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Abstract: International food security is largely dependent on farming, but crop diseases continue to threaten crop quality 

and yield. To minimize losses and maintain sustainable agriculture, plant diseases must be accurately and promptly 

diagnosed. Automation is very desirable because the traditional methods of visual inspection and laboratory analysis are 

frequently laborious, subjective, and unavailable in remote locations. Crop disease detection has been transformed by 

recent advances in deep learning (DL), which enable models to automatically extract discriminative features from plant 

photos without the need for human assistance. From manual scouting and preliminary image processing to conventional 

machine learning and more recent state-of-the-art deep architectures, this review tracks the development of disease 

detection techniques. Across popular crops like rice, maize, and tomatoes, pivotal techniques like convolutional neural 

networks, transfer learning, ensemble methods, and vision transformers are critically reviewed and compared. Examined 

are real-world uses like drone imaging, precision agriculture systems, mobile applications, and IoT-based monitoring. 

Along with fascinating potential directions like multimodal learning, cloud–edge AI fusion, and farmer-centric design, 

challenges like sparse datasets, environmental heterogeneity, computational cost, and unexplainability are discussed. This 

review provides a comprehensive picture of creating reliable, field-deployable crop disease detection systems by 

synthesizing improvements and shortcomings. 
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I. INTRODUCTION 

 

The foundation of the world's food security and the source of income for billions of people, agriculture is a very old and 

vital human activity. Nearly half of the workforce in countries like India is employed in agriculture, which makes up a 

significant portion of the GDP [25]. Crop diseases continue to be a significant obstacle, though, with fungi, bacteria, and 

viruses responsible for an estimated 10–40% of yield loss annually worldwide [1], [31]. These losses affect food supply 

chains and productivity, leading to social and economic problems, especially in developing nations where smallholder 

farmers produce the majority of the food [1], [32].  

 

Traditional plant disease diagnosis relies on laboratory tests such as PCR and ELISA or the expert's eye. Despite being 

accurate, these are either expensive, time-consuming, or not easily accessible in rural or resource-constrained 

environments [2], [32]. Visual scouting, on the other hand, is arbitrary and prone to mistakes, especially when symptoms 

resemble those of environmental stress. Therefore, one of the biggest obstacles to sustainable agriculture is the timely 

diagnosis of diseases.  

 

Researchers are paying more attention to automated methods of plant disease detection as a result of the rapid 

advancements in computing power, imaging technologies, and artificial intelligence (AI). Initial computer vision 

approaches relying on hand-designed features and traditional classifiers like Support Vector Machines or k-Nearest 

Neighbours had limited success but failed under real-world conditions [24]. The emergence of deep learning (DL) has 

changed this scenario. Convolutional Neural Networks (CNNs), specifically, have shown excellent performance in image 

classification by learning hierarchical features from raw pixels automatically. A seminal work by Mohanty et al. (2016) 

trained a CNN on the Plant Village dataset and achieved 99.35% accuracy for 14 crops and 26 diseases and thus made 

DL a leading paradigm in plant pathology [1]. Later work has achieved similar or better performance with architectures 

including Reset [17], Dense Net [16], and Efficient Net [7]. More recently, models based on the transformer have 

appeared, providing the potential to extract long-range dependencies and extending the limits of performance [4], [15]. 

Even with these developments, implementing DL-based systems into actual farming is still difficult. Most models are 

trained on datasets that have been carefully curated under controlled conditions, which restricts their robustness in 

heterogeneous field environments [9], [10]. Challenges like data sparsity, class imbalance, environmental heterogeneity, 

computational limitations, and lack of explainability remain [11], [28]. Additionally, although research prototypes exhibit 

https://ijarcce.com/
https://ijarcce.com/


ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE 

International Journal of Advanced Research in Computer and Communication Engineering 

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 8, August 2025 

DOI:  10.17148/IJARCCE.2025.14829 

© IJARCCE                This work is licensed under a Creative Commons Attribution 4.0 International License                 282 

high accuracy, integration into real-world farming devices like IoT platforms, mobile apps, and drone systems remains 

limited [26]. 

