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Abstract: Conventional machine learning (ML) algorithms are rapidly advancing with the introduction of novel
learning techniques. These models are continuously improving through hybridization and ensemble approaches,
enhancing their computational efficiency, functionality, robustness, and accuracy. In recent years, numerous hybrid and
ensemble ML models have been proposed. However, a comprehensive survey of these models is still lacking. This
paper aims to address this gap by presenting a state-of-the-art review of emerging ML models, highlighting their
performance, applications, and categorization through a novel taxonomy.
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Definition Abbreviation Definition Abbreviation

Artificial neural network ANN Bagging-based naive bayes trees BAGNBT

Extreme learning machine ELM Ensemble .emplrlcal mode EEMD
decomposition

Machine learning ML Grasshopper optimization algorithm GOA

Support vector machine SVM Hybrid of linear regression-deep neural HybPAS
network

Wavelet neural networks WNN Trauma Severity model TSM

Deep learning DL Gradient boosting decision tree GBDT

Autqregresswe integrated ARIMA Evidential belief function and tree based EBFTM

moving average models

Enserpble emplrlcal with EE ANT Decision tree overfitting and neural DTFNN

adaptive noise technology network

o Improved complete ensemble empirical

1]3 :‘St: das“mﬂa“on Kalman filter- -, \ pp mode  decomposition method with ICEEMDMAN
adaptive noise

Online sequential extreme OSELM Random forest RF

learning machine

1. INTRODUCTION

Machine learning (ML) techniques have been reported to outperform most traditional physical and statistical
approaches in predictive modeling, offering superior accuracy, robustness, uncertainty handling, data efficiency,
simplicity, and computational efficiency. Consequently, ML methods have gained significant popularity in recent years
and are now widely applied across diverse domains, including energy, hydrology, hazard prediction, finance,
economics, and computational mechanics [1-9].
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A wide variety of ML methods exist, and several classification schemes have been proposed by researchers [10—13].
One widely adopted approach categorizes ML techniques into three groups: single methods, hybrid methods, and
ensemble methods [14-16]. Among the most commonly used single ML approaches are artificial neural networks
(ANNSs) [17-19], decision trees (DTs) [18, 20—23], support vector machines (SVMs) [24-27], Bayesian models [28—
30], neuro-fuzzy systems [11, 12, 31, 32], classification and regression techniques [33], and wavelet neural networks
(WNNs) [12, 34]. Although neuro-fuzzy systems and WNNs integrate two intelligent algorithms, they are generally
categorized as single-method approaches due to their structural formulation.

ML techniques continue to evolve, driving the development of increasingly powerful algorithms aimed at achieving
higher predictive performance [35-49]. In particular, hybrid and ensemble methods have gained attention for their
ability to consistently outperform traditional single-method approaches [50-60].

Ensemble and hybrid machine learning (ML) approaches represent two of the most promising directions for achieving
higher accuracy, reliability, and robustness in predictive modeling [61-63]. Hybrid ML models are developed by
integrating multiple ML algorithms and/or combining them with other soft computing techniques, optimization
strategies, or statistical approaches to enhance performance across various dimensions. In contrast, ensemble methods
rely on grouping strategies—such as bagging, boosting, and stacking—to leverage the predictive capabilities of
multiple classifiers simultaneously.

Recent studies suggest that the future success of ML will largely depend on advancements in novel ensemble and
hybrid techniques [32, 64-66]. The existing literature includes several innovative ML methods and comparative
analyses aimed at identifying models with superior performance [67—-69]. However, a significant research gap remains
in systematically identifying novel hybrid and ensemble ML approaches and mapping their application domains. To
address this gap, the present study introduces these emerging techniques and highlights their practical applications
across diverse fields.

II. REVIEWING ENSEMBLE AND HYBRID ML METHODS

The adoption of machine learning (ML) techniques—including single models, ensemble approaches, and hybrid
frameworks—has grown exponentially in recent years. Figure [ illustrates the rapid and continuous rise in the use of
ML methods from 2009 to the present. These techniques have found widespread applications across a broad spectrum
of disciplines, including engineering, mathematics, physics, astronomy, earth and planetary sciences, medicine,
materials science, biochemistry, genetics and molecular biology, environmental science, social sciences, energy,
chemistry, decision sciences, as well as agricultural and biological sciences.
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Figure 1 The growing trend of ML methods the past decade (source: web of science).

