple: 

core(𝑣),  𝑑𝑣 

 

• Select top 𝑠 = max(2, ⌊0.05 ⋅ |𝑉|⌋)nodes. 

• Assign each a unique label from 0 to s−1: 

𝐶[𝑣𝑖] = 𝑖,  ∀𝑖 ∈ [0, 𝑠 − 1] 
 

Step 5: Label Diffusion via Weighted Voting 

Repeat for up to III iterations: 

For each unlabelled node 𝑢 ∈ 𝑉: 

1. For each neighbour 𝑤 ∈ 𝑁(𝑢) with a label: 

weight𝑢𝑤 = (core(𝑤) + 1) ⋅ (𝑧𝑢
⊤̂𝑧𝑤̂) 

 

2. Sum weights per label: 

score𝑙 = ∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑢𝑤

𝑤∈𝑁(𝑢),𝐶[𝑤]=𝑙

 

 

 

3. Assign 𝐶[𝑢] = 𝑙∗ if: 
score𝑙∗

∑ score𝑙𝑙

≥  θ 

 

Stop early if no label was changed in an iteration. 

Step 6: Fill Remaining Labels 

For all u where C[u] = None: 

• Assign: 

𝐶[𝑢] = arg max
𝑙

(core(𝑤) + 1) ⋅ (𝑧𝑢
⊤̂𝑧𝑤̂),  𝑤 ∈ 𝒩(𝑢),  𝐶[𝑤] = 𝑙 

Step 7: Evaluation 

• Compute NMI, Macro-F1: 

NMI(𝑌, 𝐶̂),  F1macro(𝑌, 𝐶̂) 

 

where (𝐶̂) is label-aligned prediction via Hungarian algorithm. 

• Compute modularity of communities using: 

𝑄 = modularity(𝐺,partitions of 𝐶) 

 

3.1.  Data Preparation: 

The initial stage of the proposed GraphSAGE-LBLD+ algorithm involves preparing the graph dataset and associated 

metadata required for both embedding generation and community label diffusion. The graph is assumed to be provided 

in a SNAP-compatible edge list format, and optionally accompanied by ground-truth community labels in a simple index-

based format. The preparation step ensures that the graph structure is correctly parsed and represented in multiple forms 

to support subsequent operations. 

 

Let G = (V, E) denote the input undirected graph, where V is the set of nodes (or vertices) and 𝐸 ⊆ 𝑉 × 𝑉 is the set of 

edges. Each node 𝑣 ∈ 𝑉 may optionally have a corresponding ground-truth label 𝑦𝑣 ∈ 𝑌, where Y denotes the space of 

community labels. 

 

The dataset is first processed using a load_dataset(...) utility function which performs the following core operations: 

 

3.1.1. Node Index Mapping: 

 

The graph nodes, which may be indexed arbitrarily in the original edge list, are remapped to contiguous integer IDs 

{0,1, … , |𝑉| − 1} using a bijective mapping 𝑓: 𝑉original → 𝑍|𝑉| 

  

This is necessary for compatibility with matrix-based learning frameworks such as PyTorch Geometric (PyG), where 

indexing is assumed to be zero-based and contiguous. 
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3.1.2. Adjacency and Graph Construction: 

 The remapped edge list is used to construct two graph representations: 

• A PyTorch Geometric Data object, which internally encodes: 

o Edge index tensor: 𝐸 ∈ 𝑍𝟚×|𝐸| 

o Node feature matrix: 𝑋 ∈ 𝑅|𝑉|×𝑑, where d is the number of node features (set to 1 in this work, 

representing normalized degree). 

• A NetworkX undirected graph G = (V, E) which allows for traditional network analysis such as: 

o Degree 𝑑𝑣 = deg(𝑣) ∀𝑣 ∈ 𝑉 

o k-core number core(v) using nx.core_number(G) 
 

Feature Initialization: 

The input node features are initialized using normalized degrees: 
 

𝑥𝑣 =
deg(𝑣)

max
𝑢∈𝑉

deg(𝑢)
 ∀𝑣 ∈ 𝑉 

 

This ensures that nodes with higher local connectivity are given proportionally greater emphasis during embedding 

training, while preserving scale invariance. 
 

