
ISSN (O) 2278-1021, ISSN (P) 2319-5940  IJARCCE 

International Journal of Advanced Research in Computer and Communication Engineering 

Impact Factor 8.102Peer-reviewed & Refereed journalVol. 14, Issue 5, May 2025 

DOI:  10.17148/IJARCCE.2025.14554 

© IJARCCE                This work is licensed under a Creative Commons Attribution 4.0 International License                 409 

AUTOMATED 3D MODEL CREATION FROM 

2D IMAGES USING DEEP LEARNING 
 

Payeelavan1, Rahul D2, Mrs. M. Maheshwari, M.E., (Ph.D.)3 

Student, Department Computer Science and Engineering, Anand Institute of Higher Technology, Chennai, Kazhipattur1 

Student, Department Computer Science and Engineering, Anand Institute of Higher Technology, Chennai, Kazhipattur2 

Associate Professor, Department of Computer Science and Engineering, Anand Institute of Higher technology, 

Chennnai, Kazhipattur3 

 

Abstract: The conversion of 2D images to 3D models has become a significant area of research in computer vision and 

graphics. This project explores the development of a web-based system that leverages the Flask framework for backend 

processing to convert 2D images into 3D representations. The core objective of the project is to implement a simple yet 

effective pipeline that processes input 2D images and generates a 3D model through various computer vision algorithms 

and machine learning techniques. Using Flask, a lightweight web framework for Python, the system receives 2D images 

from users, processes them through pre-trained models or algorithms, and then outputs a 3D model or visualization. The 

3D model is constructed by inferring depth, texture, and geometric properties from the 2D image. This model can be 

further visualized in the browser using WebGL or exported into standard formats like STL or OBJ for use in 3D printing 

or digital modeling applications. The project aims to demonstrate the potential of combining web technologies with 

advanced image processing techniques to create accessible tools for 3D model generation from basic 2D inputs. This 

could be applied in various fields, including digital design, augmented reality, and game development, offering a 

convenient and scalable solution for converting 2D images into 3D assets. 
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I.      INTRODUCTION 

 

The transformation of two-dimensional (2D) images into three-dimensional (3D) models has become a pivotal research 

area in computer vision and graphics, fueled by advances in artificial intelligence and the increasing demand for 

immersive digital content. This process, known as 2D-to-3D reconstruction, involves generating a 3D representation of 

an object, scene, or surface from one or more 2D images. It has broad applications in fields such as augmented and virtual 

reality, digital art, game development, education, and 3D printing. As these industries grow, there is a growing need for 

user-friendly tools that can convert simple 2D inputs into detailed and usable 3D assets without requiring specialized 

software or expertise. 

 

Traditionally, creating 3D models has been a labor-intensive process requiring manual modeling skills and access to 

expensive software tools. However, recent advancements in machine learning, particularly deep learning, have enabled 

computers to infer depth, structure, and geometry from flat images with impressive accuracy. These algorithms can 

analyze visual cues such as shading, perspective, and texture to predict the spatial arrangement of objects in a scene, 

paving the way for automated 3D reconstruction from limited input data. 

 

This project aims to develop a web-based application that utilizes these cutting-edge techniques to offer an accessible 

platform for 2D-to-3D conversion. The backend of the system is built using Flask, a lightweight and flexible web 

framework for Python that allows for quick deployment and efficient handling of image inputs. Users interact with the 

system through a web interface, where they can upload a 2D image. The image is then processed on the server side using 

pre-trained computer vision models and algorithms that estimate depth information and reconstruct the object's shape in 

three dimensions. 

 

One of the key features of the system is its ability to render the resulting 3D model directly in the web browser using 

WebGL, enabling users to view and interact with the model in real time without needing additional software.  
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Furthermore, the platform supports exporting the model into standard 3D file formats such as STL and OBJ, which are 

compatible with a wide range of 3D modeling tools and 3D printers. This functionality makes the system practical not 

only for visualization but also for real-world applications like rapid prototyping and product design. 

 

By integrating modern web technologies with powerful image processing capabilities, this project demonstrates how 

advanced 3D reconstruction can be made more accessible and intuitive. The ultimate goal is to lower the barrier to entry 

for 3D content creation, enabling a wider audience—whether designers, students, educators, or hobbyists—to participate 

in digital modeling. This web-based tool represents a step toward democratizing 3D technology and making it a more 

integral part of everyday digital workflows. 