 

Motivation and Scope: Many reviews of AI applications in agriculture have been published, but the majority are either 

from before recent advances in deep architectures or are sweeping in terms of digital farming [2], [33]. Therefore, the 

goal of this review is to provide a critical overview of the research conducted between 2015 and 2025 on deep learning 

for crop disease detection. We compare state-of-the-art efforts across different crops, highlight important architectures 

and applications, critically evaluate the evolution of approaches, and identify research gaps. Practical deployment issues, 

such as data challenges, system scalability, explainability, and farmer-centric design, are given particular attention. This 

review seeks to assist researchers, practitioners, and students in creating robust, field-deployable AI systems for 

agriculture by integrating existing work and outlining future research directions.  

 

II. LITERATURE REVIEW 

 

The progress of automated crop disease detection can be divided into multiple different stages, each characterized by 

advancements in computing and technology. The process started with basic, manual detection, moved through classical 

image processing and machine learning, and has finally arrived at the age of deep learning. 

 

A. Plant Disease Detection in Early Developments 

The first attempts at plant disease diagnosis were based on farmer and pathologist visual observation, where infections 

were detected by signs such as spots, discoloration, or wilting. Although this was easy, it was subjective and variable 

between individuals. For increased reliability, laboratory-based tests such as ELISA and PCR came into use, which gave 

greater accuracy but with a time and resource expense [2], [32]. These methods paved the way for later digital approaches 

but were not viable for large-scale inspection of actual agricultural fields 

 

B. Conventional Machine Learning and Image Processing 

As digital imaging increased, computer vision techniques started to augment manual diagnosis. Experts employed 

handcrafted features like texture descriptors, colour histograms, and shape analysis to distinguish between healthy and 

diseased plants. These attributes were further categorized by algorithms such as SVMs, k-NN, and Random Forests. For 

instance, Zhang et al. used SVMs on images of grape leaves and achieved accuracies of nearly 89% [24]. Despite showing 

promise in their early phases, these approaches faltered with environmental fluctuations, such as changes in lighting, 

occlusions, and cluttered backgrounds, and hence were not deployable in the field [9]. 

 

C. Appearance of Convolutional Neural Networks 

Computer vision in agriculture was transformed by deep learning, particularly convolutional neural networks (CNNs). 

This was demonstrated by Mohanty et al. (2016), who achieved 99.35% classification accuracy using CNNs on the 

54,306-image Plant Village dataset of 14 crops [1]. The strength of end-to-end learning, in which models learned 

discriminative features straight from raw pixel values without the need for handcrafted engineering, was highlighted in 

this seminal paper. Soon after, Ferentinos (2018) used carefully selected datasets to test different CNN architectures, 

including VGG and Google Net, and reached a maximum accuracy of 99.53% [3]. Although the experiments showed 

CNNs' capabilities, they also raised concerns about an excessive reliance on controlled imaging settings. 

 

D.  Transfer Learning in Plant Disease Detection 

Transfer learning proved to be an effective solution because there were not enough labelled agricultural datasets available. 

Pre-trained models such as ResNet, Dense Net, and Inception were optimized by Too et al. (2019), with Dense Net 

achieving the best results at 99.75% [4]. Even with small datasets, transfer learning improved performance and allowed 

for faster training. While it performed better than scratch-trained models, accuracy was still below lab standards, 

according to Barbedo's (2019) investigation into its application to field images [5]. These studies positioned transfer 

learning as a key technique, especially for small or unbalanced data sets. 

 

E. Ensemble and Hybrid Methods 

As another move towards enhancing robustness, researchers tried ensemble and hybrid models. Shafik et al. (2024) 

ensembled nine pre-trained CNNs and used them as an ensemble named PDDNet, gaining 97.79% accuracy [10]. 

