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Abstract: Conventional machine learning (ML) algorithms are rapidly advancing with the introduction of novel 

learning techniques. These models are continuously improving through hybridization and ensemble approaches, 

enhancing their computational efficiency, functionality, robustness, and accuracy. In recent years, numerous hybrid and 

ensemble ML models have been proposed. However, a comprehensive survey of these models is still lacking. This 

paper aims to address this gap by presenting a state-of-the-art review of emerging ML models, highlighting their 

performance, applications, and categorization through a novel taxonomy. 
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Nomenclatures    

Definition Abbreviation  Definition 
 

Abbreviation 

Artificial neural network ANN Bagging-based naïve bayes trees BAGNBT 

Extreme learning machine ELM 
Ensemble empirical mode 

decomposition 
EEMD 

Machine learning ML Grasshopper optimization algorithm GOA 

Support vector machine SVM 
Hybrid of linear regression-deep neural 

network 
HybPAS 

Wavelet neural networks WNN Trauma Severity model TSM 

Deep learning DL Gradient boosting decision tree GBDT 

Autoregressive integrated 

moving average 
ARIMA 

Evidential belief function and tree based 

models 
EBFTM 

Ensemble empirical with 

adaptive noise technology 
EE ANT 

Decision tree overfitting and neural 

network 
DTFNN 

Data assimilation Kalman filter-

based 
DA-KF 

Improved complete ensemble empirical 

mode decomposition method with 

adaptive noise 

ICEEMDMAN 

Online sequential extreme 

learning machine 
OSELM Random forest RF 

 

1. INTRODUCTION 

 

Machine learning (ML) techniques have been reported to outperform most traditional physical and statistical 

approaches in predictive modeling, offering superior accuracy, robustness, uncertainty handling, data efficiency, 

simplicity, and computational efficiency. Consequently, ML methods have gained significant popularity in recent years 

and are now widely applied across diverse domains, including energy, hydrology, hazard prediction, finance, 

economics, and computational mechanics [1–9]. 
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A wide variety of ML methods exist, and several classification schemes have been proposed by researchers [10–13]. 

One widely adopted approach categorizes ML techniques into three groups: single methods, hybrid methods, and 

ensemble methods [14–16]. Among the most commonly used single ML approaches are artificial neural networks 

(ANNs) [17–19], decision trees (DTs) [18, 20–23], support vector machines (SVMs) [24–27], Bayesian models [28–

30], neuro-fuzzy systems [11, 12, 31, 32], classification and regression techniques [33], and wavelet neural networks 

(WNNs) [12, 34]. Although neuro-fuzzy systems and WNNs integrate two intelligent algorithms, they are generally 

categorized as single-method approaches due to their structural formulation. 

 

ML techniques continue to evolve, driving the development of increasingly powerful algorithms aimed at achieving 

higher predictive performance [35–49]. In particular, hybrid and ensemble methods have gained attention for their 

ability to consistently outperform traditional single-method approaches [50–60]. 

 

Ensemble and hybrid machine learning (ML) approaches represent two of the most promising directions for achieving 

higher accuracy, reliability, and robustness in predictive modeling [61–63]. Hybrid ML models are developed by 

integrating multiple ML algorithms and/or combining them with other soft computing techniques, optimization 

strategies, or statistical approaches to enhance performance across various dimensions. In contrast, ensemble methods 

rely on grouping strategies—such as bagging, boosting, and stacking—to leverage the predictive capabilities of 

multiple classifiers simultaneously. 

 

Recent studies suggest that the future success of ML will largely depend on advancements in novel ensemble and 

hybrid techniques [32, 64–66]. The existing literature includes several innovative ML methods and comparative 

analyses aimed at identifying models with superior performance [67–69]. However, a significant research gap remains 

in systematically identifying novel hybrid and ensemble ML approaches and mapping their application domains. To 

address this gap, the present study introduces these emerging techniques and highlights their practical applications 

across diverse fields.  

 

II.     REVIEWING ENSEMBLE AND HYBRID ML METHODS 

 

The adoption of machine learning (ML) techniques—including single models, ensemble approaches, and hybrid 

frameworks—has grown exponentially in recent years. Figure 1 illustrates the rapid and continuous rise in the use of 

ML methods from 2009 to the present. These techniques have found widespread applications across a broad spectrum 

of disciplines, including engineering, mathematics, physics, astronomy, earth and planetary sciences, medicine, 

materials science, biochemistry, genetics and molecular biology, environmental science, social sciences, energy, 

chemistry, decision sciences, as well as agricultural and biological sciences. 