In the following, Figure.2 shows the popularity of ensemble and hybrid ML models in advancing the novel method
with higher performance.
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Figure 2 The growing trend of hybrid and ensemble ML methods (source: web of science).

2.1. Hybrid methods

Hybrid machine learning (ML) methods integrate two or more ML algorithms and/or soft computing techniques to
achieve enhanced performance and optimal results. By leveraging the complementary strengths of multiple approaches,
hybrid models are capable of delivering superior accuracy, robustness, and adaptability compared to single-method
techniques. In many cases, hybrid frameworks consist of two core components: one dedicated to prediction and the
other focused on optimizing the predictive model, thereby improving overall reliability and precision.

Due to their flexibility and ability to exploit the strengths of different algorithms, hybrid methods have gained
significant popularity in recent years. Conceptually, they can be compared to a team of experts—each specializing in
different areas—working together to achieve a common objective.

Table 1 summarizes the top six studies that utilize hybrid methods. The table presents four key aspects for each study:
the reference, the primary contribution, the developed hybrid model, and the application domain. This provides a
concise overview, enabling readers to quickly identify the main highlights and relevance of each work.

Table 1 Studies developed by hybrid methods.

References Contributions Methods | Application domains
[70] To develop an adaptive hybrid ARIMA - Urban traffic flow
methodology for the estimation of WNN - - Advanced hybrid machine
urban traffic flow learning
To develop an 1nn'ovat1've hybrid EE-ANT i Wind power
[71] method for the estimation and . . .
A . WNN - - Hybrid machine learning
optimization of wind energy
To develop a novel hybrid multi Hybr.1d . .
[72] . multi- - Classification
stage method to be applied in . .
dit scoring stage - Multi-stage hybrid model
cre method
(73] To develop a novel hybrid bagging Hvbrid - Landslide susceptibility
based method for the assessment of BXGNBT - Hybrid machine learning
the Landslide susceptibility
[74] To develop a hybrid method for EEMD ] Electrical load
. - ELM- - Hybrid machine learning
the estimation of electricity load
GOA
To develop a hybrid linear . . .
regression-based deep learning i Hybrld machmp learning
[75] HybPAS - Signal processing

method for the estimation of poly
(A) signals in DNA

Hou et al. [70] conducted a study aimed at accurately estimating urban traffic flow. They proposed an advanced hybrid
model integrating a wavelet neural network (WNN) with an autoregressive integrated moving average (ARIMA)
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model, enhanced through a fuzzy-based approach. The hybrid method was compared against the individual single
models using mean absolute percentage error (MAPE) and root mean square error (RMSE) metrics. The results
demonstrated a 60—70% improvement in estimation accuracy compared to single-method models.

Similarly, Du et al. [71] developed a novel hybrid model for wind power estimation and optimization. Their approach
combined an ensemble empirical mode decomposition (EEMD) integrated with adaptive noise technology to eliminate
noise and extract significant data features, followed by an optimized wavelet neural network for enhanced prediction
accuracy. The proposed hybrid approach was evaluated using MAPE, and the results confirmed substantial
improvements in both estimation accuracy and the sustainability of prediction and optimization processes.

Zhang et al. [72] introduced a feature-and-classifier-based hybrid model designed to improve credit scoring accuracy.
The proposed framework simultaneously selected the optimal classifier and feature subset using a classifier ensemble
coupled with an enhanced multi-population niche genetic algorithm (EMNGA). Evaluations conducted using accuracy
and area under the curve (AUC) demonstrated that the hybrid method significantly outperformed single-method
approaches in both estimation and optimization tasks.

Pham and Prakash [73] developed a bagging-based Naive Bayes Trees (BAGNBT) model for landslide susceptibility
assessment. The proposed hybrid method was compared with several single models, including Rotation Forest-based
Naive Bayes Trees, Naive Bayes Trees, and support vector machines (SVM), using AUC and other statistical indices.
Results revealed that the BAGNBT model achieved superior accuracy and could be considered a reliable alternative for
landslide susceptibility prediction compared to single-method approaches.

Wu et al. [74] proposed an advanced hybrid forecasting framework for improving electricity load prediction. Their
approach integrated an Extreme Learning Machine (ELM), ensemble empirical mode decomposition (EEMD), and the
grasshopper optimization algorithm (GOA). Evaluations based on RMSE, mean absolute error (MAE), and MAPE
demonstrated that the proposed model significantly outperformed individual models, achieving higher accuracy and
predictive stability.