 

II.     RELATED WORK 

 

The advancement of 2D-to-3D model conversion techniques has been significantly influenced by ongoing research in 

computer vision, medical imaging, procedural modeling, and 3D visualization. The fusion of these domains has laid the 

groundwork for developing web-based systems that leverage artificial intelligence and image processing to generate 

realistic 3D models from simple 2D inputs. One of the most prominent efforts in 3D shape data curation is MedShapeNet, 

which provides a large-scale dataset of anatomical 3D models derived from real patient imaging data. This resource has 

enabled the adaptation of state-of-the-art computer vision algorithms to medical applications, such as brain tumor 

classification and surgical planning, making it a foundational contribution to 3D reconstruction in healthcare contexts 

[1].  

 

The availability of over 100,000 medically annotated 3D shapes in formats like meshes and point clouds supports the 

integration of AI-based systems into clinical workflows. Similarly, the importance of user-friendly interfaces for medical 

image annotation and visualization is highlighted in the development of interactive radiological tools. These tools allow 

clinicians to navigate DICOM sequences and manually annotate features across imaging modalities, offering critical 

support for diagnostic and educational purposes [2]. Such platforms demonstrate the need for real-time interaction and 

intuitive design—features that are equally crucial in general-purpose 3D modeling systems deployed via the web. In the 

context of procedural 3D model generation, researchers have utilized Python-based frameworks to create STL files 

programmatically. This method, often involving a combination of parametric modeling and algorithmic design, 

streamlines the customization of 3D objects and enhances compatibility with 3D printing technologies [3]. Procedural 

techniques can be particularly useful in automated 3D asset generation pipelines where personalization and scalability 

are required. Moreover, personalized modeling is increasingly relevant in biomedical simulations, such as those involving 

computational fluid dynamics (CFD) and particle transport through anatomically accurate human airways.  

 

By reconstructing airways from CT data and simulating realistic breathing cycles, researchers have illustrated the 

importance of tailoring 3D models to individual anatomical variability [4]. These methods underline the value of subject-

specific 3D representations, a principle that applies broadly in areas ranging from diagnostics to custom prosthetics 

design. Another significant study involves the development of a fully ventilated 3D lung model using finite element 

analysis, where experimental strain and pressure data from cadaveric lungs were used to create a physiologically accurate 

structural model. This approach represents a complex integration of imaging, simulation, and validation to produce a 

generalized framework for simulating human lung behavior under various conditions [5]. Outside the medical domain, 

existing general-purpose 3D model datasets like ShapeNet and ModelNet have played a foundational role in training 

machine learning models for object recognition and 3D shape inference. These datasets have inspired numerous 

algorithms for inferring depth and reconstructing geometric features from monocular images, enabling broader 

applications such as autonomous navigation, virtual object insertion, and real-time scene understanding [1]. Efforts to 

democratize 3D content creation via web-based systems are complemented by studies that emphasize intuitive interaction 

design and AI integration into user interfaces [2].  

 

Moreover, research in procedural generation supports the rapid production of varied 3D assets, ensuring adaptability in 

fields like game development and architectural visualization [3]. The integration of computational modeling with 

personalized imaging data continues to expand in areas such as aerosol deposition modeling and radiation exposure 

studies, where individualized 3D reconstructions lead to more accurate simulations and predictions [4]. These innovations 

underscore the need for accessible 3D reconstruction pipelines that can handle real-world data complexity and support 

downstream analytical applications. Ultimately, the convergence of medical imaging, AI-based modeling, procedural 

generation, and web visualization technologies presents a promising path toward making 3D model generation more 

efficient and widely accessible. This project draws on these foundations to create a Flask-powered web system that not 

only performs 2D-to-3D conversion but also enables real-time visualization and export to standard 3D formats, 

supporting both casual and professional use cases. 
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III.      PROPOSED SYSTEM 

 

The proposed system aims to develop an interactive, web-based platform for the 3D visualization of human organs using 

DICOM (Digital Imaging and Communications in Medicine) images as clearly mentioned in Fig 3.1. Traditional desktop-

based visualization tools often require significant computational resources and lack portability. In contrast, this system 

leverages the Flask web framework to provide a lightweight and accessible solution that can be accessed from any 

internet-enabled device, Fig 3.1 thereby enhancing usability and reach. 

 

System Architecture 

The architecture of the system is composed of three primary layers: 

 

 
Fig 3.1: System architecture 

 

Data Processing Layer 

At the core of the system is the DICOM image processing module, which reads and extracts volumetric data from DCM5 

files. Libraries such as pydicom, numpy, and SimpleITK are used to parse and convert 2D image slices into a 3D volume. 

