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Abstract: An Internet of Things (IoT)-driven quality control mechanism within the manufacturing sector commences 

with the visualization of item movements throughout production lines, aimed at identifying critical stations and pathways 

that have a substantial impact on product quality. This preliminary phase yields valuable insights into the production flow 

and highlights potential bottlenecks or opportunities for enhancement. Feature Engineering is employed to derive 

pertinent information through the selection and transformation of features, thereby augmenting the efficacy of machine 

learning models. The performance of the model is evaluated in comparison to other classification methodologies, such 

as Support Vector Machine, Naive Bayes, Random Forest, and Gradient Boosting, predicated on the chosen features. 

Through the examination of the interrelations among features, stations, lines, and the response variable, a deeper 

comprehension of the most influential factors affecting product quality and defect occurrence is attained. By leveraging 

visualizations of production line movements, feature importance rankings, and classifier performance metrics, this IoT-

driven framework furnishes actionable insights for manufacturers to enhance product quality and mitigate defects. 

 

Keywords: Internet of Things, Sensors, Machine Learning, Classification, Manufacturing. 

  

I. INTRODUCTION 

 

In the context of IoT-based quality control and classification analysis in manufacturing, several key performance 

indicators (KPIs) are essential for evaluating operational effectiveness. Overall Equipment Effectiveness (OEE) serves 

as a foundational metric, measuring the efficiency of manufacturing processes by assessing availability, performance, 

and quality of equipment. This metric is crucial for identifying losses that hinder equipment efficiency, thereby 

facilitating improvements in production output. Labor efficiency is another critical KPI, as it evaluates how effectively 

labor resources are utilized within the manufacturing process. This metric can be enhanced through IoT technologies that 

provide real-time data, enabling better workforce management and productivity. 

 

Cost reduction is also a vital KPI, reflecting the decrease in operational costs achieved through improved processes and 

efficiency. Finally, quality improvement metrics are essential, as they assess enhancements in product quality, which 

directly correlate with customer satisfaction and reduced defects. Together, these KPIs provide a comprehensive 

framework for assessing the impact of IoT on quality control and classification in manufacturing, driving continuous 

improvement and operational excellence. 

 

In the rapidly evolving domain of manufacturing, the assurance of product quality is of utmost importance. Quality 

control mechanisms are integral in detecting and rectifying defects prior to the distribution of products to consumers. 

Through the examination of production data and the formulation of predictive models, manufacturers are able to 

preemptively identify potential challenges and implement corrective measures. Within the context of Industry 4.0, an 

awareness of sporadic manufacturing is essential, as it has the potential to jeopardize the quality of the processes involved. 

By accumulating data that facilitates enhancements in product and process service quality, various challenges can be 

effectively addressed (Illes et al. 2017). Although intelligent sensors are capable of recording and transmitting data, no 

substantial added value is derived from this unless the captured data is employed to inform decisions aimed at process 

improvement (Godina et al. 2018). 
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Tercan (2022) posits that the predictive capabilities allow manufacturing enterprises to formulate data-driven assessments 

regarding product quality predicated upon process data, employing sensor data to facilitate the automation of quality 

inspections based on measurement data. The identification of infrequent quality occurrences has emerged as a matter of 

critical significance and presents an opportunity for manufacturing firms to elevate quality benchmarks. The process of 

defect identification is executed utilizing an l1-regularized logistic regression and elimination algorithm (Escobar & 

Morales 2018). A classification model was constructed, resulting in the development of a quality control system tailored 

for manufacturing. Images are acquired via mobile devices to identify defects on production items, followed by the 

extraction of features from these images through the application of a convolutional neural network (San et al. 2020). 

 

Visual representations of production line dynamics facilitate the identification of pivotal stations and pathways that 

significantly influence product quality. The preliminary phase of data analysis is characterized by data exploration, 

wherein the objective is to comprehend the attributes of the dataset. This process entails a meticulous examination of the 

data to uncover patterns, irregularities, and interrelationships among variables. Methodologies such as summary statistics, 

data visualization, and clustering techniques are employed for the exploration of the dataset. Data exploration is 

instrumental in deriving insights from the data, pinpointing potential challenges, and informing subsequent analytical 

endeavors. 

 

(Poler et al. 2021) introduced a comprehensive framework that assured sufficient levels of data accuracy, precision, and 

traceability, alongside data reliability, through the integration of sensing, communication, computational infrastructure, 

storage, analysis, and optimization methodologies. This framework enhanced both process quality and product quality 

within manufacturing, culminating in a zero-defect manufacturing paradigm. The methodologies employed for predictive 

quality are contingent upon the specific application in question. Drawing from the analyses presented by (Koksal et al. 

2011) and (Rostami et al. 2015), the functions of machine learning and deep learning in the realm of predictive quality 

are enumerated as follows: 

 

i.Quality description: The systematic identification, rigorous evaluation, and comprehensive interpretation of the 

interrelationships between process variables and the resultant product quality.  

ii.Quality prediction: The model-based estimation of a quantitative quality variable derived from process variables, 

employed for the purposes of decision-making support or automation.  

iii.Quality classification: A model-based estimation of qualitative quality variables. 