In another study, Albalawi et al. [75] developed HybPAS, a hybrid model integrating linear regression and deep neural
network (DNN) architectures, for predicting ply(a) signals in DNA using sequence-based features and signal-
processing-based statistical inputs. Experimental results indicated that HybPAS improved predictive accuracy and
performance by 30.29% compared to single-method baselines.

From this brief review, it is evident that hybrid ML methods are rapidly gaining popularity due to their high potential,
adaptability, and capability in improving estimation accuracy and optimization performance across various domains.
Table 2 provides a concise yet comprehensive comparison of single and hybrid methods in terms of accuracy,
reliability, and sustainability.

Table 2 Studies developed by hybrid methods.

Method Application Accuracy Reliability Sustainability Reference
Hybrid WNN- L

ARIMA Estimation +++ +++ +++ [70]
WNN Estimation ++ ++ ++ [70]
ARIMA Estimation ++ + + [70]
Hybrid EE- L

ANT-WNN Estimation +++ +++ ++ [71]
Hybrid the

optimized multi | Estimation +++ +++ -+ [72]
stage method

BAGNBT Estimation +++ +++ -+ [73]
SVM Estimation ++ + + [73]
NBT Estimation + + + [73]
RFNBT Estimation ++ ++ ++ [73]
]élé]\:D-ELM- Estimation +++ e o [74]

2.2. Ensemble methods
Ensemble machine learning (ML) methods employ a collection of classifiers—such as multiple decision trees—instead
of relying on a single model. By aggregating the predictions of several learners, ensemble techniques significantly
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enhance overall accuracy, robustness, and generalization performance. These approaches are typically categorized
under supervised learning algorithms and are designed to improve predictive capability by combining the strengths of
multiple base learners.

Ensemble methods leverage diverse training algorithms to reduce variance, minimize bias, and enhance stability,
ultimately achieving higher testing accuracy. By enabling flexible integration of various classifiers, ensemble
frameworks offer improved adaptability and reliability compared to single-method models.

Table 3 summarizes the top six studies that applied different ensemble techniques across various tasks. The table
highlights each study’s reference, key contribution, proposed ensemble method, and application domain, providing a

concise comparative overview of their objectives and outcomes.

Table 3 Studies developed by Ensemble methods.

References Contributions Methods Application domains
[76] To dpvelop an ensemble machine Ensemble - Risk prediction .
learning methodology for the - Ensemble machine
LS . TSM .
estimation of risk learning
To develop an ensemble model to Ensemble - Customer churn
[77] estimate the churn in the relation of - Ensemble machine
GBDT .
customers and search Ads. learning
To employ rotation forest with DT i Hvdrogeolo
[78] as an ensemble methodology based | Ensemble i Er}llsem%)le gy machine
on EBF and tree-based models for | EBFTM learnin
developing GPM g
To develop a novel ensemble - Wave height
) . . Ensemble .
[79] machine learning method integrated forecasting
L ICEEMDA .
by ELM for the estimation of - Ensemble machine
Jo. . N ELM .
significant wave height learning
To develop a novel Ensemble data
[80] assimilation Kalman filter-based for | Ensemble - System’s state
the estimation of parameters of the | DA KF - Ensemble learning
system’s state
To develop an ensemble estimation Enserpble i Thyroid forecasting .
[81] . . Bagging - Ensemble machine
model for forecasting the thyroid . .
Boosting learning

Gorczyca et al. [76] developed a Trauma Severity Prediction Model based on an ensemble machine learning approach
for accurate risk estimation. The proposed model was compared with established benchmarks, including the
Harborview Assessment for Risk of Mortality (HARM), Bayesian Logistic Injury Severity Score (BLISS), and the
Trauma Mortality Prediction Model (TMPM), using accuracy and F-score metrics. The results demonstrated that the
ensemble model achieved superior predictive performance, indicating that trauma-related features are essential
predictors for this task.

Wang et al. [77] proposed an ensemble gradient boosting decision tree (GBDT) model to estimate customer churn and
its association with search advertisements, utilizing both dynamic and static features. The model was evaluated using
the Bing Ads platform dataset, and results demonstrated highly accurate and sustainable performance, highlighting its
effectiveness for real-world customer retention analytics.