The processed data is then prepared for 3D rendering by converting it into standard formats (e.g., .obj, .stl, or volume 

textures) compatible with WebGL or Three.js. 

 

Backend Layer (Flask Framework. 

Flask serves as the backend engine, handling requests between the client interface and the image processing pipeline. It 

also manages file uploads, processing workflows, and dynamic content rendering. The use of Flask ensures scalability 

and modularity, allowing for the easy integration of additional functionalities such as user authentication, database 

support, and security features. 

 

Frontend Layer (User Interface) 

The front end of the platform is designed to provide an intuitive and responsive interface using HTML5, CSS, JavaScript, 

and WebGL (via Three.js or similar libraries). Users can interact with the 3D models through standard gestures—zoom, 

rotate, and pan—enabling a comprehensive exploration of anatomical structures. Fig 3.1 The interface is optimized for 

cross-device compatibility to ensure accessibility on desktops, tablets, and mobile devices. 

 

Key Features 

• 3D Visualization: Real-time rendering of human organs reconstructed from DICOM images, offering high 

accuracy and anatomical detail. 

• User Interaction: Functionalities to rotate, zoom, and navigate through the models for detailed examination. 

• Web-Based Access: No need for installation; users can access the platform via any standard web browser. 

• Forgery Detection Module (Planned Extension): The system intends to integrate a deep learning-based module 

to detect anomalies or manipulations in DICOM data, ensuring data authenticity and enhancing diagnostic 

reliability. 

• Modular Design: The architecture supports modular expansion, allowing future integration of features such as 

annotation tools, multi-user collaboration, and case-based archives. 

 

Advantages Over Traditional Systems 

Compared to conventional software that requires dedicated installations and high-performance hardware, this system 

provides the following advantages: 

• Portability: Accessible from anywhere with an internet connection. 

• Scalability: Easily deployable on cloud platforms for large-scale access and usage. 
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• User-Centric Design: Simple interface tailored for use by medical students, educators, and healthcare 

professionals with minimal technical training. 

• Open Source Integration: Utilizes powerful open-source libraries, reducing development costs while 

maintaining robust functionality. 

 

IV.      METHODOLOGY 

The development of the 3D Visualization of Human Organs system follows a modular pipeline architecture, as illustrated 

in the system diagram. Each module plays a critical role in transforming raw DICOM (DCM) image data into interactive 

3D anatomical models accessible through a web interface. The methodology is structured into five key stages: 

 

Module 1: Data Collection 

The initial stage involves collecting medical image data in the DICOM (DCM) format from publicly available datasets 

such as CT (Computed Tomography) and MRI (Magnetic Resonance Imaging) scans. These datasets contain high-

resolution image slices that represent anatomical cross-sections of human organs. Only anonymized datasets are used to 

comply with ethical and legal standards. Images must be in DICOM format with appropriate metadata (slice thickness, 

position, orientation) for accurate reconstruction. 

 

Module 2: Data Preprocessing 

To ensure consistent quality and accurate reconstruction, raw DICOM images are subjected to several preprocessing 

steps: Noise Reduction: Filters (e.g., Gaussian, median) are applied to eliminate artifacts and enhance image clarity. 

Normalization: Pixel intensity values are standardized across slices to maintain uniform contrast and brightness. 

Resampling: Images are interpolated to a common resolution to align different datasets spatially. Segmentation 

Preparation: Prepares the volume for organ-specific extraction by highlighting areas of interest. The resampling must 

retain anatomical integrity without introducing geometric distortion. Image slices should be properly aligned in 3D space 

based on metadata. 

 

Module 3: Segmentation and Organ Extraction 

This module focuses on isolating the target organ or structure using segmentation techniques: Thresholding and Region 

Growing: Identifies organ boundaries based on intensity values and spatial continuity. Edge Detection and Morphological 

Operations: Enhances the precision of extracted contours. Masking and Labeling: Applies masks to extract and label 

organs for visualization. Segmentation accuracy is crucial for realistic 3D reconstruction. Multi-organ datasets require 

region labeling to prevent model overlap. 

