Impact Factor 8.471

Refereed journal

Vol. 14, Issue 10, October 2025

DOI: 10.17148/IJARCCE.2025.141003

EXPLORING COVID-19 PATHOGENESIS WITH KNOWLEDGE GRAPHS AND DEEP LEARNING: REVIEW AND PERSPECTIVES

Deepthi Rani S S1, Dr Renu Aggarwal2

Research Scholar, Department of Computer Science and Engineering, Sunrise University, Alwar, Rajasthan¹ Research Supervisor, Department of Computer Science and Engineering, Sunrise University, Alwar, Rajasthan²

Abstract: Knowledge graphs (KGs), which represent entities and their relationships in structured semantic networks, have been increasingly applied across a range of diseases, including thyroid disorders, cardiovascular conditions, and neurological disorders. Despite these advancements, current diagnostic methods often face challenges such as incomplete data integration, limited scalability, and reduced diagnostic accuracy. These limitations highlight the need for innovative approaches to address the complex pathogenesis of COVID-19. This review explores the integration of knowledge graphs with deep learning techniques for advancing COVID-19 research and diagnostics. Relevant COVID-19 datasets spanning viral characteristics, transmission patterns, clinical manifestations, and public health outcomes can be transformed into domain-specific knowledge maps that capture essential biomedical entities and their interconnections. By embedding these graphs into low-dimensional continuous vectors, semantic representations can be effectively utilized in deep learning frameworks. Such hybrid models hold promise for improving case prediction, identifying key disease indicators, and enhancing diagnostic accuracy. The fusion of KGs and deep learning not only offers novel insights into the underlying mechanisms of SARS-CoV-2 infection but also provides scalable solutions for real-world applications such as early detection, prognosis, and therapeutic target identification. Ultimately, this approach has the potential to strengthen evidence-based decision-making in pandemic management and contribute to global efforts in mitigating the impact of COVID-19.

Keywords: Knowledge Graph, Disease Prediction, Electronic Medical Records, COVID-19, Deep Learning

I. INTRODUCTION

The emergence of Coronavirus Disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed unprecedented challenges to global health, economy, and society. Since its identification in late 2019, the disease has rapidly spread worldwide, resulting in millions of infections and deaths. Extensive research efforts have been directed toward understanding its transmission dynamics, clinical spectrum, and molecular mechanisms [1]. Despite the availability of vaccines and therapeutic interventions, the constantly evolving viral variants and complex host–virus interactions continue to demand deeper investigation [2].

Pathogenesis refers to the biological mechanisms by which SARS-CoV-2 establishes infection and induces disease in humans [1]. A comprehensive understanding of these processes is crucial for several reasons: it enables the identification of molecular targets for therapeutic development, facilitates the prediction of disease severity, and supports the design of effective preventive strategies [3]. Moreover, unravelling the intricate interactions between the virus, host immune system, and environmental factors is essential for combating emerging variants and long-term complications such as post-acute sequelae of COVID-19. In this context, advanced computational tools, including knowledge graphs and deep learning models, have become invaluable for integrating vast biomedical data and generating novel insights into COVID-19 pathogenesis.[5]

II. COVID-19 PATHOGENESIS: AN OVERVIEW

2.1 Viral Entry and Replication

SARS-CoV-2 initiates infection by binding its spike (S) glycoprotein to the host angiotensin-converting enzyme 2 (ACE2) receptor, which is abundantly expressed in respiratory epithelial cells, endothelial cells, and several extrapulmonary tissues. The priming of the S protein by host proteases such as TMPRSS2 and cathepsins facilitates viral

Impact Factor 8.471 😤 Peer-reviewed & Refereed journal 😤 Vol. 14, Issue 10, October 2025

DOI: 10.17148/IJARCCE.2025.141003

fusion and entry into the host cell. Once inside, the virus releases its RNA genome into the cytoplasm, where translation of viral polyproteins occurs. These polyproteins are cleaved into nonstructural proteins that assemble the replication—transcription complex, enabling the synthesis of subgenomic RNAs and structural proteins. The newly formed virions are assembled in the endoplasmic reticulum—Golgi intermediate compartment and subsequently released through exocytosis, allowing further spread within the host.[1]

