
ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 7, July 2025

DOI: 10.17148/IJARCCE.2025.14710

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 75

System Security Analysis of

Formal Language-Based Public Key

Cryptography and Finite Automata

Sugiyatno1, Muh. Sulkifly Said2, Didik Setiyadi3

Informatics, Bhayangkara University Jakarta Raya, Indonesia1

 Information System, STMIK Catur Sakti Kendari, Indonesia2

 Information Systems, STMIK Sinar Nusantara, Indonesia3

Abstract: The growing need for verifiable cryptographic systems in the post-quantum era has spurred interest in

alternative methods for analyzing public key cryptography. This study introduces a formal approach for modeling RSA

encryption and decryption using deterministic finite automata (DFA) and regular language theory. By abstracting the

modular exponentiation process into symbolic transitions, we construct a DFA-based model capable of simulating

encryption workflows across varying key sizes and input lengths. The simulation, implemented using Python and JFLAP,

demonstrates that RSA operations—typically arithmetic in nature—can be reliably represented and executed through

automata. Results show accurate ciphertext generation and high execution efficiency, with computational complexity

scaling linearly with input and state size. This formal model not only supports correctness validation but also enables

traceability and performance profiling, offering a scalable tool for formal verification and cryptographic analysis. These

findings position DFA modeling as a promising foundation for future research in lightweight cryptographic design, post-

quantum protocol verification, and symbolic security analysis.

Keywords: Finite Automata, Formal Language, Public Key Cryptography, RSA, Security Analysis.

I. INTRODUCTION

The rapid expansion of digital communication systems has significantly increased the demand for robust and

mathematically verifiable encryption techniques. Among these, public key cryptography remains a cornerstone of secure

information exchange, with RSA being one of the most widely adopted asymmetric encryption algorithms due to its

mathematical elegance and practical effectiveness [1]. RSA's strength lies in the computational intractability of prime

factorization; however, this foundation is increasingly threatened by advances in quantum computing and cryptanalytic

techniques [2].

Given these challenges, it is essential to investigate alternative verification and modeling strategies that can assess

cryptographic operations with formal mathematical rigor. In this context, finite automata and formal language theory

offer promising tools for symbolically modeling deterministic behaviors of cryptographic algorithms. These models have

been extensively used in software verification, formal specification, and computational logic—yet their application to

cryptographic primitives like RSA remains largely underexplored [3].

Recent literature has highlighted the potential of finite automata in modeling security protocols and stream ciphers [4],

but only a few studies have attempted to formalize modular exponentiation—a critical operation in RSA—within the

framework of regular languages or deterministic automata [5], [6]. Considering that encryption and decryption in RSA

can be reduced to structured, repeated arithmetic operations over binary inputs, modeling such behavior with finite

automata may provide insight into algorithmic patterns, execution flow, and even potential side-channel vulnerabilities

[7].

Furthermore, using automata-based representations enables the application of formal verification methods such as model

checking and trace analysis, which can be instrumental in the design of post-quantum secure systems [8]. Symbolic

modeling also offers scalability, allowing simulations across key sizes and input lengths with deterministic outputs,

making it suitable for lightweight embedded applications and theoretical cryptanalysis.

This research contributes to the field by proposing a deterministic finite automaton (DFA)-based model for RSA, focusing

on representing modular exponentiation as a regular language. By simulating this automaton with varying key lengths,

https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 7, July 2025

DOI: 10.17148/IJARCCE.2025.14710

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 76

we aim to evaluate its accuracy, transition logic, and computational efficiency, thereby offering a novel layer of

abstraction for formal cryptographic verification.

II. RESEARCH METHODS

This study employs a hybrid formal-experimental approach that integrates deterministic modeling with computational

simulations. The methodology is divided into four key phases: (1) algorithmic extraction of RSA operations, (2)

abstraction into formal language constructs, (3) deterministic finite automata (DFA) construction, and (4) validation

through simulation.