Ensemble methods minimized variance and enhanced prediction dependability but heightened computational expense. 

Atila et al. (2021) concatenated ResNet50 with SVM to pair CNN feature extraction with conventional classification, 

achieving good performance on tomato leaf diseases [7]. Such methods proved that fusion of models can be better than 

individual architectures, albeit deployment is still resource-hungry. 

F.  Object Detection and Localization 
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As research progressed, the emphasis shifted from image-level classification to lesion localization. Faster R-CNN was 

used by Liu et al. (2020) to detect tomato leaves with a mean average precision (mAP) of 88.6% [19]. This was furthered 

by object detection architectures that could process in real time, like YOLO. When Khan et al. (2023) integrated 

YOLOv8n into a smartphone app for offline deployment, they were able to achieve 99.04% accuracy when using the 

system on maize diseases [5]. By including YOLO-Leaf Net, Kaur et al. (2025) expanded YOLO and obtained a mAP50 

of 0.990 on a variety of crops [20]. These outcomes marked a shift to field deployment in the real world 

 

G.  Lightweight Architectures for Edge Deployment 

In regard to the limitations of IoT and mobile devices, researchers focused on lightweight architectures. Mobile Net, 

through depth wise separable convolutions, significantly cut down parameter sizes without losing accuracy. Dhaka et al. 

(2023) documented Mobile Net variants with more than 95% accuracy on field datasets, making them appropriate for 

smartphones and Raspberry Pi [13]. Likewise, Efficient Net, proposed by Tan and Le, balanced depth, width, and 

resolution of the network, delivering state-of-the-art performance with reduced resources [14]. Albattah et al. (2022) 

implemented EfficientNetV2-B4 for UAV-based imagery and yielded near-perfect classification (~99.99%) and 

supported aerial disease surveillance [7]. 

 

H. Generative Models and Data Augmentation 

Lack of annotated images has spurred research into data augmentation. Generative Adversarial Networks (GANs) have 

been especially successful in generating synthetic diseased leaf images for dataset balancing. Gajjar et al. (2021) showed 

that GAN-augmented datasets enhanced CNN generalization to uncommon diseases [12]. Mwebaze et al. (2019) used 

GANs for cassava datasets, overcoming class imbalance and increasing classification robustness [35]. These approaches 

overcome dataset limitations, although achieving biological realism with synthetic data is still a challenge. 

 

I. Vision Transformers and Hybrid Architectures 

CNNs prevail in the literature, but Vision Transformers (ViTs) are an emerging trend. Through modelling long-range 

dependencies through self-attention, ViTs have the ability to understand global context outside local CNN filters. Li et 

al. (2023) introduced PMVT, a MobileViT variant, and reached 93–94% accuracy on wheat, coffee, and rice [4]. Maji et 

al. (2022) have used ViTs for rice and maize and seen enhanced generalization under field settings [22]. Hybrid models, 

which integrate CNNs and transformer modules, are more widely researched today, seeking to leverage CNN efficiency 

and transformer flexibility [11]. 

 

J. Reviews and Future Outlook 

A number of surveys have abstracted these developments, highlighting progress and limitations both. Reviews universally 

point towards reliance on curated data, the necessity of normalized benchmarks, and the significance of explainability 

for real-world uptake [9], [11], [33]. Upadhyay et al. (2025) had postulated that next-generation systems would make use 

of foundation models and multimodal learning, integrating visual, environmental, and text data to enhance accuracy and 

credibility [11]. These views suggest that the discipline is shifting away from singular measures of pure accuracy toward 

more expansive considerations of usability, scalability, and sustainability. 

 

III. DEEP LEARNING TECHNIQUES FOR CROP DISEASE IDENTIFICATION 

 

A. Convolutional Neural Networks (CNNs)  

CNNs, or convolutional neural networks have emerged as the workhorse of plant disease detection based on images. 

Typically, a CNN consists of fully connected layers for classification and convolutional layers for feature extraction [2]. 