 

 
Figure 1  The growing trend of ML methods the past decade (source: web of science). 

 
In the following, Figure.2 shows the popularity of ensemble and hybrid ML models in advancing the novel method 

with higher performance. 
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Figure 2 The growing trend of hybrid and ensemble ML methods (source: web of science). 

 
2.1. Hybrid methods  

Hybrid machine learning (ML) methods integrate two or more ML algorithms and/or soft computing techniques to 

achieve enhanced performance and optimal results. By leveraging the complementary strengths of multiple approaches, 

hybrid models are capable of delivering superior accuracy, robustness, and adaptability compared to single-method 

techniques. In many cases, hybrid frameworks consist of two core components: one dedicated to prediction and the 

other focused on optimizing the predictive model, thereby improving overall reliability and precision. 

 
Due to their flexibility and ability to exploit the strengths of different algorithms, hybrid methods have gained 

significant popularity in recent years. Conceptually, they can be compared to a team of experts—each specializing in 

different areas—working together to achieve a common objective. 

 
Table 1 summarizes the top six studies that utilize hybrid methods. The table presents four key aspects for each study: 

the reference, the primary contribution, the developed hybrid model, and the application domain. This provides a 

concise overview, enabling readers to quickly identify the main highlights and relevance of each work. 

 
Table 1 Studies developed by hybrid methods. 

 
References  Contributions Methods Application domains 

[70] 

 

To develop an adaptive hybrid 

methodology for the estimation of  

urban traffic flow 

ARIMA 

WNN - 

- Urban traffic flow 

- Advanced hybrid machine 

learning 

[71] 

To develop an innovative hybrid 

method for the estimation and 

optimization of wind energy 

EE-ANT 

WNN - 

- Wind power  

- Hybrid machine learning 

[72] 

 

To develop a novel hybrid multi 

stage method to be applied in 

credit scoring 

Hybrid 

multi-

stage 

method 

- Classification  

- Multi-stage hybrid model 

[73] 

 

To develop a novel hybrid bagging  

based method for the assessment of  

the Landslide susceptibility 

Hybrid 

BAGNBT 

- Landslide susceptibility  

- Hybrid machine learning 

 

[74] 

 

To develop a hybrid method for 

the estimation of electricity load 

EEMD 

ELM-

GOA 

- Electrical load  

- Hybrid machine learning 

 

[75] 

To develop a hybrid linear 

regression-based deep learning 

method for the estimation of poly 

(A) signals in DNA 

HybPAS 

- Hybrid machine learning  

- Signal processing 

 

 

Hou et al. [70] conducted a study aimed at accurately estimating urban traffic flow. They proposed an advanced hybrid 

model integrating a wavelet neural network (WNN) with an autoregressive integrated moving average (ARIMA) 
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model, enhanced through a fuzzy-based approach. The hybrid method was compared against the individual single 

models using mean absolute percentage error (MAPE) and root mean square error (RMSE) metrics. The results 

demonstrated a 60–70% improvement in estimation accuracy compared to single-method models. 
 

Similarly, Du et al. [71] developed a novel hybrid model for wind power estimation and optimization. Their approach 

combined an ensemble empirical mode decomposition (EEMD) integrated with adaptive noise technology to eliminate 

noise and extract significant data features, followed by an optimized wavelet neural network for enhanced prediction 

accuracy. The proposed hybrid approach was evaluated using MAPE, and the results confirmed substantial 

improvements in both estimation accuracy and the sustainability of prediction and optimization processes. 
 

Zhang et al. [72] introduced a feature-and-classifier-based hybrid model designed to improve credit scoring accuracy. 

The proposed framework simultaneously selected the optimal classifier and feature subset using a classifier ensemble 

coupled with an enhanced multi-population niche genetic algorithm (EMNGA). Evaluations conducted using accuracy 

and area under the curve (AUC) demonstrated that the hybrid method significantly outperformed single-method 

approaches in both estimation and optimization tasks. 
 

Pham and Prakash [73] developed a bagging-based Naïve Bayes Trees (BAGNBT) model for landslide susceptibility 

assessment. The proposed hybrid method was compared with several single models, including Rotation Forest-based 

Naïve Bayes Trees, Naïve Bayes Trees, and support vector machines (SVM), using AUC and other statistical indices. 

Results revealed that the BAGNBT model achieved superior accuracy and could be considered a reliable alternative for 

landslide susceptibility prediction compared to single-method approaches. 
 