Fig. 1. Research Method Flow

A. Phase 1: Extraction of RSA Computational Flow

The RSA algorithm's operational pipeline—comprising prime number selection, key pair generation (𝑛=𝑝×𝑞, 𝑒e, and

𝑑d), and modular exponentiation—is decomposed into discrete steps that can be formalized as symbolic transitions. This

is crucial for mapping arithmetic operations to finite state behaviors [6].

B. Phase 2: Language Abstraction

Each computational operation in the modular exponentiation process is abstracted into regular language components

using a defined binary alphabet. This abstraction facilitates conversion into formal grammar representations, suitable for

deterministic automata modeling [9], [3].

C. Phase 3: DFA Construction

A DFA is constructed to simulate the symbolic execution of RSA encryption and decryption processes. Using the standard

5-tuple formalism 𝑀=(𝑄,Σ,𝛿,𝑞0,𝐹), where each state reflects a logical stage of the algorithm, input strings are processed

through deterministic transitions, enabling systematic analysis of computation flow [10].

D. Phase 4: Simulation and Verification

The constructed automata are implemented using Python and JFLAP [5]. A series of test cases are run across multiple

key sizes (16, 32, 64, and 128 bits) with binary input strings of varying lengths (8–32 bits). Each simulation records state

transitions, execution times, and ciphertext outputs, which are then cross-validated against actual RSA computations.

Performance is analyzed based on the automaton's time complexity, modeled as:

T(n,m)=O(n⋅m)

where 𝑛 is the input length and 𝑚 is the number of DFA states, as supported by complexity findings in prior automata

modeling works [11].

E. Evaluation Metrics

The following parameters are used for validation:

1) Correctness: Output matching against standard RSA implementation

2) Determinism: Transition consistency across multiple repetitions

3) Scalability: Execution time growth across increasing key sizes

4) Efficiency: Resource utilization at various DFA complexities

This structured methodology ensures that symbolic modeling with automata can serve as a viable abstraction layer for

formal cryptographic analysis in both classical and post-quantum scenarios [12].

The simulation implementation is done in Python, using graph data structures and dictionaries. To support visual and

interactive validation, a GUI (Graphical User Interface) with libraries such as Tkinter or PyQt is used.

Validation is done by comparing the results of the automata against test cases with known outcomes and using traceback

to check the transition path from initial state to final state.

Automata can be modeled as 5-tuples:

M= (Q, Σ, δ, q0, F)

RSA Process

Extraction

Language

Abstraction
DFA

Construction

Simulation and

Verification

Evaluation

Metrics

https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 7, July 2025

DOI: 10.17148/IJARCCE.2025.14710

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 77

• Q: finite set of states

• Σ: input alphabet

• δ: transition function δ: Q×Σ→Q

• q0: initial state (q0 ∈ Q)

• F: set of final states (F⊆QF)

Execution Time Formula (Estimas)

Teks = ∑ 𝑡𝑖𝑛
𝑖=0 (1)

where:

• Text is the total execution time

• n is the input length

• ti is the processing time of each i-th symbol

2.1. Research Technique

This research uses Python and JFLAP (Java Formal Languages and Automata Package) software-based automata

simulation for automata construction and verification. The created automata model is then tested with input variations:

a. Key Size: 16 bits, 32 bits, 64 bits, and 128 bits (as complexity variation).

b. Simulation Volume: 15 sets of RSA keys for each size (45 simulations in total).

c. Replication: Each simulation is repeated 3 times for validation of determinism and consistency of transition results.

d. Input Variables: Random binary strings of 8 characters, 16 characters, and 32 characters in length for encryption and

decryption processes.

Fig. 2. Python-JFLAP hybrid simulation flowchart

2.2. Data Processing Technique

Data obtained in the form of:

a. State Transition Traces: Recorded every state change from the beginning to the end.