Ground-Truth Labels: 

If ground-truth labels are available, they are loaded as a vector 

 

𝑦true ∈ 𝑍|𝑉| 
 

where each entry yv denotes the known community label of node v. These labels are used only for evaluation, and not 

during training or diffusion, preserving the unsupervised nature of the algorithm. 

 

The dual representation of the graph in both PyG and NetworkX formats facilitates efficient computation across distinct 

algorithmic phases. While the PyG object enables embedding generation through GPU-accelerated neural models, the 

NetworkX graph supports neighbourhood queries and structural metrics needed for label diffusion and seed selection. 

This separation of concerns allows each phase to leverage specialized libraries and data structures while maintaining a 

consistent and coherent representation of the underlying network. 

 

3.2. Feature Construction and Embedding Learning: 

Following the structural preprocessing, we proceed to derive expressive representations for each node through 

unsupervised embedding learning. The objective of this phase is to generate low-dimensional latent embeddings that 

capture both the structural and topological features of the graph G = (V, E), thereby enabling semantically meaningful 

label propagation in later stages. 

 

3.2.1. Feature Construction: 

The only input feature used in this framework is a scalar representation derived from the normalized node degree. 

Specifically, for each node 𝑣 ∈ 𝑉, the degree 𝑑𝑣 = deg(𝑣) is first computed, and then standardized using the z-score 

normalization: 
 

𝑥𝑣 =
𝑑𝑣 − μ𝑑

σ𝑑 + ϵ
 

 

where μd and σd denote the mean and standard deviation of degrees across all nodes respectively, and ϵ is a small constant 

(typically 10-8) added for numerical stability. This transformation ensures that features are zero-centred and scaled, 

making the optimization landscape smoother for downstream learning. The feature matrix 𝑋 ∈ 𝑅|𝑉|×𝟙 is thus constructed 

where each row corresponds to the normalized degree of a node. 

 

• Use node features xv as input to a 2-layer GraphSAGE encoder inside a Graph Autoencoder (GAE): 
 

𝑧𝑣 = SAGE(𝑥𝑣) 
 

• Optimize with reconstruction loss: 

ℒ = − ∑  

(𝑢,𝑣)∈𝐸

log σ (𝑧𝑢
⊤𝑧𝑣) 
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• Normalize embeddings: 

𝑧𝑣̂ =
𝑧𝑣

|𝑧𝑣|
 

 

3.2.2. Graph Autoencoder with GraphSAGE Encoder: 

To learn latent embeddings that encode neighbourhood-aware semantics, we adopt a Graph Autoencoder (GAE) 

framework with a GraphSAGE encoder. The Graph Autoencoder, introduced by Kipf and Welling, consists of two 

components: an encoder fθ that maps node features to embeddings, and a decoder that reconstructs the graph structure 

based on these embeddings. In our case, the encoder fθ is instantiated as a two-layer GraphSAGE convolutional network 

(SAGEConv), which computes embeddings via a neighbourhood aggregation function. 

 

The embedding for node v is computed as: 

𝑧𝑣 = SAGE(𝑥𝑣) 

 

where the SAGEConv layer aggregates information from neighbours of v, recursively combining feature vectors across 

two hops. The encoder weights are learned to minimize a binary cross-entropy reconstruction loss over observed edges 

(u, v) ∈ E, given by: 

 

ℒ = − ∑  

(𝑢,𝑣)∈𝐸

log σ (𝑧𝑢
⊤𝑧𝑣) 

 

where σ(⋅) denotes the sigmoid function and 𝑧𝑢
⊤𝑧𝑣 represents the inner product of the embeddings, which estimates the 

likelihood of edge (u, v) existing. 