2.2 Host Immune Response

The host immune response to SARS-CoV-2 is multifaceted and plays a critical role in disease severity. The innate immune system, including interferon signalling and activation of macrophages and dendritic cells, constitutes the first line of defense. However, SARS-CoV-2 employs several evasion strategies, such as suppression of inter feron production and modulation of antigen presentation [7]. In some patients, deregulated immune activation leads to hyper inflammation, commonly referred to as a "cytokine storm," characterized by elevated levels of IL-6, TNF- α , and other pro-inflammatory mediators. The adaptive immune response involves both humoral and cellular components: neutralizing antibodies target the viral spike protein, while CD8+ cytotoxic T cells eliminate infected cells. Failure to mount an effective and balanced immune response contributes to severe disease and poor clinical outcomes [8].

2.3 Key Molecular Mechanisms

Several molecular pathways underlie the progression and severity of COVID-19. Deregulation of the renin-angiotensin-aldosterone system (RAAS) due to ACE2 down regulation contributes to vascular dysfunction, hypertension, and multi-organ injury. Endothelial cell activation and complement system hyper activation are associated with coagulopathies frequently observed in severe cases. Additionally, mitochondrial dysfunction and oxidative stress exacerbate tissue damage. Viral proteins, such as ORF3b, ORF6, and NSP1, interfere with host antiviral signalling, further weakening immune defenses. Long-term sequelae, including post-acute COVID-19 syndrome, are thought to arise from persistent immune deregulation, viral reservoirs, and chronic inflammation. Understanding these molecular mechanisms is essential for developing targeted therapeutic strategies.[5]

III. KNOWLEDGE GRAPHS IN BIOMEDICAL RESEARCH

Knowledge graphs (KGs) are semantic networks that represent information as interconnected entities (nodes) and their relationships (edges). In the biomedical domain, entities may include genes, proteins, diseases, drugs, and clinical features, while relationships capture interactions such as protein–protein binding, gene–disease associations, or drug–target interactions. Unlike traditional databases, KGs provide a flexible, graph-based structure that supports reasoning, inference, and integration of heterogeneous data. By embedding entities and relations into vector spaces using graph representation learning, KGs enable computational models to perform similarity searches, predictions, and link discovery in a biologically meaningful way. Biomedical KGs have gained prominence as powerful tools for understanding complex disease mechanisms [3]. They enable the integration of diverse datasets ranging from genomic and proteomic information to clinical records and epidemiological data into a unified framework. In disease modelling, KGs facilitate the identification of novel biomarkers, prediction of disease—gene associations, and discovery of potential therapeutic targets. For example, in cancer research, KGs have been used to uncover signalling pathways implicated in tumour progression, while in cardiovascular and neurological disorders, they support the mapping of molecular interactions to clinical phenotypes. In the context of infectious diseases like COVID-19, KGs help connect viral proteins, host factors, immune responses, and pharmacological interventions, thereby providing a holistic view of disease pathogenesis.'

3.1 Advantages and Limitations

The main advantage of KGs lies in their ability to integrate heterogeneous and large-scale biomedical data, enabling holistic analysis of disease mechanisms. Their graph-based structure allows for intuitive visualization, semantic reasoning, and support for predictive modeling when combined with machine learning approaches. Moreover, KGs promote knowledge discovery by highlighting hidden connections that may not be evident in siloed datasets. However, limitations remain. Data incompleteness and inconsistency can lead to biased or inaccurate inferences [6]. The construction of high-quality KGs requires substantial domain expertise, curated ontologies, and computational resources. Furthermore, the interpretability of KG-derived insights and the scalability of graph algorithms continue to pose challenges, especially when applied to real-time clinical decision-making.[7]

IV. DEEP LEARNING FOR COVID-19 RESEARCH

Deep learning, a subset of artificial intelligence, leverages multi-layered neural networks to model complex, non-linear patterns in large datasets. Prominent architectures include convolutional neural networks (CNNs) for image analysis, recurrent neural networks (RNNs) and transformers for sequential data, and graph neural networks (GNNs) for relational

