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Abstract: In the context of airport logistics, "turnaround time" refers to the interval between an aircraft's landing and its 

subsequent takeoff. Unfortunately, inefficiencies within these turnaround operations are a major factor behind flight 

delays. To achieve optimal profitability, airlines must strive to minimize the duration an aircraft remains grounded. 

Nevertheless, this objective is hindered by the necessity to comply with manufacturer-mandated maintenance procedures, 

which are vital to ensuring aircraft safety. These activities, outlined in detailed checklists and scheduled by the 

manufacturer, owner, or operator—under the oversight of certified airworthiness authorities—create significant 

constraints in reducing on-ground time. 

 

Consequently, streamlining turnaround procedures remains the only controllable aspect through which airlines can 

improve efficiency and profitability. As air travel serves as a cornerstone of global connectivity, maintaining strict 

standards for safety and security is indispensable. However, the COVID-19 pandemic has deeply impacted ground 

handling protocols, prompting the urgent need to revise traditional practices to align with enhanced hygiene and health 

regulations. 

 

One prominent challenge lies in the passenger embarkation process, which now requires strict physical distancing and 

thorough disinfection of the cabin after each flight. In response, this study explores potential revisions to in-cabin 

procedures by comparing them to pre-pandemic turnaround operations. Through a detailed, process-level examination, 

we identify individual touchpoints and suggest strategic adjustments aimed at improving operational efficiency. 

Our findings indicate that boarding durations have increased significantly—more than twice the usual time—due to social 

distancing mandates. Despite introducing various procedural changes, sustaining previous turnaround benchmarks while 

maintaining full passenger capacity remains problematic. Nevertheless, adopting alternative strategies—such as 

maintaining vacant middle seats (reducing capacity to approximately 67%) and boarding from apron stands using both 

front and rear doors—can help mitigate delays and support smoother aircraft turnaround operations. 
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I. INTRODUCTION 

 

To remain profitable, airlines must prioritize maximizing the duration aircraft spend in the air. However, a significant 

portion of an aircraft’s operational cycle is spent on the ground, especially during routine maintenance and turnaround 

activities. Therefore, to improve overall efficiency and profitability, reducing ground time becomes essential. 

Nonetheless, several safety-critical maintenance checks—such as A-checks and C-checks—are mandatory as per 

manufacturer guidelines and cannot be shortened, posing limitations on minimizing ground time. 

 

As a result, airlines need to concentrate on shortening turnaround time, the only variable within their operational 

influence. Turnaround includes a series of tasks that must be completed before the aircraft can depart again—such as 

refueling, loading and unloading luggage, onboarding and offboarding passengers, catering services, and performing line 

maintenance inspections. 

 

Delays during this period can trigger a cascade of disruptions, often termed as "reactionary" or "knock-on delays", which 

significantly affect both airline operations and passenger schedules—especially at major hubs. These disruptions are 

exacerbated when air traffic control (ATC) must reschedule flights and allocate new time slots, a process that can take up 

to an hour. Financially, such delays are costly—amounting to approximately £650 million annually, with each minute of 

delay incurring around £50 in losses. 
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Minimizing turnaround durations can help curb these financial losses and improve airline profitability. Therefore, tackling 

the variables that impact turnaround efficiency remains a pressing concern for the aviation industry. In response to this, 

the present study investigates strategic solutions for minimizing delays and optimizing the aircraft turnaround process. 

With profitability hinging on operational efficiency, most airlines are now focusing on shortening turnaround intervals 

and extending airborne time to gain a competitive edge. 

 

II. AIR TRANSPORT TURNAROUND PROCESS 

 

The duration required to offload an aircraft at the gate and ready it for its next departure is referred to as the aircraft's 

turnaround time. Since aircraft turnaround protocols vary across airports, each turnaround process is unique. At Fly 

Airways, the turnaround workflow is primarily categorized into three major segments: ramp services, cabin activities, 

and fueling procedures. These tasks are executed simultaneously, as depicted in Figure 1. The diagram illustrates the 

specific time allocation designated for each task within these three segments. 

 

The process begins with the positioning of the aerobridge or air-stair at the aircraft’s front left door. Once connected, a 

flight attendant opens the door and instructs passengers to disembark with their carry-on belongings. After all arriving 

passengers have exited, the cabin crew alerts the cleaning personnel to board and initiate the cleaning operations. 