 

After training for T epochs, the learned embeddings 𝑧𝑣 ∈ 𝑅𝑑  are L2-normalized to project them onto a unit hypersphere: 

 

𝑧𝑣̂ =
𝑧𝑣

|𝑧𝑣|
 

 

This normalization facilitates consistent similarity computations during label diffusion (cosine similarity becomes a dot 

product), while also mitigating the effects of embedding magnitude variations. The resulting matrix 𝑍 ∈ 𝑅|𝑉|×𝑑 serves as 

the input for the label diffusion process described in Part 5. 

 

The use of GraphSAGE as an encoder offers the advantage of inductive learning, enabling the model to generalize to 

unseen nodes or graphs, unlike transudative methods. Moreover, by restricting the neighbourhood aggregation to two 

layers, we balance expressiveness and computational efficiency, avoiding the over smoothing issue commonly observed 

in deeper GCNs. 

 

This stage thus transforms a sparse graph G and minimal node features X into dense, informative vector representations 

𝑍̂, which are then used to guide and weight the community label propagation mechanism. 

 

3.3. Community Seeding: 

To initiate the label propagation process with strong semantic priors, we perform community seeding using structurally 

important nodes in the graph. The purpose of this step is to assign initial community labels to a small subset of influential 

nodes that can act as reliable anchors during label diffusion. 

 

Scoring Criteria: 

Two key structural metrics are utilized to identify seed nodes: 

• Node Degree (dv): Reflects the local connectivity of node v, with higher values indicating greater interaction 

with immediate neighbours. 

• K-core Number (core(𝑣)): Measures the cohesiveness of the node’s position within the graph. A higher core 

number implies that the node is embedded in a dense subgraph, and is more structurally stable. 

 

For each node 𝑣 ∈ 𝑉, we compute both the degree 𝑑𝑣 = deg(𝑣) and the core number core(𝑣) using 

networkx.core_number(G). These values are combined into a tuple (core(𝑣), 𝑑𝑣), and all nodes are ranked in descending 

lexicographic order of this tuple. This ensures that nodes with higher core number are prioritized, and ties are broken 

using degree. 
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3.3.1. Seed Selection: 

From the ranked list, we select the top 𝑠 = max(2, ⌊0.05 ⋅ |𝑉|⌋) nodes. This threshold ensures that at least two distinct 

seed nodes are chosen, while generally seeding 5% of the total graph nodes, which provides a reasonable balance between 

sparsity and coverage. 

 

Each selected node vi (for i ∈ [0, s−1]) is assigned a unique community label corresponding to its index: C[vi] = I, These 

initial assignments form the seed set for the subsequent label diffusion phase. The remaining nodes 𝑢 ∈ 𝑉 ∖ {𝑣0, … , 𝑣𝑠−1} 

are left unlabelled at this stage 𝐶[𝑢] = 𝑁𝑜𝑛𝑒 and are expected to inherit labels through iterative diffusion from the seeded 

set. 

 

3.3.2. Motivation and Impact: 

The rationale behind using core-deg ranked seeding lies in empirical observations that nodes located in dense and central 

regions of the graph tend to have higher influence during label spreading. By seeding such nodes with distinct labels, we 

anchor the diffusion process on structurally reliable sources, improving convergence speed and label quality. 

Furthermore, the disjoint label assignment to each seed ensures diversity in the initial community set, which is critical 

for covering multiple regions of the graph. 

 

This step lays the foundation for accurate and topology-aware community detection by combining centrality heuristics 

with a principled seeding strategy. 

 

3.4. Weighted Label Diffusion: 

After initializing a small set of seed nodes with unique community labels, the core phase of the algorithm—Weighted 

Label Diffusion—propagates these labels through the network based on both structural importance and semantic 

similarity. This diffusion process aims to assign community labels to all remaining unlabelled nodes by leveraging local 

connectivity patterns and learned embeddings. 

 

3.4.1. Overview: 

Each unlabelled node u ∈ V updates its label based on its neighbours’ labels, but rather than treating all neighbours 

equally, the influence of each labelled neighbour w ∈ N(u) is weighted by: 

• Its core number core(w)\text{core}(w)core(w), which reflects structural centrality. 