DOI: 10.17148/IJARCCE.2025.141003

and structured data. In COVID-19 research, these models are used to integrate diverse biomedical datasets such as genomic sequences, clinical records, and medical images. Their capacity for automated feature extraction minimizes the need for manual pre-processing and allows the discovery of hidden patterns crucial for understanding SARS-CoV-2 biology and disease progression.[3]

In genomics, deep learning has been employed to analyze viral sequences, predict mutations, and track the evolutionary dynamics of SARS-CoV-2. Models have also been used to study host genetic susceptibility to infection and disease severity. In medical imaging, CNN-based approaches have demonstrated high accuracy in detecting COVID-19 pneumonia from chest X-rays and CT scans, often aiding radiologists in rapid screening and triage. In drug discovery, deep learning has accelerated virtual screening, drug repurposing, and protein–ligand interaction prediction. By integrating molecular docking simulations with deep learning models, researchers have identified potential therapeutic compounds targeting viral proteins such as the main protease (Mpro) and spike protein. Collectively, these applications highlight the versatility of deep learning in multiple facets of COVID-19 research.[2]

4.1 Challenges and Opportunities

Despite promising results, several challenges limit the broader adoption of deep learning in COVID-19 studies. A key barrier is data availability and quality imbalanced datasets, noisy clinical records, and limited access to patient-level data restrict model generalizability. Interpretability is another concern, as many deep learning models function as "black boxes," making it difficult for clinicians to trust automated predictions. Additionally, computational demands and the need for large annotated datasets can hinder scalability.[6]

Nonetheless, opportunities abound. Transfer learning and federated learning approaches can mitigate data scarcity and privacy concerns. Hybrid models combining deep learning with knowledge graphs can provide both predictive power and explainability [7]. Moreover, the integration of multi-omics data, real-time epidemiological surveillance, and patient-specific clinical features presents avenues for precision medicine approaches in COVID-19 management. With continued advancements, deep learning has the potential to revolutionize pandemic preparedness and biomedical research beyond COVID-19.

V. INTEGRATION OF KNOWLEDGE GRAPHS AND DEEP LEARNING

The integration of knowledge graphs (KGs) with deep learning combines the structured, semantic representation of biomedical data with the predictive capabilities of neural networks. KGs provide a foundation of curated relationships among entities such as genes, proteins, diseases, and drugs, while deep learning algorithms enhance pattern recognition and prediction. Graph Neural Networks (GNNs), knowledge graph embeddings, and attention-based models are commonly employed to exploit relational structures for improved inference. This synergy enables both explainability by tracing predictions back to underlying graph relationships and scalability, as deep learning can efficiently process large, heterogeneous datasets.[8]

Several studies have demonstrated the utility of combining KGs and deep learning in COVID-19 research. For diagnosis, hybrid frameworks have been used to integrate clinical symptoms, imaging data, and molecular profiles into unified KG structures, enhancing model accuracy for case identification. For treatment, drug repurposing efforts have leveraged KGs enriched with viral—host interaction networks and pharmacological databases, with deep learning models prioritizing candidate drugs such as remdesivir and baricitinib. In prognosis, KG—deep learning systems have been applied to Electronic Medical Records (EMRs) to identify comorbidities and biomarkers associated with severe outcomes, providing early warnings for high-risk patients. These case studies illustrate how hybrid methods outperform standalone approaches by offering holistic and context-aware insights.[9]

5.1 Data Integration and Semantic Reasoning

A major advantage of KG-deep learning integration lies in the ability to fuse heterogeneous biomedical data, ranging from molecular pathways to patient-level clinical records. Semantic reasoning, facilitated by ontologies and graph-based inference, ensures that models not only detect correlations but also preserve biological meaning. Embedding techniques allow the transformation of symbolic graph entities into continuous vector spaces that can be processed by deep learning models, enabling tasks such as link prediction, relation extraction, and outcome forecasting. However, challenges remain in ensuring data standardization, resolving semantic inconsistencies, and maintaining interpretability of predictions. Advancing methods for semantic alignment and ontology-driven learning will be crucial to fully harness this integration in future COVID-19 research.[7]

Impact Factor 8.471

Refered journal

Vol. 14, Issue 10, October 2025

DOI: 10.17148/IJARCCE.2025.141003

Data Sources – COVID-19-related datasets including genomic sequences, viral-host interactions, clinical features, imaging data, drug databases, and epidemiological records

Knowledge Graph Construction – Entities (e.g., genes, proteins, diseases, drugs, symptoms) and relationships (e.g., virus–host binding, drug–target interactions, symptom–disease associations) are represented in a graph structure.