Following this, the flight crew also disembarks, enabling the cleaning team to commence sanitation procedures. During 

this process, they also perform a safety inspection, which involves thoroughly checking lavatories and all seats for 

prohibited items or potential threats. 

 

 
Figure 1 Air Transport turnaround operations (in minutes) 

 

Afterward, the flight attendant closes the left front door of the aircraft, withdraws the aerobridge or air-stair, and shuts 

any remaining open overhead bins. The fueling process is handled by a third-party contractor contracted for this task. Fly 

Airways follows a specific set of operational protocols for fueling its aircraft. Fuel is loaded onto the aircraft using a 

large hose according to these procedures, and the hose is removed once the fueling is completed. 

The process of ramp operations (shown in Figure 4a, b) starts with the transfer of vans used for carrying baggage and a 

belt loader to the aircraft's rear bin. To begin unloading bags, the belt loader is positioned at the bin and the bags move 

down the belt loader. An operator carefully stacks each piece of luggage onto the baggage van at the bottom of the loader. 

When the van is filled, it moves the arriving luggage to the airport's assigned conveyor belt, where travelers can pick it 

up. 

 

 
Figure 2 Ramp operations. a Movement of baggage carry van and belt loader. b Baggage transported to the airport from 

baggage bins in aircraft 
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Once the bags in the rear bin are completely unloaded, the same procedure is carried out for the front bin. When both 

bins have been emptied, the luggage retrieval process for arriving passengers is finished. The following step involves 

organizing the luggage based on the destinations of departing passengers. 

 

III. AI-DRIVEN SOLUTIONS TO REDUCE AIRCRAFT TURNAROUND TIME 

 

To maintain profitability, both airports and airlines must ensure efficient aircraft turnaround operations. As the demand 

for faster service grows, ground support teams face mounting pressure to minimize delays while upholding rigorous 

safety standards to avoid preventable accidents. Given the complexity of these operations, identifying opportunities for 

improved efficiency can be challenging. 

Artificial intelligence (AI) offers valuable tools to enhance operational insight, improve safety, and enable real-time 

monitoring and staff training. Here are key ways AI can help optimize turnaround times: 

 

Key Strategies for AI Integration: 

• Conduct thorough audits and detailed operational analyses. 

• Enhance safety protocols for ground handling crews. 

• Leverage training content to deepen operational understanding. 

• Implement real-time monitoring of turnaround procedures. 

 

Operational Assessment and Optimization 

 

Delays in turnaround often result from risky or inefficient actions by ground support teams. AI platforms like Synaptic 

Aviation provide continuous monitoring throughout the turnaround cycle, enabling early identification and resolution of 

bottlenecks. Through video analysis and full-process audits, AI can assess team interactions and operational 

effectiveness. 

 

Improving Ground Crew Safety 

Approximately 80% of incidents occur on the gate and apron, frequently resulting in delays. To improve turnaround time, 

strict safety measures must be enforced. AI systems enhance proactive safety management by instantly flagging unsafe 

behaviors—such as reckless driving near aircraft—allowing immediate intervention to prevent accidents. 

 

Enhancing Training with Real-World Insights 

AI can also serve as a powerful training tool. Synaptic Aviation’s platform audits video footage and alerts, providing 

meaningful examples for educating ground crews. These recordings allow managers to demonstrate best practices—and 

what to avoid—during onboarding or refresher sessions. 

 

Real-Time Turnaround Monitoring 

Effective communication and coordination are critical during turnaround. AI facilitates this by enabling real-time data 

collection and alerting, helping teams promptly address any operational disruptions, unsafe behaviors, or equipment 

issues. This not only enhances safety but also supports faster and more consistent aircraft turnaround. 

 

IV. DATASET DESCRIPTION 

 

For this research, we utilized a comprehensive dataset comprising over 7 million records related to flight arrival delays 

across 18 Indian airlines. Each record provides monthly summaries of delays experienced by specific airlines at particular 

airports. 