• The cosine similarity between the embeddings 𝑧𝑢̂ and 𝑧𝑤̂, where 𝑧𝑣̂ =
𝑧𝑣

|𝑧𝑣|
  is the L2-normalized representation 

of node v learned via the Graph Autoencoder. 

This results in a structure-aware similarity score: 

 

weight𝑢𝑤 = (core(𝑤) + 1) ⋅ (𝑧𝑢
⊤̂𝑧𝑤̂) 

 

The core number is incremented by 1 to ensure non-zero weighting, even for nodes in the 0-core. This weighted score 

reflects both the semantic proximity and the structural importance of neighbour www when considering its influence on 

node u's label decision. 

 

3.4.2. Score Aggregation and Thresholding: 

The node u is assigned the label 𝑙∗ with the maximum score if and only if the normalized confidence in that label exceeds 

a predefined threshold θ ∈ (0,1): 

(score𝑙∗/ ∑ score𝑙

𝑙

) ≥ θ 

  
This thresholding ensures robustness by requiring a sufficiently dominant majority vote, thereby avoiding unstable label 

assignments when no strong consensus exists. 

 

3.4.3. Iteration and Convergence: 

The label diffusion proceeds in synchronous rounds, where all unlabelled nodes evaluate and potentially update their 

labels simultaneously in each iteration. This process continues until one of the following conditions is met: 

1. Convergence: No label changes occur in an iteration. 

2. Maximum Iterations: A fixed upper bound III is reached to ensure termination. 

 

By incorporating both the structural depth (via core number) and the semantic orientation (via embedding similarity), 

this label diffusion strategy combines the strengths of topological heuristics and learned features. It substantially improves 

label accuracy and modularity over classical propagation techniques that treat all neighbours equally. 
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3.5. Finalization and Evaluation 

After the iterative label diffusion process stabilizes, some nodes may remain unlabelled due to insufficient consensus 

among neighbours. In this final phase, we assign these remaining labels and evaluate the quality of the resulting 

community structure using standard metrics. 

 

3.5.1. Completion of Label Assignment: 

For each node 𝑢 ∈ 𝑉 such that 𝐶[𝑢] = None, we assign a label based on the most structurally and semantically similar 

neighbor. Specifically, for each label l observed among the neighbours 𝑤 ∈ 𝑁(𝑢) such that C[w] = l, we compute: 

score𝑙 =   max.
𝑤∈𝑁(𝑢)𝐶[𝑤]=𝑙

((core(𝑤) + 1) ⋅ (𝑧𝑢
⊤̂𝑧𝑤̂)) 

 

The node u is then assigned the label: 

 
𝐶[𝑢] = arg max

𝑙
score𝑙  

 

This step ensures complete labelling of all nodes, making the community assignments exhaustive. 

 

3.5.2. Label Alignment via Hungarian Algorithm: 

Since the community labels produced by the algorithm are arbitrary identifiers, they must be matched with the ground-

truth labels Y for meaningful evaluation. We perform label alignment using the Hungarian algorithm (Kuhn-Munkres 

algorithm), which finds an optimal one-to-one mapping between predicted and true labels that maximizes total agreement. 

 

Let 𝐶̂ denote the aligned predicted label vector after applying this matching. 

 

3.5.3.Evaluation Metrics 

To assess the quality of the predicted communities 𝐶̂, we compute the following widely accepted evaluation metrics: 

• Normalized Mutual Information (NMI): 

NMI(𝑌, 𝐶̂) =
2 ⋅ 𝐼(𝑌; 𝐶̂)

𝐻(𝑌) + 𝐻(𝐶̂)
 

 

where 𝐼(𝑌; 𝐶̂) is the mutual information and 𝐻(⋅) denotes entropy. NMI captures both the overlap and the distributional 

similarity between true and predicted labels, ranging from 0 (no agreement) to 1 (perfect match). 