Unlike previous methods with handcrafted features, CNNs learn filters automatically, which detect texture, shapes, and 

colour variations associated with disease. Their high accuracy on benchmarking datasets has been demonstrated in a 

number of studies. For instance, Li et al. (2023) claimed that Dense Net obtained 98.27% accuracy on the Plant Village 

dataset and ResNet-50 attained an F1-score of 95.7% in apple leaf classification [4]. One of CNNs' most significant 

advantages is weight sharing, which reduces the parameters and avoids overfitting [16]. Nevertheless, because of their 

reliance on local receptive fields, these extremely deep CNNs can occasionally overlook global context and become over-

parameterized and costly to train computationally [11].  

 

Over the years, crop disease tasks have been addressed using a variety of CNN architectures. One of the first architectures 

to test tomato leaf classification was AlexNet, which debuted in 2012 and was the first to use deep CNNs [33]. Research 

on cactus leaf disease and maize has used VGGNet, a 2015 algorithm that combined deeper but simpler stacked 

convolutional layers [24]. Inception, also known as GoogleNet, has been widely used in hybrid models for the detection 

of complex diseases and has integrated inception modules for multi-scale feature extraction [18]. ResNet, one of the most 

widely used models in plant pathology today, quickly rose to prominence in the industry after inventing skip connections 
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in 2016 [17]. Dense Net, released in 2017, enabled dense layer connections to facilitate feature reuse and has attained 

exceptionally high accuracies with a number of crops [16]. Mobile Net, also created in the same year, provided light 

computation via depth wise separable convolutions and has been applied effectively to apps for detecting maize diseases 

and other mobile or IoT-related projects [13], [28]. Efficient Net lately introduced compound scaling to equilibrate 

network depth, width, and resolution and Albertha et al. (2022) used its V2-B4 variant to drone images with almost 

perfect performance [7]. In most real-world applications, these CNNs are employed pre-trained on ImageNet and fine-

tuned for the detection of plant diseases, a transfer learning mechanism that accelerates convergence and enhances 

accuracy in small datasets [10], [34]. Shafik et al. (2024), for instance, fine-tuned nine pre-trained CNNs on Plant Village 

and ensembled their predictions to reach accuracies of up to 97–98% [10]. 

 

B. Transfer Learning and Fine-Tuning 

Transfer learning became a pillar of contemporary plant disease identification due to the difficulty in bringing together 

large annotated agricultural datasets. Under this method, models that have been pre-trained on large-sized datasets like 

ImageNet are fine-tuned for agricultural images by freezing early layers that extract general visual features and then re-

training subsequent layers to specialize in detecting plant diseases [10], [34]. A number of surveys have validated the 

explosive increase of transfer learning usage in agriculture [11]. Shafik et al. also fine-tuned pre-trained CNNs using the 

Plant Village dataset of 54,000 images and ensembled the models to obtain 96–97% accuracy [10]. Also, Wang et al. 

(2024) demonstrated that transfer learning was essential for obtaining over 90% accuracy on multiple crops under 

conditions of limited field data [11]. The benefits of transfer learning are quick convergence, smaller data needs, and 

frequently better accuracy than models trained from zero. However, constraints occur when the source domain (for 

example, natural images of ImageNet) is not similar to the target domain of agriculture, which might lead to poorer 

generalization. In addition, although transfer learning is beneficial as it minimizes parameter needs, extremely deep 

models continue to be computationally intensive on mobile and embedded systems and thus compression and distillation 

of knowledge are significant areas of research [10]. 

