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Abstract: Electroencephalogram (EEG) is a multi-dimensional time-series brain signal that is highly information packed.
While an EEG has high potential to serve in medicine (e.g. disease diagnosis, prognosis, pre-disease risk identification),
psycho-physiology (e.g. mood classification, stress monitoring, alertness monitoring, sleep stage monitoring), brain-
computer interface application (e.g. thought typing, prosthesis control), and many other areas, the classical design of EEG
feature extraction algorithms and EEG classifiers is time-consuming and challenging to fully tap into the vast data
embedded in the EEG. Deep learning (or deep neural network) which enables higher hierarchical representation of
complex data has been strongly suggested by a wide range of recent research that these deep architectures of artificial
neural network generally outperform the classical EEG feature extraction algorithms or classical EEG classifiers. In this
paper/ research project, deep neural network architectures have been constructed to perform binary classification on an
EEG dataset that was shown by traditional EEG feature extraction methods to have no significant difference between its
two data pools (resting EEG recorded before and recorded after listening to music). The Convolutional Neural Network
(CNN) model constructed in this project has achieved a validation accuracy of 75+1% using the same EEG dataset. Using
the top performing CNN architectures, short duration of relaxing music listening is found to affect the EEG signals
generated by the frontal lobe more than the other lobes of the brain; and also to affect the EEG generated by the left
cerebral hemisphere more than the right hemisphere.

Keywords: Electroencephalogram (EEG), Deep learning (or deep neural network), Convolutional Neural Network
(CNN) model, short duration of relaxing music listening, Activation techniques, epoch, validation accuracy.

L INTRODUCTION

Electroencephalograms (EEG) are recordings of the electrical potentials of the brain typically measured from the scalp,
as signal waveforms of varying frequencies and amplitude (in mV). The EEG is packed with information regarding the
electrical activities of the brain, be it pathological or physiological. Hence, EEGs are very useful in the medical field
(such as diagnostic purposes, real-time monitoring of clinical progress of patients, prognostic purposes, and the pre-
disease identification of prodromal neuro-pathological signals in preventive healthcare of increasing importance), for
Brain-Computer-Interface (BCI) applications (such as thought-typing, prosthetic limbs control, and many others which
can potentially improve the quality of life of the people with motor disabilities, as well as the normal), and myriad forms
of other potential applications such as drowsiness warning system for drivers or lie detection for criminal investigation.

IL. PROBLEM STATEMENT

EEG signals are packed with information and hence it requires lots of effort and time to perform manual analysis or
decoding of these signals. Siuly and Li (2014) [1] stated that manual design the feature extraction model for multiple-
class electroencephalogram (EEG) signal classification is an extremely challenging task because the true representative
features/patterns have to be identified and extracted precisely from the multidimensional time series of EEG measured
from the brain.

With the advances in the techniques for modelling the deep learning architecture, deep learning has revolutionized the
computer’s capability for processing information-packed data. For example, convolutional neural network for image
processing has provided solutions to challenges previously encountered by the computer vision community, while
recurrent neural network has resulted in much improvement in the processing of time-series signals such as speech
processing.

It is thus very likely that deep learning will improve the analysis of EEG signals as well. A number of different studies
(Ren and Wu, 2014; [8] Behncke et al, 2017; Schirrmeister et al, 2017 [2]) trained and tested various architectures of
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deep learning for EEG data analysis and reported improved accuracies compared with the state-of-art EEG feature
extraction methods. Yet, the research in the application of deep learning on EEG analysis is a new area of study and
further analytical accuracy improvement is in need for much more reliable practical application. In this paper, various
architectures of DNN for EEG analysis, feature extraction, and classification will be carried out.[3-8]

III. LITERATURE SURVEY

The classification of EEG signals using various versions of artificial neural networks have been published with higher
sensitivity, specificity, and accuracy than other traditional feature extraction and statistical methods.