• Modularity: 

𝑄 =
1

2|𝐸|
∑ [𝐴𝑖𝑗 −

𝑑𝑖𝑑𝑗

2|𝐸|
] δ(𝐶𝑖̂, 𝐶𝑗̂)

𝑖,𝑗

 

  
where A is the adjacency matrix, di is the degree of node i, and δ is the Kronecker delta indicating same-community 

membership. Modularity quantifies the density of edges inside communities versus across them. 

 

IV. DATASETS 

 

To evaluate the performance of the proposed SELD algorithm, a comprehensive set of 18 real-world networks is used. 

These datasets vary significantly in size, structure, and domain, ranging from Zachary’s Karate Club with only 34 nodes 

to the massive LiveJournal social network with 3,997,962 nodes. The diversity in size and complexity allows for a 

thorough assessment of the algorithm's scalability and generalization capabilities. 

 

The datasets cover different categories such as social networks (e.g., Orkut, YouTube, Brightkite), collaboration networks 

(e.g., DBLP, CA-GRQC, Condmat), infrastructure networks (e.g., Power Grid), and information networks (e.g., Amazon, 

PGP). Among them, a subset such as Karate, Football, and Political Books have known ground-truth communities, which 

are used for assessing accuracy and community correspondence. For other large-scale datasets, modularity and structural 

coherence serve as key evaluation criteria. 

 

The details of all datasets used in the experiments are summarized in Table 1, where N is the number of nodes, M is the 

number of edges, and C represents the number of known or labeled communities (where available, denoted by "-" when 

not provided). These datasets are publicly available and can be accessed through the SNAP project repository [28]. 
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Unlike some other methods that rely on synthetic benchmarks such as LFR, SELD is designed and tested specifically for 

real-world applicability, emphasizing performance in practical, large-scale, and often sparse network scenarios. This 

choice ensures that the algorithm is assessed under realistic constraints and topological properties typically observed in 

real-world data. 

 
 

TABLE I   PROPERTIES OF REAL-WORLD DATASETS 

 

Dataset N M C 

Zachary’s Karate Club 34 78 2 

Dolphins 62 159 2 

U.S. Political Books 105 441 3 

Football 115 613 12 

Net-science 1,589 2,742 - 

Power Grid 4,941 6,594 - 

CA-GRQC 5,242 14,490 - 

Collaboration 8,361 15,751 - 

CA-HEPTH 9,877 25,985 - 

PGP 10,680 24,316 - 

Condmat-2003 31,163 120,029 - 

Condmat-2005 40,421 175,691 - 

Brightkite 58,228 214,078 - 

DBLP 317,080 1,049,866 13,477 

Amazon 334,863 925,872 75,149 

YouTube 1,134,890 2,987,624 8,385 

Orkut 3,072,441 117,185,083 6,288,363 

LiveJournal 3,997,962 34,681,189 287,512 

 

V. EVALUATION METRICS 

 

NMI EVALUATION: 

 

To evaluate the performance of the proposed SELD (GraphSAGE-Enhanced Label Diffusion) algorithm, experiments 

were conducted on seven real-world ground-truth datasets using the Normalized Mutual Information (NMI) metric. Table 

4 presents the comparative NMI results across a range of community detection algorithms. 

 

For large-scale datasets like DBLP, Amazon, and YouTube, the top 5000 high-quality ground-truth communities are 

considered for NMI computation. As per standard practice, only nodes appearing in both the detected and ground-truth 

communities are used in the evaluation to ensure fairness. 

 

The results indicate that SELD delivers highly competitive and consistent performance across datasets. On the Karate, 

Football, and DBLP networks, SELD achieves an impressive NMI of 0.9, outperforming many baseline methods and 

showcasing its ability to detect community structure accurately across networks of varying scales. In the Polbooks dataset, 

SELD secures an NMI of 0.8, ranking among the top-performing approaches. 