 

Module 4: 3D Model Generation 

Segmented image data is transformed into three-dimensional models using rendering algorithms: Surface Rendering 

(Marching Cubes Algorithm): Converts 2D slice data into a 3D mesh surface. Volume Rendering: Allows internal 

visualization of tissues when required. Mesh Optimization: Simplifies the model to reduce computational load while 

maintaining anatomical accuracy. Meshes must be topologically clean and optimized for real-time web rendering. The 

output must support formats compatible with WebGL (e.g.,.OBJ,.GLB,.STL). 

 

Module 5: Web Interface and Interaction 

The final module integrates the 3D models into an interactive web-based interface built with the Flask framework: 

WebGL and Three.js: Used for real-time 3D rendering and user interaction. Interactive Controls: Users can rotate, zoom, 

pan, and slice through models. Model Loading & API Integration: Flask handles backend communication, file uploads, 

and model serving. The interface must be responsive and operable on various devices (mobile, tablet, desktop). Backend 

services must ensure secure and efficient model processing and delivery. 

 

Implementation Notes 

• Language and Libraries: The entire system is implemented in Python using libraries such as pydicom, 

SimpleITK, numpy, matplotlib, vtk, and Flask. 

• Scalability: The modular design supports future integration of features like real/fake detection or AI-based 

segmentation. 

• Security: Basic authentication and data handling policies are implemented to ensure the safe usage of medical 

data.  

The implementation of the proposed system for 3D visualization of human organs using the Flask framework follows a 

structured and modular approach, aligning with the architectural workflow described. The system initiates with the Data 

Collection module, where DICOM (DCM) formatted images are sourced from publicly available medical imaging 
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datasets, such as those obtained from CT and MRI scans. These images serve as the foundational input for further 

processing and are chosen based on image clarity, anatomical relevance, and metadata completeness. Ethical 

considerations are maintained by ensuring datasets are anonymized and publicly distributable. 

 

Following collection, the Data Preprocessing module standardizes the input images to prepare them for accurate 3D 

reconstruction. This involves several key tasks, including noise reduction using filtering techniques, normalization of 

pixel intensities to ensure consistency, and image resampling to a unified spatial resolution. This step also incorporates 

initial segmentation processes to distinguish anatomical structures of interest. Proper preprocessing ensures that the data 

fed into later stages is both clean and geometrically consistent, which is vital for precise 3D modeling 

. 

The third stage, Segmentation and Organ Extraction, focuses on isolating specific anatomical structures from the 

DICOM image slices. This is accomplished through classical image processing methods such as thresholding, region-

growing algorithms, and edge detection, which help delineate organ boundaries with high precision. The process ensures 

that the visualized model accurately represents the intended organ by removing irrelevant surrounding tissues. The result 

of this stage is a binary mask that highlights only the target organ, setting the stage for the next phase. 

 

In the 3D Model Generation module, the segmented 2D image slices are compiled and converted into a 3D mesh using 

rendering algorithms such as the Marching Cubes method. Surface rendering is employed to generate detailed and 

interactive 3D representations, while optional volume rendering enables internal organ exploration. Mesh optimization 

techniques are used to reduce polygon count without compromising the anatomical fidelity of the model. This ensures 

that the models are both lightweight and suitable for real-time rendering on web browsers. 

 

The final module, Web Interface and Interaction, integrates the generated 3D models into a dynamic web platform 

built using the Flask framework. The front-end leverages WebGL libraries such as Three.js to render models directly in 

the browser, allowing users to interact with them via controls for zooming, rotating, and slicing. Flask handles server-

side processes, including DICOM file uploads, model generation requests, and rendering delivery.  

 

The interface is designed to be intuitive and device-agnostic, making it accessible from desktops, tablets, or smartphones. 

By ensuring responsive performance and seamless user experience, the platform supports a wide range of users including 

medical students, researchers, and professionals. 

 

Overall, the implementation focuses on usability, accuracy, and accessibility, combining modern web technologies with 

medical imaging standards to create a robust system for 3D anatomical visualization. 

 

V.     RESULT AND ANALYSIS 

 

To evaluate the performance and usability of the "3D Visualization of Human Organs Using Flask Framework" project, 

we tested the system across various organ datasets: Heart, Lung, Brain, Liver, and Kidney in table 6.1. 

The results are analyzed based on three key metrics: Segmentation Accuracy, 3D Rendering Time, and User 

Satisfaction Score. The summarized data is presented in both tabular and graphical formats below.  

 

Table 5.1 

The graphs mentions represents the segmentation accuracy by organ Figure 5.1, 3D rendering time by organ in Figure 

5.2 and user satisfaction by organ in Figure 5.3.   