Wu et al. [74] proposed an advanced hybrid forecasting framework for improving electricity load prediction. Their 

approach integrated an Extreme Learning Machine (ELM), ensemble empirical mode decomposition (EEMD), and the 

grasshopper optimization algorithm (GOA). Evaluations based on RMSE, mean absolute error (MAE), and MAPE 

demonstrated that the proposed model significantly outperformed individual models, achieving higher accuracy and 

predictive stability. 
 

In another study, Albalawi et al. [75] developed HybPAS, a hybrid model integrating linear regression and deep neural 

network (DNN) architectures, for predicting ply(a) signals in DNA using sequence-based features and signal-

processing-based statistical inputs. Experimental results indicated that HybPAS improved predictive accuracy and 

performance by 30.29% compared to single-method baselines. 
 

From this brief review, it is evident that hybrid ML methods are rapidly gaining popularity due to their high potential, 

adaptability, and capability in improving estimation accuracy and optimization performance across various domains. 

Table 2 provides a concise yet comprehensive comparison of single and hybrid methods in terms of accuracy, 

reliability, and sustainability. 

 

Table 2  Studies developed by hybrid methods. 
 

Method Application Accuracy Reliability Sustainability Reference 

Hybrid WNN-

ARIMA 
Estimation +++ +++ +++ [70] 

WNN Estimation ++ ++ ++ [70] 

ARIMA Estimation ++ + + [70] 

Hybrid EE-

ANT-WNN 
Estimation +++ +++ +++ [71] 

Hybrid the 

optimized multi 

stage method 

Estimation +++ +++ +++ [72] 

BAGNBT Estimation +++ +++ +++ [73] 

SVM Estimation ++ + + [73] 

NBT Estimation + + + [73] 

RFNBT Estimation ++ ++ ++ [73] 

EEMD-ELM-

GOA 
Estimation +++ +++ +++ [74] 

 

2.2. Ensemble methods  

Ensemble machine learning (ML) methods employ a collection of classifiers—such as multiple decision trees—instead 

of relying on a single model. By aggregating the predictions of several learners, ensemble techniques significantly 
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enhance overall accuracy, robustness, and generalization performance. These approaches are typically categorized 

under supervised learning algorithms and are designed to improve predictive capability by combining the strengths of 

multiple base learners. 

 

Ensemble methods leverage diverse training algorithms to reduce variance, minimize bias, and enhance stability, 

ultimately achieving higher testing accuracy. By enabling flexible integration of various classifiers, ensemble 

frameworks offer improved adaptability and reliability compared to single-method models. 

 

Table 3 summarizes the top six studies that applied different ensemble techniques across various tasks. The table 

highlights each study’s reference, key contribution, proposed ensemble method, and application domain, providing a 

concise comparative overview of their objectives and outcomes. 

 

Table 3  Studies developed by Ensemble methods. 

 
References  Contributions Methods Application domains 

[76] 

 

To develop an ensemble machine 

learning methodology for the 

estimation of risk 

Ensemble 

TSM 

- Risk prediction 

- Ensemble machine 

learning 

[77] 

To develop an ensemble model to 

estimate the churn in the relation of 

customers and search Ads. 

Ensemble 

GBDT 

- Customer churn 

- Ensemble machine 

learning 

[78] 

 

To employ rotation forest with DT 

as an ensemble methodology based 

on EBF and tree-based models for 

developing GPM 

Ensemble 

EBFTM 

- Hydrogeology 

- Ensemble machine 

learning 

[79] 

 

To develop a novel ensemble 

machine learning method integrated 

by ELM for the estimation of 

significant wave height 

Ensemble 

ICEEMDA

N ELM 

- Wave height 

forecasting 

- Ensemble machine 

learning 

[80] 

 

To develop a novel Ensemble data 

assimilation Kalman filter-based for 

the estimation of parameters of the 

system’s state 

Ensemble 

DA KF 

- System’s state 

- Ensemble learning 

[81] 
To develop an ensemble estimation 

model for forecasting the thyroid 

Ensemble 

Bagging 

Boosting 

- Thyroid forecasting 

- Ensemble machine 

learning 

 

Gorczyca et al. [76] developed a Trauma Severity Prediction Model based on an ensemble machine learning approach 

for accurate risk estimation. The proposed model was compared with established benchmarks, including the 

Harborview Assessment for Risk of Mortality (HARM), Bayesian Logistic Injury Severity Score (BLISS), and the 

Trauma Mortality Prediction Model (TMPM), using accuracy and F-score metrics. The results demonstrated that the 

ensemble model achieved superior predictive performance, indicating that trauma-related features are essential 

predictors for this task. 