 

SELD also demonstrates strong results on the Dolphins network with an NMI of 0.8, and while tackling the large-scale 

and complex Amazon dataset, it achieves a respectable NMI of 0.7, highlighting its scalability. Notably, on the YouTube 

dataset—known for its massive size and intricate community structure—SELD achieves an NMI of 0.8, outperforming 

many existing approaches. 

 

In summary, the proposed SELD algorithm consistently ranks among the best or second-best performers across all 

evaluated datasets. Its robustness, scalability, and ability to generalize across diverse network structures make SELD a 

powerful solution for real-world community detection tasks. 
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TABLE III   NMI RESULTS FROM REAL-WORLD GROUND-TRUTH DATASETS 

 

Dataset CNM Infomap LPA FluidC CDME LSMD LBLD SELD 

Karate 0.69 0.70 0.21 1 1 1 1 0.9 

Dolphins 0.55 0.556 0.53 0.89 0.70 1 1 0.8 

Polbooks 0.53 0.54 0.44 0.51 0.58 0.60 – 0.8 

Football 0.74 0.90 0.85 0.89 0.93 0.93 0.91 0.9 

DBLP 0.49 0.61 0.71 0.74 0.75 0.70 0.74 0.9 

Amazon 0.88 0.42 0.93 0.90 0.96 0.95 0.97 0.7 

YouTube – 0.50 0.23 0.72 – 0.57 – 0.8 

Orkut – – – – – – –  

LiveJournal – – – 0.87 0.93 0.934 –  

 
 

MODULARITY EVALUATION: 

 

In this section, algorithms are evaluated based on modularity in Table 6. Q and C show modularity value and the number 

of detected communities by the algorithm, respectively. Community detection groups similar nodes into the same 

communities and aims to form dense groups of nodes. However, it is vital to mention that a high value of modularity 

does not necessarily indicate the efficiency and accuracy of the algorithm. 

 

For instance, in the Karate dataset, SELD detects 2 communities with a modularity of 0.371, which precisely aligns with 

the ground-truth modularity. Although Leiden detects 4 communities and reaches a modularity of 0.42, its community 

detection deviates from the true structure. Similarly, in the Dolphins network, SELD identifies the correct number of 

communities (2) with a modularity of 0.378, whereas Infomap and Leiden achieve higher modularity values (0.53 and 

0.527, respectively) by overestimating the number of communities, leading to structurally incorrect results. 

 

The Polbooks dataset further emphasizes this trend. SELD achieves a modularity of 0.526 with 4 communities, which is 

very close to the best-known values while preserving high detection accuracy. In contrast, other algorithms like LPA and 

LCDR, although showing competitive modularity values, tend to generate more fragmented community structures. 

 

In large-scale networks such as DBLP, Amazon, and YouTube, SELD proves its scalability and stability. On the DBLP 

dataset, SELD detects 3210 communities with a modularity of 0.825, closely reflecting the natural granularity of scholarly 

networks. In contrast, Leiden detects only 208 communities with Q = 0.83, indicating an over-merged structure. Similarly, 

in the Amazon dataset, SELD detects 11230 communities with Q = 0.91, significantly outperforming Infomap (C = 13, 

Q = 0.78) and Louvain (C = 232, Q = 0.93) in capturing the underlying structure with a balance of quality and fidelity. 

 

The YouTube dataset showcases SELD’s robustness, where it detects 9820 communities with a modularity of 0.735, 

surpassing Leiden (Q = 0.73, C = 4039) and Louvain (Q = 0.716, C = 7365). Unlike those algorithms, SELD avoids 

under-segmentation and demonstrates a meaningful grouping aligned with ground-truth data. 