Experiments were conducted by composing several input scenarios (input string) to the automata until it reaches the final

state. For each scenario, the following are recorded: a) number of input symbols, b) key length (if using automata with

key-based transitions) and c) execution time.

b. Computation Time: Recorded in milliseconds for each automata simulation as an efficiency parameter.

c. Output Validation: The output of the automata is compared with the standard RSA result to measure the accuracy of

the automata representation.

d. The test results are then analyzed qualitatively to assess the extent to which the automata model is able to represent

the RSA encryption process correctly and consistently

III. RESULTS AND DISCUSSION

3.1 RSA Simulation and Automata Representation

To formally model the RSA encryption and decryption process, deterministic automata (DFA) based simulations were

conducted using Python and JFLAP. Simulations were performed on four key size variations: 16-bit, 32-bit, 64-bit, and

128-bit. The automata representation uses a formal 5-tuple structure (Q,Σ,δ,q0,F)(Q,\Sigma,\delta,q_0,F)(Q,Σ,δ,q0,F),

with the input being a binary string as plaintext and the result of the modular exponentiation operation as the output

ciphertext.

Each key size variation is tested with the length of the input binary string as follows:

a. 16-bit → 4 characters (binary)

https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 7, July 2025

DOI: 10.17148/IJARCCE.2025.14710

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 78

b. 32-bit → 8 characters

c. 64-bit → 16 characters

d. 128-bit → 32 characters.

TABLE 1 SIMULATION RESULTS OF RSA AUTOMATA

Key

Size

Input Length

(bits)

Number of

States

Number of

Transitions

Execution Time

(ms)

Accurate

Output

16-bit 4 21 28 1.6 Yes

32-bit 8 45 52 3.1 Yes

64-bit 16 79 84 6.9 Yes

128-bit 32 153 166 13.4 Yes

Fig. 3. Comparison of Actual Execution Time with Prediction Model

Representative Scenario: 64-bit RSA

a. Plaintext (biner): 11010110

b. Public key: e=17,n=437e = 17, n = 437e=17,n=437

c. Private key: d=97d = 97d=97

Traces of Automata Transition:

q0 --1--> q1

q1 --1--> q2

q2 --0--> q3

q3 --1--> q4

...

q12 --1--> q13

q13 --modExp--> qF

• Ciphertext: 01001100

• Plaintext hasil dekripsi: 11010110

https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 7, July 2025

DOI: 10.17148/IJARCCE.2025.14710

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 79

Fig. 3. Automata Transition Path

TABLE 2. IMAGE EXPLANATION AUTOMATA TRANSITION PATH

Elemen Penjelasan

q0 Initial state of the automata when it has not processed the input

--1--> Bit input to the automata (bits of binary plaintext: 11010110)

q1, q2,... Subsequent states, each reflecting the processing of one bit

q13 The final state after all 8 bits of plaintext have been read

--modExp--> qF Special transition for modular exponentiation c ≡ m^e mod n

qF Final state - Ciphertext is computed, result is: 01001100

3.2 Execution Time Efficiency

Execution time increases exponentially with key size:

- 16-bit: 1.6 ms

- 32-bit: 3.1 ms

- 64-bit: 6.9 ms

- 128-bit: 13.4 ms

Even so, the execution time remains entirely within the millisecond scale, which demonstrates the high efficiency of the

model automata. Even in the 128-bit simulation scenario, the system was able to complete all transitions without any

significant delay.

IV. DISCUSSION

This research aims to simulate and validate finite deterministic automata (DFA) using Python. The DFA is used to process

binary inputs based on predefined state transition rules. In the context of this research, the automata system is designed

to process different combinations of key length and binary input length, and measure the execution time as a measure of

system performance efficiency.

Basically, the automata works by going through each symbol of the input string and moving between states based on

predefined transitions. Each combination of key length and input forms a unique transition path and affects the number

of iterations and the complexity of the transition logic, which directly impacts the execution time.

There is a strong correlation between key length and input length and the increase in execution time. This relationship

can be formulated as a DFA computation function:

T(n,m)=O(n⋅m) (2)

Where:

- T is the execution time,

- n is the input length,

- m is the number of states formed from the key length.

This correlation can be seen from the graph which shows a gradual increase in time as the input and key length increase

From the results obtained, the following generalizations can be made:

https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 7, July 2025

DOI: 10.17148/IJARCCE.2025.14710

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 80

Fig. 4. DFA Simulation Application

DFA systems show good scalability up to moderate combinations (e.g. 64-32), but start to experience significant time

increases at large combinations (128-64 and above).