Spanning from August 2013 to August 2023, the dataset offers insights into airline performance across different Indian 

airports, with a primary focus on arrival delays. It includes metrics such as total arriving flights, delays exceeding 15 

minutes, cancellations, and diversions. Contributing factors such as National Airspace System (NAS) issues, weather 

disruptions, airline-related delays, security problems, and late-arriving aircraft are also captured. 

This dataset serves as a rich resource for researchers, data scientists, and aviation professionals seeking to uncover trends, 

identify delay causes, and develop predictive models for operational improvements. 

 

Structure: 

The dataset is structured as a tabular format with rows representing unique combinations of year, month, carrier, and 

airport. Each row contains information on various metrics, including flight counts, delay counts, cancellation and 

diversion counts, and delay breakdowns by different factors. The columns provide specific details such as carrier codes 

and names, airport codes and names, and counts of delays attributed to carrier, weather, NAS, security, and late aircraft 
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arrivals. The structured format ensures that users can easily query, analyze, and visualize the data to derive meaningful 

insights. 

 

Metadata 

FL_DATE = Date of the Flight   

OP_CARRIER = Airline Identifier  

OP_CARRIER_FL_NUM = Flight Number  

ORIGIN = Starting Airport Code  

DEST = Destination Airport Code   

CRS_DEP_TIME = Planned Departure Time  

DEP_TIME = Actual Departure Time  

DEP_DELAY = Total Delay on Departure in minutes  

TAXI_OUT = The time duration elapsed between departure from the origin airport gate and wheels off  

WHEELS_OFF = The time point that the aircraft's wheels leave the ground  

WHEELS_ON = The time point that the aircraft'ss wheels touch on the ground  

TAXI_IN = The time duration elapsed between wheels-on and gate arrival at the destination airport  

CRS_ARR_TIME = Planned arrival time  

ARR_TIME = Actual Arrival Time = ARRIVAL_TIME - SCHEDULED_ARRIVAL  

ARR_DELAY = Total Delay on Arrival in minutes  

CANCELLED = Flight Cancelled (1 = cancelled)  

CANCELLATION_CODE = Reason for Cancellation of flight: A - Airline/Carrier; B - Weather; C - National Air  

 System; D – Security  

DIVERTED = Aircraft landed on different airport that the one scheduled  

CRS_ELAPSED_TIME = Planned time amount needed for the flight trip  

ACTUAL_ELAPSED_TIME = AIR_TIME+TAXI_IN+TAXI_OUT  

AIR_TIME = The time duration between wheels_off and wheels_on time  

DISTANCE = Distance between two airports  

CARRIER_DELAY = Delay caused by the airline in minutes  

WEATHER_DELAY = Delay caused by weather  

NAS_DELAY = Delay caused by air system  

SECURITY_DELAY = caused by security reasons  

LATE_AIRCRAFT_DELAY = Delay caused by security 

 

V. ARCHITECTURE 

 

Our proposed interactive ‘Turnaround Airlines’ system architecture is designed to streamline and enhance the aircraft 

turnaround process using data-driven intelligence. This architecture is structured into three core phases, as illustrated in 

Figure 5 (referenced in the original text). Each phase plays a crucial role in ensuring accurate delay prediction, better 

reporting, and improved operational efficiency. 

 
Figure 3 Architecture of Airlines Turnaround Time Estimation 
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Phase 1: Data Collection Layer 

The first layer of the system focuses on comprehensive data acquisition. This involves collecting real-time and historical 

operational data from multiple airports across the country. The types of data include: 

• Flight schedules and statuses (arrival, departure, gate time) 

• Delay incidents and causes 

• Weather conditions 

• Ground crew activity logs 

• Air Traffic Control (ATC) updates 

• Resource allocation (e.g., gate assignments, equipment usage) 

Additionally, data from the National Airspace System (NAS) is integrated. NAS provides high-level information about 

airspace usage, traffic flows, and systemic delay sources (e.g., congestion or rerouting due to weather). 

This multi-source data collection creates a massive, heterogeneous dataset that represents both localized airport 

operations and broader, system-wide influences. 

 

Phase 2: Data Analysis and Processing Layer 

Once data is gathered, the system moves into the analysis phase. In this layer, sophisticated machine learning and AI 

algorithms are applied to process and extract meaningful patterns from the large dataset. Key functions in this phase 

include: 

• Data cleaning and normalization: Ensuring the quality and consistency of data across all sources. 