Patnaik and Manyam (2008) [6] applied the neural network for the identification of epileptic EEG segment from the non-
epileptic EEG. They used discrete wavelet transform (DWT) for feature extraction, followed by a feed-forward back
propagating artificial neural network (ANN) for classification, with the training set for the ANN model being selected by
a genetic algorithm instead of randomization. They improved their classification result by incorporating a post-
classification stage using harmonic weights. The training and validation were done using the invasive pre- surgical EEG
recording of 21 patients with medically intractable focal epilepsy. The average specificity of 99.19%, sensitivity of
91.29%, and selectivity of 91.14% were obtained. Each patient’s EEG recording contained at least 50 min of pre-ictal
and 50 min of post-ictal recording and the average duration of EEG with epileptic data was 7.73 min for one patient.[ 10-
12]

Subasi and Ercelebi (2016) compared logistic regression and neural network models for EEG signals (epileptic vs. normal
data) classification. [12] They obtained 89% accuracy using logistic-regression based classifier, which was lower than
the two neural network models. The Multi- Layer Perceptron Neural Network (MLPNN) trained with common
error back propagation algorithm achieved an accuracy of 92%; while the MLPNN trained with Levenberg-Marquardt
(L-M) optimization method achieved an even higher accuracy of 93%. The MLPNN models were trained with a total of
300 EEG examples (102 epileptic and 198 normal EEG), and validated with another set of 200 EEG examples (88
epileptic and 112 normal EEG).

Satapathy, Dehuri and Jagadev (2017) performed classification of EEG for epileptic seizure identification using a version
of neural network known as Radial Basis Function Neural Network (RBFNN).[9] Their RBFNN was trained for mean
square error optimization with a modified Particle Swarm Optimization (PSO). The improved PSO (termed IPSO in the
paper) was designed for improving the searching speed of traditional PSO for global optimum. The RBFNN with IPSO
had achieved a maximum accuracy of 99%.

Supratak et. al. (2017) constructed a Deep Learning model which utilizes: convolutional neural network (CNN) to extract
time-invariant features, and bidirectional long-short-term-memory (bidirectional-LSTM) to learn transition rule among
sleep stages from EEG epochs. [13] Their model was trained with a two-step training algorithm which pre-trains the
model using over-sampled data to lessen class-imbalance problems, and later fine tunes the weights of the pre-trained
model with sequences of EEG epochs to encode the model with necessary patterns for sleep stages classification. The
training dataset was from the F4-EOG channel of 62 subjects, giving rise to a total of 58600 EEG epochs, with the total
recording duration close to 490 hours. The model achieved an accuracy of 86.2% and the macro F1-score of 81.7 as
shown in Table 1.

Predicted Per-class Metrics

'Y N1 N2 N3 REM PR RE Fl
% 5433 572 107 13 102 873 872 8713
N1 452 2802 827 4 639 60.4 593 598
N2 185 906 26786 1158 499 89.9 90.7 90.3
N3 18 4 1552 6077 0 83.8 794 81.5
REM 132 356 533 1 9442 | 88.4 902 89.3

Table 1: Confusion Matrix for the Performance of the DeepSleepNet (Supratak et. al., 2017)

Hajinoroozi, Mao and Huang (2015) applied Deep Learning to perform prediction of driver’s drowsy or alert states using
the EEG data. They introduced the Channel-wise Convolutional Neural Network (CCNN) and a variation of CCNN
(termed CCNN-R in the paper) which adopted the Restricted Boltzmann Machine (RBM) in place of the convolutional
filter/layers of conventional CNN models.[4]
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The EEG data set was collected from three studies of the driver’s cognitive states using a virtual reality dynamic driving
simulator. The simulated driving scenes were night time driving with 100 km/h with perturbation being injected into
driving path every 8 to 12 seconds. The reaction times of the drivers were used to determine their alert/drowsy mental
states. The dataset was collected from 70 sessions for 37 subjects. The EEG was recorded for 3 seconds before each
perturbation was taken into consideration for CNN models training, with a total of 35074 non-overlapping 1s epochs
(23074 alert and 15924 drowsy epochs).

In contrast to the conventional CNN which uses 2-D or multi-dimensional convolutional kernels for feature extraction,
CCNN applies a 1-D kernel to convolve along each channel (hence channel-wise). After the feature extraction, the
categorization with Fully Connected (FC) layers also uses back propagation for weight optimization. The common
kernels for CCNN include the Gaussian or Xavier filters.

A model variation mentioned above (CCNN-R) uses a more complicated feature extraction layers (RBM). The FC layers’
backpropagation method has to be adjusted accordingly.

The algorithms’ performance were evaluated using Az-score, with the CCNN having achieved the Az-score of 79.63%
and the CCNN-R 82.78%. The prediction performance of other popular methods were investigated too, with the LDA
achieving 52.81%, SVM achieving 50.38%, and CNN 71.41%.