Embedding Layer – Graph embedding techniques transform nodes and edges into low-dimensional continuous vectors while preserving semantic relationships [3]

Deep Learning Models – Neural network architectures (CNNs, RNNs, Transformers, GNNs) process the embedded graph data for predictive tasks.

Applications -

- Diagnosis: Improved case identification using integrated clinical and molecular data.
- Treatment: Drug repurposing and therapeutic target discovery.
- Prognosis: Prediction of disease severity, comorbidities, and long-term outcomes

Outputs & Insights – Explainable predictions, semantic reasoning, and evidence-based decision support for COVID-19 management.

VI. CURRENT GAPS AND CHALLENGES

6.1 Data Quality and Heterogeneity

The effectiveness of both knowledge graph (KG) and deep learning approaches in COVID-19 research is highly dependent on the quality of available data. However, biomedical datasets are often incomplete, noisy, and heterogeneous. Genomic data may vary in sequencing accuracy, clinical records frequently contain missing or inconsistent entries, and imaging datasets lack standardized annotations. Moreover, the integration of multi-source data—from molecular biology, clinical observations, and public health surveillance—poses challenges due to differences in format, scale, and reliability. Poor data quality not only reduces model performance but also risks propagating errors across interconnected systems such as KGs and deep learning frameworks.[6]

6.2 Scalability and Interpretability

While KGs and deep learning models have demonstrated significant potential, their scalability to large, real-world datasets remains challenging. The continuous growth of COVID-19-related information requires systems capable of dynamically updating without compromising efficiency. Deep learning models, especially large neural networks, demand substantial computational resources, which may not be universally accessible. Furthermore, the "black-box" nature of many deep learning approaches limits interpretability, making it difficult for clinicians and biomedical researchers to trust or validate automated predictions. Although explainable AI and graph-based reasoning are emerging solutions, achieving a balance between predictive power and interpretability remains a major challenge.[5]

6.3 Ethical and Privacy Concerns

The integration of sensitive biomedical and clinical data raises ethical and privacy issues that cannot be overlooked. Patient-level data, including electronic medical records and imaging files, must be handled in compliance with strict privacy regulations such as GDPR and HIPAA.[8] Sharing such data across institutions is often restricted, limiting opportunities for collaborative model development. Moreover, biases in datasets stemming from underrepresentation of certain populations, geographic regions, or clinical conditions can lead to inequitable outcomes. Ethical considerations also extend to transparency in algorithmic decision-making, ensuring that AI-driven predictions do not reinforce existing healthcare disparities. Addressing these concerns requires robust governance frameworks, privacy-preserving machine learning techniques, and international collaboration.[6]

VII. FUTURE DIRECTIONS

The convergence of knowledge graphs (KGs) and deep learning paves the way for the development of hybrid artificial intelligence (AI) models that combine symbolic reasoning with powerful pattern recognition [5]. Such models can exploit structured biomedical knowledge while retaining the adaptability of neural networks, thereby improving both accuracy and interpretability. For instance, graph neural networks applied to COVID-19 knowledge graphs can integrate genomic, clinical, and pharmacological data to provide explainable predictions for diagnosis and treatment. The hybrid approach also holds promise for rapid adaptation to new variants and emerging infectious diseases, where continuous learning from dynamic datasets is essential.[3]

The integration of KGs and deep learning also offers opportunities to advance personalized medicine in infectious disease management. By linking multi-omics profiles, patient-specific clinical records, and treatment histories, these models can generate individualized risk assessments and therapeutic recommendations. For COVID-19, such approaches could help

Impact Factor 8.471 😤 Peer-reviewed & Refereed journal 😤 Vol. 14, Issue 10, October 2025