 

Learning algorithms, such as support vector machines, random forests, artificial neural networks, and principal 

component analysis, may be employed to develop the quality monitoring model while taking into account the cumulative 

impacts of various manufacturing stages as well as the imbalanced and dynamic characteristics inherent in manufacturing 

processes (Ismail et al. 2022). 

 

Table 1 Classifier Models 

 

Learning Model Technique Pros Cons 

LibSVM Maximizes the margin 

between the classes, 

making it robust to 

outliers. 

High accuracy and ability to 

handle high-dimensional data 

efficiently. 

Tuning the hyperparameters is 

challenging. 

Radial Basis 

Function Support 

Vector Machine 

Map the input data 

into a higher-

dimensional space, 

uses a radial basis 

function as the kernel. 

Effective in capturing 

complex relationships in the 

data and provide high 

accuracy in classification 

tasks. 

Sensitive to the choice of 

hyperparameters. 

 

Naive Bayes Probabilistic classifier 

based on Bayes' 

theorem.  

Computationally efficient 

and easy to implement. 

Limit the performance on 

complex datasets with 

correlated features. 

Random Forest Constructs a multitude 

decision tree during 

training and output the 

class that is the mode 

of the classes or the 

Robust against overfitting 

and can handle large datasets 

with high dimensionality.  

Computationally expensive 

and may not perform well on 

imbalanced datasets. 
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mean prediction of the 

individual trees. 

Gradient Boosting Builds multiple 

decision trees 

sequentially, with each 

tree correcting the 

errors of its 

predecessor. 

High predictive accuracy and 

ability to handle complex 

datasets. 

Tuning the hyperparameters is 

time-consuming, also requires 

careful handling of missing 

data and categorical features. 

 

Feature engineering constitutes the systematic endeavor of generating novel features or altering pre-existing features 

within a dataset, with the objective of augmenting the efficacy of machine learning models. This undertaking 

encompasses the selection of pertinent features, the transformation of existing features, and the development of new 

features through methodologies such as one-hot encoding, normalization, and feature extraction. The principal goal of 

feature engineering is to furnish the machine learning model with more informative and discriminative features, thus 

enhancing its capacity to learn from and generalize across the data. 

 

Classifier training entails the application of a machine learning algorithm to discern the relationship between the features 

and the target variable within the training dataset. This process necessitates the calibration of the model to the training 

data and the optimization of its parameters to minimize predictive error. Upon completion of the training phase, the model 

is subjected to evaluation using an independent testing dataset to gauge its performance. This evaluation process involves 

forecasting the target variable for the testing data and juxtaposing the predictions with the actual observed values. 

 

Classifier training and testing represent iterative processes, wherein the model undergoes refinement and evaluation on 

multiple occasions to attain the desired level of performance. A variety of classification algorithms are scrutinized to 

ascertain the most effective in forecasting manufacturing failures. Table 1 encapsulates the classifiers evaluated in the 

development of a model that not only aims to accurately predict defective products but also seeks to elucidate the 

underlying factors that contribute to these failures. By facilitating this understanding, manufacturers can implement 

proactive strategies to enhance their production processes, mitigate waste, and improve product quality. 

 

II.       SYSTEM DESIGN 

 

This Internet of Things (IoT) driven Quality Control mechanism encompasses several critical stages aimed at the 

proficient application of machine learning algorithms to enhance the accuracy of manufacturing defect predictions. The 

comprehensive architectural framework of this system is illustrated in Figure 1.  
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Figure 1 Architecture of IoT Based Quality Control in Manufacturing 

 

The dataset, which comprises numerical, categorical, and temporal features, undergoes preprocessing to address the issue 

of missing values and to guarantee alignment with the chosen algorithms. This process entails substituting missing values 

with appropriate placeholders and converting categorical variables into a format that is amenable to machine learning 

methodologies.  

Subsequently, feature engineering methodologies are employed to identify pertinent features and to generate additional 

ones that augment the predictive efficacy of the models. This phase includes the selection of the most significant features, 

the transformation of existing features, and potentially the formulation of interaction terms to encapsulate intricate 

relationships present within the dataset. 

 

The overall process flow of this system is as follows. 

• Reading Internet of Things (IoT) sensor data from the database. 

• A function is established to partition the dataset into training and testing subsets, construct Logistic 

Regression models, evaluate these models, and compute accuracy metrics such as the Confusion Matrix.  

• The features and target variables are user-configurable for the purpose of predicting equipment failures, 

along with the training and testing datasets.  

• The computation of essential statistics is conducted to facilitate the assessment of the predictive capabilities 

of the models.  

• The experiment is replicated by modifying the configuration parameters through the re-execution of the 

models. 

 

Module Description 

For each task, it is imperative to identify the stations traversed and subsequently document the minimum duration spent 

at each. For every entry, the next station in the sequence is determined. For each identifier, it is essential to ascertain the 

initial node that is accessed. Before each commencement point, an edge is inserted from a common origin. For each 

identifier, the row is identified where there is an absence of a subsequent station, indicating the last station visited. The 

station is populated with the corresponding response value. 