Naghibi et al. [78] introduced an ensemble methodology based on evidential belief function and tree-based models
(EBFTM), integrating rotation forests with decision trees to generate groundwater potential maps. The performance of
the proposed ensemble method was compared against boosted regression trees (BRT), random forests (RF), and
classification and regression trees (CART) using receiver operating characteristic (ROC) curves and area under the
curve (AUC) metrics. Results revealed that the EBFTM ensemble achieved the highest prediction accuracy,
outperforming RF, BRT, and CART models.

Ali and Prasad [79] developed a novel ensemble empirical mode decomposition (EEMD) framework combined with an

© 1JARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 198


https://ijarcce.com/
https://ijarcce.com/

IJARCCE ISSN (O) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :: Peer-reviewed & Refereed journal < Vol. 14, Issue 8, August 2025
DOI: 10.17148/IJARCCE.2025.14821

extreme learning machine (ELM) to accurately estimate significant wave heights. The proposed ICEEMDAN-ELM
model was evaluated alongside ICEEMDAN-OSELM (EEMD integrated with an online sequential ELM) and
ICEEMDAN-RF (EEMD integrated with a random forest). Experimental results demonstrated that ICEEMDAN-ELM
achieved the highest accuracy and stability, outperforming both ICEEMDAN-OSELM and ICEEMDAN-RF in
predictive performance.

Yamanaka et al. [80] proposed a novel ensemble framework based on data assimilation with Kalman filtering for
microstructure prediction using three-dimensional multi-phase-field parameters. The method demonstrated significantly
improved accuracy and produced the lowest prediction errors, confirming its capability for direct application in
parameter estimation tasks.

Yadav and Pal [81] developed a Bagging-Boosting ensemble method for predicting women’s thyroid disorders. The
proposed approach was compared against the Decision Tree with Feature Neural Network (DTFNN) using root mean
square error (RMSE) and mean absolute error (MAE) as evaluation metrics. Results revealed that the ensemble
bagging-boosting model achieved approximately 65% higher accuracy than the DTFNN approach, highlighting its
robustness and reliability.

From these studies, it is evident that ensemble machine learning methods have demonstrated superior performance,
accuracy, and sustainability across diverse application domains. Their increasing adoption reflects their growing
importance and research interest. Accordingly, Table 4 presents a concise yet comprehensive comparison of prominent
ensemble-based methods, focusing on their accuracy, reliability, and practical applicability.

Table 4 the comparison results of Ensemble machine learning based methods.

Method Application | Accuracy Reliability Sustainability | Reference
Ensemble TSM Estimation +++ +++ -+ [76]
Ensemble GBDT Estimation +++ +++ -+ [77]
Ensemble EBFTM Estimation +++ +++ +++ [78]
RF Estimation +++ ++ ++ [78]
BRT Estimation ++ ++ ++ [78]
ICEEMDAN-ELM Estimation +++ +++ +++ [79]
ICEEMDAN-OSELM Estimation ++ + + [79]
ICEEMDAN-RF Estimation ++ ++ ++ [79]
Ensemble KF-DA Estimation ++ ++ ++ [80]
Ensemble bagging-boosting Estimation | +++ +++ RN [81]
DTENN Estimation | ++ n n [81]

III. CONCLUSION

Ensemble and hybrid models represent the next generation of machine learning (ML) techniques, offering higher
predictive accuracy, robustness, and efficiency compared to most conventional ML approaches. This paper provides a
state-of-the-art review of hybrid and ensemble methodologies, highlighting their most prominent algorithms,
comparative performance, and application domains.

Currently, ensembles are predominantly developed using decision-tree-based techniques; however, future
advancements are expected to extend ensemble learning to a broader range of ML algorithms. Among existing
approaches, bagging and boosting have emerged as the most widely adopted strategies for constructing ensemble
models.

Hybrid models, on the other hand, are designed by integrating multiple ML algorithms, often combined with
optimization techniques and soft computing methods, to enhance model performance and reliability. The primary
application areas of ensemble and hybrid models include healthcare, energy systems, climate change prediction, urban
informatics, and hydrology, among others.
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Given their growing capabilities, future research directions are expected to focus on developing novel hybrid and
ensemble architectures capable of delivering even greater accuracy, adaptability, and scalability across a diverse range
of domains [82-91].
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