CCNN I ————
CCININ-R -+
CNIN | ——
DNN I——

SVM
LDA

o 10 20 30 40 50 60 70 80 90

LDA SVM DNN CNN CCNN-R CCNN

m Az-score% 52.81 50.38 76.47 71.41 82.78 79.63

Figure 1: Performance (Az-score) of various machine learning methods at predicting drivers’ alertness using raw EEG
data (Hajinoroozi, Mao and Huang, 2015)

Behncke et al (2017) attempted to classify the EEG signals of humans observing robot action into two classes (observing
a successful robotic operation or observing a robotic failure).[2] The classification task was performed with deep
convolutional neural network (deep ConvNets), regularized Linear Discriminant Analysis (rLDA), and filter bank
common spatial patterns (FB-CSP) combined with rLDA. Deep ConvNets achieved accuracies of 75% = 9%,
significantly higher than both the other two commonly used EEG classifiers, with the rLDA of 65% = 10% and the FB-
CSP combined with rLDA of 63% + 6%, as shown in Table 2.

paradigm mean accuracy + standard deviation
interval
ConvNet rLDA FB-CSP
KPO error | 2.5-5s (782+8.4)% | (67.5+8.5)% | (60.1 +3.7)%
KPO error | 3.3-7.5s | (71.9+£7.6)% | (63.0+9.3)% | (66.5+5.7) %
RGO error | 4.8-63s | (59.6+6.4)% | (58.1+£6.6)% | (52.4+2.8)%
RGO error | 4-7s (64.6+6.1)% | (58.5+8.2)% | (53.1+2.5)%

Table 2: Accuracies of ConvNet, rLDA and FB-CSP at identify EEG of human observing robotic failure (Behncke et.
Al., 2017)
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Ren and Wu (2014) also compared the performance of a deep learning architecture using Convolutional Restricted
Boltzmann Machines (CRBM), to other state-of-art classical feature extraction methods including power band,
multivariate adaptive autoregressive (MVAAR), and common spatial pattern (CSP). For 2-class and 4-class classification,
the deep learning model achieved accuracies of 83% - 88% which is in general higher than the classical feature extraction
methods (80% - 86%). The accuracy of the deep learning method in particular increased as the number of training samples
increased from 80 to 240, as shown in Table 3 and Table 4.[8]

Training Correct Rate (%)

Samples CSP MVAAR | Band Power CDBN
80 85.38+2.24 | 80.35+4.07 | 81.90+2.75 | 83.63+1.82
120 85.25+194 | 84.88+3.87 | 83.59+290 | 85.94+1.77
160 85.74+233 | 85462254 | 85.00+2.55 | 86.04+2.09
200 85.56+3.10 | 84.81=4.06 | 84.63+424 | 86.06+3.38
240 85.75+6.18 | 85.88+580 | 86.13+6.36 | 88.25+5.70

Table 3: Mean 2-class motor imagery EEG classification accuracy of various methods (Ren and Wu, 2014)

Training Correct Rate (%)

Samples CSP MVAAR Band Power CDBN
140 80.45+1.62 | 81.08+1.50 | 80.54+2.21 | 82.02+1.88
160 81.02+1.50 | 80.70+2.00 | 81.53x1.61 | 82.41+1.44
180 8547144 | 85.64+£2.36 | 86.09+2.36 | 87.33+1.74

Table 4: Mean 4-class motor imagery EEG classification accuracy of various methods (Ren and Wu, 2014)
1V. METHODOLOGY

Two main varieties of deep learning architecture investigated in this project are pure multilayer perceptron (MLP) models
and convolutional neural networks (CNN). The impact of modelling techniques and hyperparameters of deep learning
models on the model’s performance are also investigated, which include the effect of different optimizers, activation
functions and dropout rates. The EEG data used for training and validation of the deep learning models are 14-channel
EEG of 26 participants of a music-based neuro-feedback training previously conducted by a UTAR FYP student (Phneah,
2017).[14]

In neurofeedback training, the measurement of brain activity (EEG in this case) is used as the feedback information to
the participant for the purpose of attaining desired regulation of the brain function. The EEG data used for this project is
aportion of the EEG recorded at the very initial phase of the neurofeedback study, with each participant having undergone
only a single short session of listening to favorite and relaxing music.

Three-minute EEG signal was recorded, at sampling frequency of 128Hz, before and during each of the 26 participants
listened to their favourite and relaxing music, generating 52 EEG recordings (26 before listening to music and another
26 after listening to music). Each of the EEG recordings, after artifact removal and data cleaning, has different lengths
ranging from 80-100 seconds. Hence, only the first 10000 sampling points (about 78 seconds) of each pre-processed EEG
are used as the dataset of this project.