 

C. Hybrid and Ensemble Models 

Hybrid and ensemble methods have been extensively investigated to enhance robustness and minimize variance in plant 

disease recognition. Ensemble methods aggregate the predictions from multiple models so that their complementary 

strengths may be harnessed. Shafik et al. (2024) suggested the Plant Disease Detection Network (PDDNet), which 

combined nine pre-trained CNNs, such as ResNet-50 and DenseNet-201, in early fusion and late voting approaches. Their 

system performed accuracies of 97.8%, which are higher than single CNN models [10]. Apart from ensembles, deep 

hybrid architectures bring together CNNs and RNNs to handle temporal or sequential data, e.g., stages of crop growth, 

while attention or segmentation modules are sometimes incorporated in CNNs to target the model on disease areas [11]. 

Autoencoders and GANs have also been incorporated into pipelines to enhance feature learning or to create synthetic 

samples to balance datasets [12]. These methods show that architectural blending can highly enhance performance, but 

at the cost of heightened computational expense and sophistication. 

 

D. Vision Transformers and Next-Generation Architectures 

The advent of Vision Transformers (ViTs) signals a dramatic change in computer vision. In contrast to CNNs, which 

achieve local features by means of convolutional kernels, ViTs split an image into patches and subject them to self-

attention in order to capture long-range relationships [15]. This architecture enables the ViTs to learn more about the 

global context but usually need big datasets to perform optimally [4]. In agriculture, models based on ViT are currently 

used with encouraging performances. Li et al. (2023) proposed PMVT, a variant of Mobi Levit, which had 93–94% 

accuracy in wheat, coffee, and rice datasets, outperforming lightweight CNN models [4]. The study emphasized that 

CNNs, while powerful, often suffer from local focus and parameter inefficiency, which transformer-based models can 

address. Other research has explored hybrid CNN–transformer models, which aim to combine the efficiency of CNNs 

with the global reasoning capability of transformers [11]. Beyond ViTs, vision–language and foundation models are 

emerging as promising directions. Zero-shot plant disease detection is made possible by models like CLIP, which pair 

words with images. To make training easier, these models can even create fictitious images of diseases [44]. Although 

their use in agriculture is still in its infancy, these architectures represent a new frontier for the discipline. 

 

IV. SUMMARY OF RESEARCH 

 

The literature on crop disease detection has advanced significantly, with the majority of studies reporting extremely high 

accuracy on common benchmarks. Performance has consistently been pushed into the high 90% range by ensemble 

learning and sophisticated deep architectures, indicating the potential of deep learning to completely transform 

agricultural monitoring (see Table 1). With mobile and UAV-based systems now demonstrating their viability for field 

deployment, real-time deployment is starting to become more of a reality. Researchers have listed a variety of image 
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datasets, such as Plant Village, Cassava, and Planetdom, and started new data collection initiatives, such as drone-based 

images for rice [2], [7], [9], [21], and [24]. Comparative surveys confirm that deep CNNs, such as Reset and dense Net, 

consistently outperform traditional machine learning techniques. The advantages of deep learning techniques are clear.  

Without relying on manually created features, CNNs and their related architectures can automatically learn complex 

patterns in the colour and texture of leaves [16]. Another advantage of transfer learning is that it makes it possible to 

adapt networks that have already been trained on sizable general-purpose datasets for plant-specific applications. This is 

particularly helpful in situations where agricultural data is limited [10], [34]. Ensemble approaches and data augmentation 

techniques, like GAN-based synthetic image generation, have shown great promise in reducing overfitting [10], [12]. 

Furthermore, high inference speeds are attained by computationally efficient architectures such as YOLO, allowing for 

deployment via drones and smartphones [5, 6]. The goals of precision agriculture are closely aligned with end-to-end 

disease management pipelines, which are being made possible by the integration of cloud infrastructure and IoT-based 

sensors [8], [11], and [26]. There is a domain gap that impairs performance in actual agricultural settings with varying 

lighting, background, and crop types because many of the best-performing models are trained and evaluated on carefully 

selected datasets with controlled environments [9], [10]. In-field robustness is rarely thoroughly tested across 

geographically or climatologically diverse regions [11]. Data imbalance is another persistent issue: rare diseases lack the 

necessary training images, which results in biased classifiers, whereas common diseases are well-represented [12].  