DOI: 10.17148/IJARCCE.2025.141003

stratify patients based on likelihood of severe disease, predict long-term complications, and guide targeted therapies. Incorporating patient-specific genomic and immunological data further enhances precision, ensuring that treatment strategies account for variability in host response to SARS-CoV-2 and its variants.[2]

While the immediate focus has been on COVID-19, the integration of KGs and deep learning has broad applicability across other diseases. Chronic conditions such as cardiovascular disorders, cancer, and neurodegenerative diseases can benefit from similar frameworks that integrate heterogeneous datasets into predictive and explainable models. Moreover, preparedness for future pandemics could be strengthened by extending these approaches to pathogen surveillance, early outbreak detection, and therapeutic discovery. The scalability and adaptability of KG—deep learning frameworks position them as transformative tools in biomedical research, with the potential to reshape disease modeling and healthcare delivery well beyond the scope of COVID-19.[7]

VIII. CONCLUSION

The COVID-19 pandemic has underscored the urgent need for advanced computational tools to unravel complex disease mechanisms and support timely decision-making. Knowledge graphs (KGs) and deep learning have emerged as complementary approaches that together offer a powerful framework for integrating heterogeneous biomedical data, enhancing disease modeling, and improving diagnostic and therapeutic strategies. While KGs provide structured, explainable representations of entities and their relationships, deep learning contributes scalability and predictive accuracy through automated feature extraction and pattern recognition. [6]

The integration of these two paradigms has already demonstrated promise in COVID-19 research, particularly in areas such as case detection, drug repurposing, and prognosis modeling. However, several challenges remain, including data quality issues, scalability concerns, interpretability gaps, and ethical considerations related to privacy and bias. Addressing these limitations will require collaborative efforts across biomedical, computational, and clinical communities.[8]

Looking forward, the development of hybrid AI models, the incorporation of personalized medicine approaches, and the extension of these methods beyond COVID-19 hold significant potential to transform healthcare. By bridging structured biomedical knowledge with advanced learning techniques, the synergy between KGs and deep learning can accelerate discovery, improve patient outcomes, and enhance global preparedness for future health crises.[10]

REFERENCES

- [1]. World Health Organization. (2020). Coronavirus disease (COVID-19) pandemic. World Health Organization. Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., ... & Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579, 270–273.
- [2]. Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., ... & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. *Cell*, 181(2), 271–280.e8.
- [3]. Blanco-Melo, D., Nilsson-Payant, B. E., Liu, W.-C., Uhl, S., Hoagland, D., Møller, R., ... & tenOever, B. R. (2020). Imbalanced host response to SARS-CoV-2 drives development of COVID-19. *Cell*, 181(5), 1036–1045.e9.
- [4]. Tay, M. Z., Poh, C. M., Rénia, L., MacAry, P. A., & Ng, L. F. P. (2020). The trinity of COVID-19: immunity, inflammation and intervention. *Nature Reviews Immunology*, 20, 363–374.
- [5]. Himmelstein, D. S., Lizee, A., Hessler, C., Brueggeman, L., Chen, S. L., Hadley, D., ... & Baranzini, S. E. (2017). Systematic integration of biomedical knowledge prioritizes drugs for repurposing. *eLife*, 6, e26726.
- [6]. Bordes, A., Usunier, N., Garcia-Durán, A., Weston, J., & Yakhnenko, O. (2013). Translating embeddings for modeling multi-relational data. In *Advances in Neural Information Processing Systems* (pp. 2787–2795).
- [7]. Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph convolutional networks. In *International Conference on Learning Representations (ICLR)*.
- [8]. Zitnik, M., Agrawal, M., & Leskovec, J. (2018). Modeling polypharmacy side effects with graph convolutional networks. *Bioinformatics*, 34(13), i457–i466.
- [9]. Wang, L., & Wong, A. (2020). COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. *arXiv preprint*. (arXiv:2003.09871)
- [10]. Rieke, N., Hancox, J., Li, W., Milletari, F., Roth, H. R., Albarqouni, S., ... & Kaissis, G. (2020). The future of digital health with federated learning. *NPJ Digital Medicine*.