Each of the 52 cleaned EEG recordings is then split into 40 sub-segments, generating 2080 EEG recording segments
(1040 before music and 1040 after music). Each of the sub-segments has the time span of about 1.95 seconds (250
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giving 1872 EEG segments (942 before music and 930 after music) as the training data set and 208 EEG segments (98
before music and 110 after music) as the validation set, as shown in Table 5.

Training set Validation set

942 (45.3%) 98(4.71%)

930(44.7%) 110(5.29%)

1872(90%) 208(10%)

Table 5: The numbers of categorized EEG data contained in the training set and the validation set.

The computer system used for the training and validation of the models is a Dell Inspiron 7567 laptop, with the following
specifications:

1. CPU: Intel Core i5-7300HQ 2.50 GHz

2. RAM: 4GB DDR4, plus an extra 8GB upgrade

3. GPU: NVIDIA Geforce GTX 1050 4GB graphic RAM

The capability of GPU is of utmost importance because the fundamental design of GPUs allows huge amount of parallel
computation of the same instructions. This suits the requirement of running deep learning models which are generally
designed with large matrix of repetitive computational nodes.

In fact, the NVIDIA GTX 1050 GPU used in this project is designed for gaming purpose and is a rather low end GPU
for deep learning research.

The programming language used in this project is the Python language, version 3.6.4, under Anaconda distribution.
Anaconda enables convenient creation and management of Python environment (conda environment), under which we
can selectively run different tools specifically installed to the particular environment. The scientific programming Python
libraries used in this project include the numpy library, scikit-learn (sklearn) library, and matplotlib library. The Python
‘os’ library is used to move around, read from, and write to the system’s directories. The ‘mne’ library is used to handle
EEG data. And last but not of any less, the ‘tensorflow’ machine learning library is used for the constructing and running
the deep learning models (Abadi, et al, 2016).[15] Table 3.2 summarizes the Python libraries used.

Deep learning models can learn or be trained through unsupervised or supervised learning process. Unsupervised learning
of a deep learning model will enable the model to divide the dataset into classifiable clusters, without any indication as
to which group any training or validation data belongs to. On the other hand, supervised learning, which is the training
method used in this project, requires each example (x) of the training data to be associated or encoded with a label (y).
After repeated observation of the paired examples of data x and label y, the model learns to predict y from data x.
Conceiving and constructing a deep learning model involve specifying the type of feature extraction operation to be
incorporated (the application of convolutional kernels in convolutional neural network as in this project or the
application of feedback loop in the neural network forming a recurrent neural network), the number of network layers
(the depth of the model), the number of neuron at each layer (the width of the model), the type of activation function for
the neural layers, the model regularization methods such as the drop-out mechanism to prevent overfitting, the choice of
error back-propagation optimizer and the learning rate.

The training data set is divided from a total of 1872 segments of EEG into 16 smaller mini-batches, each containing 117
segments of EEG. During the model training stage, the mini-batches are fed batch-by-batch to the model-under-training.

V. RESULTS AND DISCUSSIONS

In order to investigate the impact of different optimizers, activation functions, and dropout rates on the progress of deep
learning training process, all the different modelling techniques are independently tested on the same single convolutional
neural network architecture.

Two optimization algorithms (the basic gradient descent algorithm and the adaptive moment estimation (Adam)) are
tested for their effectiveness in searching the minimal point of the cost function of the deep learning model for EEG
classification. The activation function is fixed as ReLU and the dropout rate is fixed at 50% for either of the optimization
techniques. This is to ensure that the changes in the performance of the model are all the result of the change in optimizer,
instead of being the combined effect of changing various different modelling techniques.

The Adam optimizer incorporates the operation of both the momentum optimizer and the RMSprop optimizer. Both the
momentum optimizer and the RMSprop optimizer allow speeding up of the optimization process towards the minimal
loss, by ignoring noises in the parameter updating process.
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Adam optimizer significantly outperformed the other optimizers (including stochastic gradient descent, RMSprop,
AdaGrad and AdaDelta optimizers) in training both the multilayer neural network and convolutional neural network
models, using MINST and CIFAR-10 data. Adam optimizer is able to achieve a much lower training cost (training error)
than the other optimizers. Adam has also markedly increased the optimization convergence speed.