Since deep learning models are largely black boxes that provide predictions but no justification for how they were made, 

interpretability is also an issue. This undermines confidence among regulators and farmers [11], [27]. Furthermore, 

computational cost continues to be a barrier because powerful models often require GPU availability, which is 

unaffordable in rural areas [28]. Last but not least, the majority of studies disregard the end-user perspective, failing to 

take into account crucial factors that are essential to smallholder farmer adoption, such as language localization, internet 

connectivity, and affordability [30].  

 

V. CHALLENGES AND LIMITATIONS 

 

Despite the progress, there are still a number of obstacles to overcome when using DL for crop disease detection:  

 

A. Problems with data (imbalance and scarcity)  

It is challenging to find high-quality, labelled images of plant diseases. Limited conditions are covered by many datasets, 

including Plant Village. Field image collection necessitates manual labelling and specialized knowledge. As a result, 

models are frequently trained on unbalanced or small datasets, which introduces bias in cases where common diseases 

are overrepresented [9], [12]. The most frequent problem, according to the AI literature, is "limited data" [9]. Performance 

on rare diseases is deteriorated by imbalanced classes. Rotations and GAN-based synthetic image generation are 

examples of data augmentation techniques that offer partial solutions but fall short of capturing real-world variance [12]. 

In practice, a model might come across environmental conditions outside of its training distribution or diseases it has 

never encountered [10]. 

 

B. Computational and Resource Limitations  

The most advanced deep learning models can be quite big. Most farmers cannot afford the costly GPUs or cloud servers 

needed to train deep CNNs. ResNet-50 or dense Net models might not operate in real time on a phone or Raspberry Pi, 

demonstrating how computationally demanding even inference can be [28]. Additionally, Shafik et al. pointed out that 

DL models require a lot of parameters and training time, which makes them "complex and impractical" to deploy on 

small devices [10]. Another issue with battery-powered gadgets is their energy usage. Lightweight architectures like 

Mobile Net or Efficient Net-lite, as well as techniques like model compression, pruning, and quantization, provide 

solutions, but frequently at the expense of accuracy [13] 

 

C. Lack of Explainability 

The majority of DL models are opaque. Without an explanation, farmers and agronomists might not trust predictions 

(such as "infected" vs. "healthy"). Moreover, interpretability is becoming more and more required by regulatory 

frameworks. Explainable AI (XAI) has not been widely used in agricultural research [11]. Although more work is 

required, saliency maps, Grad-CAM, or attention visualizations may be able to help identify diseased leaf areas. Adoption 

and explainability are closely related: systems that are transparent are more likely to be used and trusted [27]. 

 

D. Difficulties with Deployment and Adoption 

Many rural areas have a gap in the adoption of technology. Farmers might not have access to smartphones, the internet, 

or digital tools. AI systems need to have user-friendly interfaces, support local languages, and be farmer-friendly [26]. 

Another challenge is maintenance: Drones and IoT sensors need maintenance, and intermittent power supplies or bad 
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connectivity can make it difficult to conduct ongoing surveillance. Adoption is also impacted by cultural and financial 

barriers, since smallholders might be reluctant to invest in or have faith in new technologies [30]. 

 

E. Environmental and Ethical Issues 

Although DL systems are not technically complex, improper use could unintentionally harm the environment. For 

instance, models that advocate for overuse of pesticides may result in an increase in chemical load. Although targeted 

spraying made possible by precision agriculture can help reduce this, over-application may still result from faulty models 

[25]. Concerns about privacy and data ownership also surface, especially when farm-level data is kept on cloud servers 

[11]. Careful consideration of the ethical and environmental effects is necessary for sustainable deployment. 