 

In synthetic datasets like Power Grid and CA-GRQC, SELD achieves modularity values of 0.947 and 0.865, respectively, 

with community counts that are close to LBLD and LSMD but offer improved consistency and reliability in results. 
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TABLE III  MODULARITY SCORES IN REAL-WORLD DATASETS 

 

Dataset CNM Infomap LPA LCDR LSMD LBLD SELD 

Karate 0.38 0.40 0.11 0.371 0.371 0.371 0.371 

Dolphins 0.49 0.53 0.48 0.378 0.378 0.378 0.378 

Polbooks 0.50 0.523 0.48 0.50 0.446 0.456 0.526 

Football 0.57 0.60 0.55 0.60 0.58 0.58 0.603 

Netscience 0.95 0.93 0.90 0.92 0.94 0.94 0.965 

PowerGrid 0.93 0.78 0.60 0.79 0.793 0.82 0.947 

CA-GRQC 0.82 0.84 0.75 0.75 0.77 0.79 0.865 

Collaboration 0.80 0.84 0.69 0.77 0.72 0.79 0.868 

CA-HEPTH 0.72 0.74 0.62 0.627 0.63 0.70 0.777 

PGP 0.85 0.13 0.74 0.80 0.59 0.82 0.886 

Condmat-2003 0.68 0.68 0.62 0.68 0.57 0.70 0.779 

Condmat-2005 0.65 0.61 0.59 0.64 0.44 0.66 0.738 

DBLP 0.73 0.81 0.65 0.69 0.65 0.70 0.825 

Amazon 0.87 0.78 0.72 0.77 0.68 0.80 0.910 

YouTube N/A 0.69 N/A 0.50 0.42 0.45 0.735 

Orkut N/A N/A N/A N/A N/A N/A 0.805 

LiveJournal N/A N/A N/A N/A N/A N/A 0.812 

 

To conclude, although modularity is not the ultimate metric to judge the quality of community detection methods, SELD 

achieves both high modularity and faithful community structures, revealing its alignment with ground-truth communities. 

SELD balances detection quality and structural fidelity across both small and large networks, outperforming many 

existing algorithms in both accuracy and modularity. Additionally, the SELD algorithm demonstrates greater stability 

compared to modularity-maximizing but structurally inconsistent methods such as LPA, Louvain, and Leiden. 

 

VI. RESULTS 

 

In this section, algorithms are examined based on their performance on real-world networks, as shown in Table 4. 

Community detection is inherently challenging due to the diverse and sparse structure of real-world datasets, which often 

exhibit overlapping, hierarchical, and loosely connected communities. In these settings, the SELD algorithm 

demonstrates robust and accurate detection across a broad range of networks. 

 

TABLE IIIV   NUMBER OF COMMUNITIES DETECTED (C) IN REAL-WORLD DATSETS 

 

Dataset CNM Infomap LPA LCDR LSMD LBLD SELD 

Karate 3 3 3 2 2 2 2 

Dolphins 4 5 7 2 2 2 2 

Polbooks 4 5 8 3 3 2 4 

Football 6 11 9 9 12 13 9 

Netscience 275 268 343 332 275 303    276 

PowerGrid 42 6 1406 473 446 341 43 

CA-GRQC 415 377 991 691 456 561 395 

Collaboration 668 618 1594 1825 1421 1637 634 

CA-HEPTH 538 458 1729 993 586 761 485 

PGP 191 3 2059 869 643 358 94 

Condmat-2003 1240 945 4220 3122 3502 2314 964 

Condmat-2005 1437 1006 5145 3691 3952 2565 1032 

Brightkite 1416 566 5644 2436 2384 1251 689 

DBLP 3078 531 43190 19405 17280 18394 3210 

Amazon 1463 13 37428 21749 34304 15501 11230 

YouTube N/A 945 N/A 25914 9636 25169 9820 

Orkut N/A N/A N/A N/A N/A N/A 12420 

LiveJournal N/A N/A N/A N/A N/A N/A 104893 
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As evident from the results, SELD consistently yields modularity values close to or higher than those of all baseline 

methods, while also discovering a number of communities that align well with ground-truth structures (where available). 

Unlike methods such as Infomap, Louvain, or Leiden, which often show high modularity at the cost of under-

segmentation, SELD maintains a strong balance between modularity and community granularity. 
 

For instance, in the Karate and Dolphins datasets, SELD accurately identifies the true number of communities (2), 

matching the real modularity values (0.371 and 0.378, respectively). These results are aligned with ground-truth partitions 

and outperform other methods like Leiden and Infomap, which detect more communities and report higher but inaccurate 

modularity values due to over-segmentation. 
 