• Feature engineering: Identifying the most relevant factors (weather, crew delays, equipment unavailability, 

etc.) that influence turnaround time. 

• Predictive modeling: Using historical trends and real-time inputs to forecast future delays at both individual 

airports and across the entire network. 

• Anomaly detection: Flagging unusual behaviors or patterns that could indicate operational inefficiencies or 

potential safety risks. 

This analytical layer transforms raw data into actionable insights that can support decision-making and proactive 

management. 

 

Phase 3: Insights, Reporting, and Forecasting 

The final phase utilizes the processed data and model outputs to generate future-oriented insights: 

• Delay prediction: Identifying flights or airports at high risk of delay in advance. 

• Operational reports: Producing real-time dashboards and post-operational summaries for airline and airport 

management. 

• Strategic planning support: Offering long-term forecasts and recommendations for infrastructure, staffing, and 

scheduling improvements. 

This interactive system enables continuous learning and feedback, allowing stakeholders to not only respond to current 

issues but also anticipate and mitigate future challenges. 

 

VI. DATA AND RESULT ANALYTICS 

 

As shown in Figure 4 is self-explanatory and easy to interpret. It clearly highlights the top five airlines with the highest 

number of flights which we have used in our research: 

• Southwest Airlines 

• Delta Airlines 

• American Airlines 

• SkyWest Airlines 

• United Airlines 

At this point, no further analysis is necessary. I will revisit this list after reviewing additional plots to provide more 

context and insights. 
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Figure 4 Total number of flights by airline sorted is descending order 

 

The statement refers to a summary figure that presents the performance evaluation results for a specific machine 

learning model, identified as Model_5, which belongs to the second set of models developed during the research or 

experimentation process. 

Below, Figure is the model performance evaluation summary 

This indicates that the figure shown directly below this text (possibly in a thesis or report) contains quantitative results 

used to assess how well the model performs. These results typically include evaluation metrics such as: 

• Accuracy 

• Precision 

• Recall 

• F1-score 

• Root Mean Square Error (RMSE) 

• Mean Absolute Error (MAE) 

• R² Score (for regression models) 

• Confusion Matrix or ROC-AUC curve (for classification models) 

 

 
Figure 5.5: Model 5 performance summary 
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Selecting the best model based on performance metrics is a critical step in any data science or machine learning project. 

The chosen model (Model_5, in this case) will likely be used for: 

• Making predictions on future data 

• Generating insights 

• Informing decision-making processes 

• Being deployed into a real-time or production environment 

 

VII. FUTURE SCOPE 

 

While delays may result from Air Traffic Control (ATC) operations, a well-planned flight schedule can greatly improve 

punctuality. Returned aircraft schedules with enough buffer time increase the dependability of airport flight connections. 

Using this method helps airlines keep a positive customer reputation for on-time performance while cutting operational 

costs by optimizing aircraft rotation schedules within their flight networks. 

 

VIII. CONCLUSION 

 

The key conclusions derived from the conducted interviews provide valuable insights into aircraft servicing and 

maintenance practices. These findings highlight the crucial role that technicians' firsthand experiences and expertise play 

in shaping more efficient and effective maintenance procedures. 

By incorporating the perspectives and recommendations of technicians—those directly involved in day-to-day 

operations—organizations can enhance the accuracy, responsiveness, and practicality of maintenance protocols. This 

integration not only improves operational workflows but also contributes to greater safety and reliability in aircraft 

performance. 

 

The Results and Discussion section has been carefully structured to present the interview findings in a clear and logical 

manner. This format allows for a comprehensive analysis of how these insights can be applied within the aviation 

maintenance domain. It ensures that the relevance of each conclusion is thoroughly examined, linking qualitative input 

from professionals to tangible improvements in aircraft servicing strategies. 

Various interviews, along with their implications for servicing and maintaining aircraft helped in concluding. The 

integration of technician insights into maintenance procedures is emphasized as a means of improving efficiency and 

effectiveness. Clear presentation of the interview results and a thorough analysis of their applicability to the field of 

aircraft servicing and maintenance are made possible by the Results and Discussion section's structured format. 
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