  

VI. FUTURE DIRECTION 

 

Despite these constraints, research is moving in a number of encouraging directions: 

A. Multimodal Education  

Disease prediction can be enhanced by combining several data sources, such as leaf photos, weather data, soil parameters, 

and past yield data, rather than depending only on images. CNNs and time-series models such as LSTMs are being 

combined to create multimodal deep networks, which are starting to emerge [11]. Multimodal fusion, such as combining 

RGB and hyperspectral imaging, has been shown to increase accuracy [9]. In the future, systems might combine farmer-

reported data, IoT sensors, and satellite data into cohesive frameworks [26]. 

 

B. Federated learning and edge/cloud AI  

One important avenue is to balance computation between cloud platforms and edge devices. Drones and smartphones 

can be used for lightweight inference, and the cloud can be used for heavy retraining [26]. Privacy-preserving learning 

across various farms can be made possible by federated learning, in which models are trained across dispersed devices 

without centralizing raw data [11]. Scalable infrastructures are offered by cloud-AI platforms like Google AI and AWS, 

and edge accelerators like TPUs and Jetson devices are getting cheaper for use in agriculture [28]. 

 

C. Generative and Foundation Models 

 AI is trending toward foundation models that have already been extensively trained on large datasets. Zero-shot 

identification of invisible diseases is made possible by vision-language models such as CLIP, which can associate plant 

photos with textual labels [44]. Generative models, like GANs or diffusion models, can produce artificially contaminated 

images for training or replicate the progressive spread of disease [12]. By responding to farmer inquiries or incorporating 

textual agronomic knowledge, large language models may also be beneficial [11]. 

 

D. Explainable and Trustworthy AI  

In order to improve usability and trust, explainability is becoming more and more important. Heatmaps and confidence 

intervals are examples of visual explanations that should be included in future DL systems [27]. Interpretability may be 

improved by hybrid systems that combine expert rules with AI outputs [11]. To make sure that the results are suitable for 

the context and farmers, cooperation with social scientists and extension agents is also required [30]. 

 

E. Low-Cost and Sustainable Innovations  

Research is looking into low-cost hardware like open-source software, 3D-printed drones, and solar-powered Internet of 

Things sensors to guarantee accessibility [8]. It is anticipated that few-shot and transfer learning approaches will lessen 

dependency on big datasets, which will cut expenses [34]. Sustainable use will be ensured by incorporating DL into eco-

friendly procedures such as Integrated Pest Management (IPM) [25]. 

 

F. Human-Centred Design  

Farmers must continue to play a key role in these developments. Simple mobile apps, local language interfaces, and 

participatory methods where farmers provide data to enhance models will be given priority in future systems [30]. 

Initiatives involving citizen science could encourage farmer participation and speed up the creation of datasets. In order 

to guarantee that AI tools tackle practical agricultural problems rather than scholarly standards, interdisciplinary 

cooperation between computer scientists, agronomists, and rural communities will be essential [11] 

 

VII. CONCLUSION 

 

The state of the art in deep learning for crop disease detection was examined in this review.  

We have seen that AI, especially CNNs and related architectures, can identify diseases from leaf images with very high 

accuracy on benchmark datasets. Emerging techniques such as Vision Transformers and generative models are pushing 
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the boundaries further. Applications are diverse: from smartphone apps to drone surveillance to integrated IoT platforms, 

all aiming to bring early disease warning to farmers. 

 

Nevertheless, significant challenges remain. Most research models still assume ideal conditions – abundant data, clear 

images, and generous compute. Bridging the gap to real-world farming requires tackling data scarcity, environmental 

variability, model efficiency, and usability issues. We have highlighted these gaps and called for solutions such as 

multimodal sensing, explainable AI, lightweight architectures, and human-centered design. 

 

The potential impact of DL in agriculture is profound. By enabling precise, timely interventions, these technologies can 

boost yields, reduce losses, and support global food security. Enhanced precision and scalability from DL integration can 

transform agricultural practices. To realize this vision, researchers, engineers, policymakers, and farmers must 

collaborate. Future AI-driven farming should be sustainable, transparent, and accessible – ensuring that advanced 

technology truly works hand in hand with agricultural communities. 
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