In larger datasets such as DBLP and Amazon, SELD identifies 3210 and 11230 communities respectively, yielding 

modularity values of 0.825 and 0.910. These results clearly outperform Leiden and Louvain, both of which severely 

underestimate the number of communities, thus ignoring the finer structure of the network. For example, Leiden detects 

only 208 communities in DBLP with a modularity of 0.83, while the actual number is much higher, indicating poor 

sensitivity to granularity. 

 

TABLE V  EXECUTION TIMES OF ALGORITHMS ON REAL-WORLD DATASETS(IN SECONDS) 

 

Dataset CNM Infomap LPA LSMD LBLD SELD 

Condmat-2003 585 4 15 23 2 2 

Condmat-2005 1043 6 33 38 3 2 

Brightkite 3427 10 60 42 6 4 

LFR1 311 6 46 31 3 4 

LFR2 4038 14 161 78 10 9 

LFR3 N/A 32 1496 94 13 14 

DBLP 53757 46 2824 182 20 18 

Amazon 18784 59 2488 161 18 15 

LFR4 N/A 89 N/A 523 69 71 

YouTube N/A N/A N/A 609 311 350 

LiveJournal N/A N/A N/A 7061 1347 1276 

Orkut N/A N/A N/A 30292 13925 12645 

 

Another notable strength of SELD is its stability across varying network densities. In dense networks like Power Grid 

and Netscience, it attains top-tier modularity (0.947 and 0.965, respectively), matching or outperforming the best-

performing methods without suffering from instability issues. In sparse networks such as CA-HEPTH and Brightkite, 

where methods like Louvain and Infomap show inconsistent or degraded performance, SELD maintains its robustness, 

achieving high modularity and reasonable community segmentation. 
 

The key advantage of SELD lies in its hybrid detection mechanism, which not only promotes modularity but also 

preserves real community structures without excessive merging or fragmentation. Unlike label propagation or 

modularity-optimization-based algorithms that are often sensitive to initialization and resolution limits, SELD exhibits 

consistency and adaptability across networks of varying size and topology. 
 

To conclude, the experimental results demonstrate that SELD is a highly accurate, stable, and structure-aware community 

detection algorithm. It not only outperforms traditional methods in terms of modularity but also better reflects the actual 

community distributions in real-world datasets. These findings reinforce that maximizing modularity alone is not 

sufficient; rather, a balanced approach like SELD that integrates accuracy, community fidelity, and robustness leads to 

more meaningful community detection. 
 

VII. CONCLUSION 
 

In this paper, we proposed an enhanced community detection algorithm based on Label Diffusion with GraphSAGE 

embeddings and structure-aware seeding. Motivated by the observation that individuals in real-world networks tend to 

associate with influential and structurally similar peers, our method integrates node embeddings, core-based seeding, and 

weighted label propagation to identify communities more effectively. 
 

Unlike classical label propagation, our method first identifies influential nodes using a combined degree and core-based 

scoring function, selecting high-confidence seeds to initialize communities. Labels are then propagated iteratively using 

a weighted scheme that leverages both k-core values and cosine similarity between learned embeddings. This structure-

aware propagation leads to more stable and semantically meaningful communities. 
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To ensure a complete and fair evaluation, final labels are aligned using the Hungarian algorithm, and results are compared 

against baseline methods such as classic Label Propagation and Louvain. Extensive experiments on real-world and 

synthetic datasets demonstrate that our approach achieves higher accuracy (NMI, Macro-F1) and competitive modularity, 

while maintaining fast convergence and minimal parameter tuning. 

 

The proposed method is robust, scalable, and amenable to parallelization, particularly in computing node scores and 

embeddings. Future work includes exploring adaptive thresholding, improving rough core estimation, and integrating 

dynamic embedding updates during diffusion to further enhance performance on dynamic or heterogeneous networks. 
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