The performance of the multilayer neural network and convolutional neural network with different optimizers as shown
in figure 2.
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Figure 2: Performance of multilayer neural network (left) and convolutional neural network (right).

When the gradient descent optimizer is used, the model fails to learn from the EEG training dataset. The optimization
process may have been trapped at a very early local minimum, or the deep model may have a cost function with extremely
low gradient which has caused the gradient descent optimizer to learn too slowly.

On the other hand, when the Adam optimizer is used, the model has successfully learned and extracted the distinctive
features between the two groups of EEG (before and after listening to music), enabling its classification accuracy to
improve above 70% over the training iterations.

The sigmoid and ReLU activation functions both resulted in an increased classification accuracy, as compared to the
model without activation function. ReLU activation function is the most suitable, among the tested functions, for the
designed model to perform classification on the EEG data. ELU activation function has negatively impacted the model’s
optimization, resulting in a performance worse than that without any activation function. However, the reason for ELU’s
negative impact is not clear.

One of the main challenges in the design of a deep learning model is the requirement for the model to perform with an
almost equal accuracy on previously unobserved data (such as the test dataset), as on the training data set. This is a desired
ability of the learning model, termed as generalization. The models that can generalize well are usually models with large
capacity that are properly regulated.

Dropout mechanism is one of the regularization methods. In dropout method, a percentage of neurons (or computational
nodes) of certain layers of the neural network is specified to be randomly blocked out during the training steps. Each
training step will make a different combination of computational nodes available, instead of the full network. Hence, the
model-under-training will not be able to rely too much on any selective few features propagated by certain computational
nodes. Instead, every partial combination of the network will be more sufficiently trained, having their weights been
updated more properly through backpropagation of error.

The best dropout rate among the examined is 40-50% dropout. The model with no dropout mechanism overfits the earlier.
Extremely high dropout rate (such as 70% dropout) throttled the learning speed too much although overfitting is avoided.
The classification accuracy achieved using the temporal, parietal and occipital channels combined without the frontal
channels is significantly lower than that achieved using six frontal channels. The model is able to classify frontal lobe
EEG signals better than the signals from the other lobes.

This is probably because the short session of relaxing music listening has a greater impact on the frontal lobe than the
other regions of the brain, causing the EEG generated by the frontal lobe to differ more significantly (before and after
listening to music) than the EEG from the other regions.
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The CNN model trained and validated with the left hemisphere EEG signals has achieved significantly higher
classification accuracy than the model trained and validated with the right hemisphere EEG.

This indicates that the short session of relaxing music has affected the left cerebral hemisphere more than it does to the
right cerebral hemisphere. This finding is in contrary to our expectation that the right cerebral hemisphere, which is in
charge of our emotion, should be affected more by the music than the left hemisphere.

VL CONCLUSIONS AND FUTURE RECOMMENDATIONS

For the task of binary classification of EEG, one of the 14-channel CNN model has achieved the top validation accuracy
of 75+1%. This performance is closely followed by another 6-frontal-channel CNN model, which has achieved validation
accuracy of 71.5+2%.

This finding is significant as the models are operating on the EEG dataset that was shown by previous classical manual
feature extraction methods to have no statistical significant difference.

Basic Gradient Descent Optimizer is not sufficient for training the deep learning models for the task of EEG data
classification. Using basic gradient descent optimization algorithm to minimize the cost function, deep learning models
have failed to learn from the EEG data, causing the validation accuracy to stay below 50%. Adam Optimizer performs
significantly better at training the deep learning model for EEG data classification, with the validation accuracy to reach
up to and above 67+2%. ReLU is the most suitable activation function for deep learning model for EEG classification,
followed by the sigmoid function. The model with ELU activation function performs worse (with validation accuracy
below 50%) than the model without any activation function.

The most suitable dropout rate is around 40% to 50%. Too low the dropout rate (0% to 30%) does not help much in
preventing overfitting of the model to the training data. Too high the dropout rate (70%) will slow down the model
learning speed excessively.

Convolutional layers significantly improve the performance of the deep learning model for EEG classification, elevating
the validation accuracy from below 64% up to above 75%. A short session of listening to relaxing music has greater
degree of impact to the frontal region than the other regions of the brain, and also greater impact to the left cerebral
hemisphere than the right, inferring from the discrepancy at the classification accuracy as discussed in the results section
of the paper/ research project.
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