 

Wang et al. [77] proposed an ensemble gradient boosting decision tree (GBDT) model to estimate customer churn and 

its association with search advertisements, utilizing both dynamic and static features. The model was evaluated using 

the Bing Ads platform dataset, and results demonstrated highly accurate and sustainable performance, highlighting its 

effectiveness for real-world customer retention analytics. 

 

Naghibi et al. [78] introduced an ensemble methodology based on evidential belief function and tree-based models 

(EBFTM), integrating rotation forests with decision trees to generate groundwater potential maps. The performance of 

the proposed ensemble method was compared against boosted regression trees (BRT), random forests (RF), and 

classification and regression trees (CART) using receiver operating characteristic (ROC) curves and area under the 

curve (AUC) metrics. Results revealed that the EBFTM ensemble achieved the highest prediction accuracy, 

outperforming RF, BRT, and CART models. 

 

Ali and Prasad [79] developed a novel ensemble empirical mode decomposition (EEMD) framework combined with an  
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extreme learning machine (ELM) to accurately estimate significant wave heights. The proposed ICEEMDAN-ELM 

model was evaluated alongside ICEEMDAN-OSELM (EEMD integrated with an online sequential ELM) and 

ICEEMDAN-RF (EEMD integrated with a random forest). Experimental results demonstrated that ICEEMDAN-ELM 

achieved the highest accuracy and stability, outperforming both ICEEMDAN-OSELM and ICEEMDAN-RF in 

predictive performance. 

 

Yamanaka et al. [80] proposed a novel ensemble framework based on data assimilation with Kalman filtering for 

microstructure prediction using three-dimensional multi-phase-field parameters. The method demonstrated significantly 

improved accuracy and produced the lowest prediction errors, confirming its capability for direct application in 

parameter estimation tasks. 

 

Yadav and Pal [81] developed a Bagging-Boosting ensemble method for predicting women’s thyroid disorders. The 

proposed approach was compared against the Decision Tree with Feature Neural Network (DTFNN) using root mean 

square error (RMSE) and mean absolute error (MAE) as evaluation metrics. Results revealed that the ensemble 

bagging-boosting model achieved approximately 65% higher accuracy than the DTFNN approach, highlighting its 

robustness and reliability. 

 

From these studies, it is evident that ensemble machine learning methods have demonstrated superior performance, 

accuracy, and sustainability across diverse application domains. Their increasing adoption reflects their growing 

importance and research interest. Accordingly, Table 4 presents a concise yet comprehensive comparison of prominent 

ensemble-based methods, focusing on their accuracy, reliability, and practical applicability. 

 

Table 4  the comparison results of Ensemble machine learning based methods. 

 
Method Application Accuracy Reliability Sustainability Reference 

Ensemble TSM Estimation +++ +++ +++ [76] 

Ensemble GBDT Estimation +++ +++ +++ [77] 

Ensemble EBFTM Estimation +++ +++ +++ [78] 

RF Estimation +++ ++ ++ [78] 

BRT Estimation ++ ++ ++ [78] 

ICEEMDAN-ELM Estimation +++ +++ +++ [79] 

ICEEMDAN-OSELM Estimation ++ + + [79] 

ICEEMDAN-RF Estimation ++ ++ ++ [79] 

Ensemble KF-DA Estimation ++ ++ ++ [80] 

Ensemble bagging-boosting Estimation +++ +++ +++ [81] 

DTFNN Estimation ++ + + [81] 

 

III.    CONCLUSION 

 

Ensemble and hybrid models represent the next generation of machine learning (ML) techniques, offering higher 

predictive accuracy, robustness, and efficiency compared to most conventional ML approaches. This paper provides a 

state-of-the-art review of hybrid and ensemble methodologies, highlighting their most prominent algorithms, 

comparative performance, and application domains. 

 

Currently, ensembles are predominantly developed using decision-tree-based techniques; however, future 

advancements are expected to extend ensemble learning to a broader range of ML algorithms. Among existing 

approaches, bagging and boosting have emerged as the most widely adopted strategies for constructing ensemble 

models. 

 

Hybrid models, on the other hand, are designed by integrating multiple ML algorithms, often combined with 

optimization techniques and soft computing methods, to enhance model performance and reliability. The primary 

application areas of ensemble and hybrid models include healthcare, energy systems, climate change prediction, urban 

informatics, and hydrology, among others. 
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Given their growing capabilities, future research directions are expected to focus on developing novel hybrid and 

ensemble architectures capable of delivering even greater accuracy, adaptability, and scalability across a diverse range 

of domains [82–91]. 
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