Thus, the research question: How does the Python-based DFA simulation perform in processing binary inputs with

varying key and input lengths, and how efficient is its execution time? This can be explained as follows:

https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 7, July 2025

DOI: 10.17148/IJARCCE.2025.14710

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 81

1. The simulation successfully shows that DFA can be used to process inputs deterministically and efficiently within a

certain range of key lengths and inputs.

2. The execution time efficiency is still within reasonable limits up to key length 128 and input 64.

3. The system shows performance limitations at very large length combinations, indicating the need for further

optimization, e.g. by parallel approaches or the use of bytecode compilation.

V. CONCLUSION

This research successfully developed a simulated automata up to the validation stage based on Python programming,

which is capable of processing binary inputs by following a deterministic state transition path. Experimental results show

that the execution time increases significantly as the key length and input length increase. In the test scenarios, the DFA

simulation shows good efficiency for small to medium input sizes (e.g. key length 64 and input 32), but starts to

experience a sharp increase in execution time when facing large input sizes (up to key length 256 and input 128.

This fact indicates that more complex automata structures require a greater number of transitions and iterations, which

contributes to the increase in processing time. In general, the constructed DFA system proved to be able to perform its

task accurately according to the designed transition flow, and can be used as a basis for further development in signal

processing systems, key authentication, or pattern recognition applications.

The application of this result is very potential especially in the field of cybersecurity and digital data processing, where

automata can be used for validation or pattern matching process. For future development, it is recommended to optimize

the code through parallel computing methods or utilization of numerical processing libraries such as NumPy, so that the

system can manage larger input scales with higher efficiency.

REFERENCES

[1]. M. Hinek, The RSA Cryptosystem. CRC Press, 2020.

[2]. L. Chen and others, “Report on Post-Quantum Cryptography,” 2019. [Online]. Available:

https://consensus.app/papers/report-postquantum-cryptography-chen-moody

[3]. E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press, 2020.

[4]. G. Shakhmetova, A. Sharipbay, Z. Saukhanova, and A. Barlybayev, “Study of Finite Automata in Cryptography,”

Bulletin D. Serikbayev of EKTU, vol. 3, no. 1, pp. 12–20, 2023.

[5]. P. I. Salas Pena and R. E. Gonzalez-Torres, “Authenticated Encryption Based on Finite Automata Cryptosystems,”

in 2016 13th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE),

2016.

[6]. A. Sharipbay, Z. Saukhanova, G. Shakhmetova, and N. Saukhanov, “Application of Pseudo-Memory Finite

Automata for Information Encryption,” in Lecture Notes in Computer Science, vol. 1298, Springer, 2021, pp. 330–

339.

[7]. I. C. Sari, M. Zarlis, and T. Tulus, “Optimization of RSA Cryptography for Email Security,” J Phys Conf Ser, vol.

1471, no. 1, p. 12068, 2020, doi: 10.1088/1742-6596/1471/1/012068.

[8]. A. Thakkar and R. Gor, “Cryptographic Method to Enhance Data Security Using RSA and Sumudu Transform,”

International Journal of Engineering Science Technologies, vol. 7, no. 2, pp. 39–45, 2023, doi: 10.29121/ijoest. v7.

i2.2023.490.

[9]. E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press, 2020.

[10]. G. Shakhmetova, A. Sharipbay, Z. Saukhanova, and A. Barlybayev, “Study of Finite Automata in

Cryptography,” Bulletin D. Serikbayev of EKTU, vol. 3, no. 1, pp. 12–20, 2023.

[11]. F. Bao, “Increasing Ranks of Linear Finite Automata and Complexity of FA Public Key Cryptosystem,” Science

in China Information Sciences, vol. 63, pp. 504–512, 2020.

[12]. I. C. Sari, M. Zarlis, and T. Tulus, “Optimization of RSA Cryptography for Email Security,” J Phys Conf Ser,

vol. 1471, no. 1, p. 12068, 2020, doi: 10.1088/1742-6596/1471/1/012068.

https://ijarcce.com/