 

Following the preparation of the features, the dataset is divided into training and testing subsets to facilitate the training 

of classification algorithms. A variety of algorithms, including LibSVM, RBF SVM, Naive Bayes, Random Forest, and 

Gradient Boosting, are trained using the training subset and assessed on the testing subset employing metrics such as 

accuracy, precision, recall, and the Matthews correlation coefficient (MCC). In the concluding phase, the trained models 

are deployed within a production environment, enabling their application for the real-time prediction and classification 

of defective products. Continuous monitoring and enhancement of the models are critical to maintaining their efficacy 

and adaptability to evolving manufacturing environments. 

 

Matthews Correlation Coefficient 

• The Matthews correlation coefficient (MCC) serves as an indicator of the efficacy of binary classification 

models, particularly in the context of datasets characterized by class imbalance.  

• This metric incorporates both true and false positives as well as true and false negatives, with values that span 

from -1 to +1.  

• A MCC value of +1 signifies an impeccable prediction, a value of 0 denotes a random classification, while a 

value of -1 reflects a complete discordance between predicted outcomes and actual observations. 

 

𝑀𝐶𝐶 =
(𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 

• MCC is useful because it balances the dataset even if the classes are of very different sizes.  

 

III.        RESULTS & DISCUSSIONS 

 

Different stations and lines exhibit a higher frequency of engagement with Faulty Items in comparison to their non-faulty 

counterparts. Therefore, this observation reinforces the hypothesis that certain stations play a pivotal role in the 

determination of product faults; these locations are characterized by a greater volume of recordings and more rigorous 

testing protocols aimed at evaluating manufacturing quality. The efficacy of the classification models was assessed 

utilizing the Matthews Correlation Coefficient (MCC) score to gauge their ability to predict manufacturing defects. The 
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LinearSVC model, employing a linear kernel, attained an MCC score of zero, which signifies a complete lack of 

predictive capability.  

 
Figure 2 No. of Features in line 

 

 
Figure 3 No. of Features at station 

 

• Visualization of categorical features and frequency of features with respect to stations and lines. (Figure 4 & 5) 

• Visualizing the first 1000 Defective IDs and first 1000 Non-Defective IDs and their movements across the production 

lines to develop useful insights about the data (Figure 6 & 7). 

• Finding out the probabilities of seeing a defect after a defect. 

• Figuring out the top most important features on which the classification algorithms depend using F-Score (Figure 

8). 

• Developing the Random Forest Classifier on the chosen subset of important features using Databricks Platform/Py-

Spark. 

• Developing different classification algorithms (LibSVM, RBF SVM, Naive Bayes, Random Forest, Gradient 

Boosting) on the chosen subset of important features. 
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Figure 4 No. of categorical features at a line 

 

 
Figure 5 No. of categorical features at a station 

 

 
Figure 6 Visualizing the Defective & Non Defective IDs 
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Figure 7 Visualizing the movement of Defective & Non Defective IDs 

 

 
Figure 8 F-Score of Classification algorithms 

 

 
Figure 9 MCC Scores of Classifiers 

 

The SVC with an RBF kernel and Naive Bayes models performed slightly better with MCC scores of 0.0323 and 0.0337, 

respectively. These models showed a limited ability to distinguish between defective and non-defective products. In 

contrast, the Random Forest and Gradient Boosting models demonstrated significantly higher MCC scores of 0.3977 and 

0.4143 respectively. These models exhibited strong predictive capabilities and were able to effectively classify defective 

products. Overall, the Random Forest and Gradient Boosting models outperformed the other classifiers, highlighting their 

suitability for predicting manufacturing defects based on the selected subset of important features. MCC is a reliable 

measure for binary classification that considers all four outcomes of the classifier (Figure 9), making it particularly useful 

for imbalanced datasets.     

 

IV.       CONCLUSION 

 

Through extensive data exploration, feature engineering, and the training of various classification algorithms, valuable 

insights from the dataset and the factors influencing product defects have been identified and visualized. The results 

indicate that the Random Forest and Gradient Boosting models outperform other classifiers, achieving higher MCC 

https://ijarcce.com/
https://ijarcce.com/


ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE 

International Journal of Advanced Research in Computer and Communication Engineering 

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 8, August 2025 

DOI:  10.17148/IJARCCE.2025.14833 

© IJARCCE               This work is licensed under a Creative Commons Attribution 4.0 International License                 314 

scores. These models exhibit strong predictive capabilities and can effectively classify defective products based on a 

subset of important features. Additionally, the visualization of data movements across production lines provided valuable 

insights into the manufacturing process. Stations and lines with higher frequencies of defective products suggest areas 

that may require further investigation or improvement. IoT enabled demonstrates the potential of machine learning in 

improving manufacturing processes by identifying and mitigating defects. Future work could focus on further refining 

the models, incorporating additional features, and integrating the predictive model into the production environment for 

real-time defect detection. 
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