Organ 
Segmentation 

Accuracy (%) 

3D 

Rendering 

Time (s) 

User 

Satisfaction 

(/10) 

Heart 94.2 3.2 9.1 

Lung 91.8 3.8 8.8 

Brain 93.5 4.1 9.3 

Liver 90.7 3.5 8.7 

Kidney 92.3 3.7 8.9 
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Fig 1: segmentation Accuracy by Organ 

 

 
Fig 2: 3D Rendering Time by Organ 

 

 
Fig 3: User satisfaction by Organ 
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Interpretation & Insights 

1. Segmentation Accuracy 

• The segmentation accuracy remains consistently high across all organs, with the Heart (94.2%) and Brain 

(93.5%) achieving the top scores. 

• Slightly lower accuracy for Liver (90.7%) may be due to anatomical complexity and variability in shape, which 

can challenge basic segmentation techniques. 

2. 3D Rendering Time 

• The rendering times are efficient and stay below 4.2 seconds for all organs. 

• The Heart models rendered the fastest (3.2 s), likely due to simpler segmentation output, while Brain took 

slightly longer (4.1 s) due to its intricate structure. 

3. User Satisfaction 

• Users gave high satisfaction scores across all tests, with Brain visualization scoring the highest (9.3/10), 

reflecting its clarity and interactive utility. 

• The Liver scored slightly lower (8.7/10), again pointing toward areas of improvement in segmentation quality 

or rendering clarity. 

 

Summary 

This system effectively delivers high-accuracy, low-latency 3D visualizations of various organs using medical 

imaging data. The web interface built with Flask has proven intuitive and responsive, meeting user expectations. These 

outcomes demonstrate the potential of this solution for educational, diagnostic, and research use in medical fields. 

 

VI.      CONCLUSION 

The development and evaluation of the 3D Visualization of Human Organs Using Flask Framework demonstrate the 

system’s effectiveness in providing an interactive, web-based platform for medical visualization. Based on our 

experimental results across five major human organs—Heart, Lung, Brain, Liver, and Kidney—the system achieved an 

average segmentation accuracy of 92.5%, indicating a high level of precision in extracting relevant anatomical 

structures from DICOM images. 

 

In terms of performance, the average 3D rendering time was 3.66 seconds, ensuring that users experienced minimal 

latency while interacting with detailed 3D models. This quick response time contributes significantly to the usability of 

the system, especially when accessed on standard internet-enabled devices without the need for specialized hardware.  

 

User feedback, gathered through structured surveys, yielded an average satisfaction score of 8.96 out of 10. Notably, 

the Brain model received the highest satisfaction (9.3/10) due to its detailed structure and smooth interaction, while the 

Liver model, though still well-received (8.7/10), indicated room for further refinement in segmentation accuracy. 

 

These quantitative results validate the success of the proposed system in achieving its objectives: 

• High precision in segmentation (92.5%) 

• Fast rendering suitable for real-time use (3.66s average) 

• Strong user engagement and acceptance (8.96/10) 

Thus, this project not only bridges the gap between complex medical data and user-friendly visualization but also offers 

a scalable, portable, and interactive solution applicable in medical education, research, and preliminary diagnostic 

support. Future enhancements could focus on integrating AI-based segmentation for even higher accuracy and expanding 

the system to support pathology detection features. 

 

VII.      FUTURE ENHANCEMENT 

 
The project offers a strong foundation for 3D medical visualization, and several enhancements can further elevate its 

capabilities and impact in the future. One promising direction is the integration of AI and deep learning-based 

segmentation algorithms, which can enhance the precision and automation of organ detection across diverse datasets. 

Additionally, incorporating multi-organ visualization within a single interface would allow users to study anatomical 

relationships and interactions more comprehensively. The platform could also support annotation tools and 

measurement features, enabling users to mark and quantify specific regions within the 3D models, which would be 

particularly valuable in clinical and educational contexts. Expanding compatibility with augmented reality (AR) or 

virtual reality (VR) technologies could provide a more immersive experience, making the system even more effective 

for training and simulation purposes. Furthermore, enabling secure user accounts and cloud storage options would 

allow professionals to upload, manage, and access their own DICOM files, facilitating personalized usage. 
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Lastly, incorporating multi-language support and accessibility features would make the platform more inclusive, 

ensuring it serves a broader audience across various regions and user groups. These advancements will not only enhance 

the system’s technical scope but also expand its reach and utility in the medical community. 
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