IJARCCE ISSN (O) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :< Peer-reviewed & Refereed journal :< Vol. 14, Issue 10, October 2025
DOI: 10.17148/IJARCCE.2025.141030

Al Code Analyzer Agent

Mr.Vivek Dinesh Patil', Prof. Kaustubh Bhave?, Prof. Manoj V Nikum™

Student of MCA, SJRIT Dondaicha, KBC NMU Jalgaon, Maharashtra'
Assistant Professor, MCA Department, SJIRIT Dondaicha, Jalgaon,Maharashtra 2
HOD, MCA Department, SJRIT Dondaicha, Jalgaon, Maharashtra*3

Abstract: The AI Code Analyzer Agent is a full-stack web application developed using the MERN stack (MongoDB,
Express.js, React.js, Node.js) integrated with Google Gemini, an advanced generative Al model. This system acts as
an intelligent assistant that analyzes user-submitted code, identifies potential syntax and logical errors, and provides
improvement suggestions. The Al feedback is formatted and rendered using Markdown for readability, while syntax
highlighting is achieved using PrismJS for enhanced visual clarity.

The system architecture includes a responsive frontend, secure backend communication, and a scalable database design.
The application allows users to interact with Al in real time, receiving educational and practical insights to improve their
coding skills.

The project showcases how artificial intelligence can be integrated into traditional web-based development workflows to
create intelligent, user-friendly, and scalable solutions.

Keywords: Al Code Review, MERN Stack, Google Gemini, Syntax Highlighting, Code Optimization.
I INTRODUCTION

In today’s fast-paced software development world, ensuring the quality, maintainability, and efficiency of code has
become more important than ever. As applications grow more complex, even experienced developers often overlook
errors, redundant code, or inefficient logic. Traditional static analysis tools like ESLint or SonarQube can detect
syntactical and formatting errors but lack deep contextual understanding.

To address this limitation, artificial intelligence (AI) has emerged as a powerful solution capable of understanding,
reasoning, and improving source code beyond conventional methods. The AI Code Analyzer Agent is an intelligent
web-based system built using the MERN (MongoDB, Express.js, React.js, Node.js) stack, integrated with Google
Gemini Al, a state-of-the-art generative model.

The system allows users to input code in an online editor, which is then analyzed by Google Gemini. The Al identifies
potential errors, logic flaws, and inefficiencies, and provides meaningful suggestions for optimization. By combining
modern full-stack web technologies with cutting-edge Al, the application offers a unique and user-friendly way to
enhance code quality and learning.

II. BACKGROUND AND MOTIVATION

In software development, writing clean, efficient, and bug-free code is essential to ensure maintainability and reliability.
Over the years, numerous code analysis tools have been developed to assist programmers in identifying issues early in
the development process. However, traditional tools often rely on static rule-based mechanisms that detect syntactic or
structural errors without understanding the deeper semantic meaning of the code.

With the advent of Artificial Intelligence (AI) and Natural Language Processing (NLP), the landscape of software
engineering has changed significantly. Al-driven tools are now capable of understanding code contextually, suggesting
improvements, and even generating code automatically.

This chapter explores the background concepts, technologies used, and related systems that have inspired and
influenced the development of the AI Code Analyzer Agent.

The MERN stack’s scalability, the system aspires to redefine the way code review and optimization are approached in
modern software development.

Background

Code review is a systematic examination of source code to identify errors, bugs, and areas for improvement. Traditionally,
this process is carried out manually by developers or peers, which can be time-consuming and error-prone.
Automated code analysis tools emerged to assist developers by scanning the code and detecting common issues, thereby
improving productivity and software quality.

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 200

https://ijarcce.com/
https://ijarcce.com/

IJARCCE ISSN (O) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :< Peer-reviewed & Refereed journal :< Vol. 14, Issue 10, October 2025
DOI: 10.17148/IJARCCE.2025.141030

Code analysis is generally categorized into two types:
e Static Analysis: Examines code without executing it. Examples include ESLint, SonarQube, and PMD.
e Dynamic Analysis: Involves executing the code and monitoring behavior during runtime.

While these approaches improve quality assurance, they lack adaptability and fail to understand developer intent or
program logic beyond predefined patterns.

Related Work:

Traditional Tools

1. ESLint:
A popular open-source tool for identifying and fixing problems in JavaScript code. It enforces coding
standards but lacks semantic understanding.

2. SonarQube:
A robust platform for continuous inspection of code quality. It detects bugs, code smells, and vulnerabilities
but cannot explain why an issue exists.

3. PyLint/ PMD / Checkstyle:
Static analyzers for Python and Java that help enforce coding standards. However, they rely on rigid rule sets
and don’t provide human-readable insights.

Al-Based Tools
1. GitHub Copilot (OpenAl Codex):
Offers real-time code suggestions based on context. While useful, it focuses more on code generation than
analysis.
2. ChatGPT / Gemini / Bard:
Large Language Models capable of understanding and generating natural language and code. These tools can
explain, debug, and optimize code, though they are not designed as full-stack integrated applications.
3. Kite:
An Al coding assistant that helps with autocompletion but offers limited analytical capabilities

I11. CONCLUSION REMARKS AND FUTURE WORK

The rapid advancement of artificial intelligence (AI) has revolutionized nearly every domain, including software
development and code analysis. The AI Code Analyzer Agent was developed to integrate the power of Al-based
reasoning into a web-based full-stack platform.

This chapter concludes the report by summarizing the major findings, outcomes, and lessons learned during the
development and implementation of the system. It also outlines the potential areas for improvement and future expansion.
Advantages of the System

The AI Code Analyzer Agent offers several benefits over existing static or Al-assisted tools:
Advantage Description
Al-Driven Feedback Provides context-based, intelligent suggestions instead of rule-based error lists.
Real-Time Processing Delivers instant Al feedback without requiring local setup.
User-Friendly Interface Offers a clean, minimalistic design built for ease of use.
Cross-Platform Access Can be used from any modern browser, on desktop or mobile.
Educational Value Acts as an Al tutor, explaining why errors occur and how to fix them.
Scalable Infrastructure Built using modular MERN stack, enabling future feature extensions.

CONCLUSION

The AI Code Analyzer Agent successfully achieves its objective of providing an intelligent, full-stack AI-driven code
review system. By leveraging the MERN stack and Google Gemini’s generative capabilities, it delivers a seamless,
context-aware analysis experience within a browser interface.

The system demonstrates how Al and modern web technologies can merge to build tools that not only detect coding
errors but also teach better coding practices. It bridges the gap between automation and human reasoning, serving as both
a development aid and a learning platform.

The success of this project confirms that Al-driven tools will continue to play a transformative role in the future of
software engineering, enabling faster development, cleaner code, and smarter debugging.

© LJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 201

https://ijarcce.com/
https://ijarcce.com/

IJARCCE ISSN (O) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :< Peer-reviewed & Refereed journal :< Vol. 14, Issue 10, October 2025
DOI: 10.17148/IJARCCE.2025.141030

Future Enhancements
The AI Code Analyzer Agent is designed with scalability in mind. The following enhancements are planned for future
versions:

Multi-Language Support:

Extend support to programming languages such as Python, Java, C++, and TypeScript.

User Authentication:
Add login and registration functionality using JWT (JSON Web Tokens) for personalized experiences.

Code Auto-Correction:
Implement an auto-fix feature that allows users to directly apply Al-recommended changes.

Integrated IDE Features:
Include live debugging tools, file uploads, and execution options.

Analytics Dashboard:
Display insights such as error frequency, coding style trends, and improvement tracking.

Offline Mode:
Explore possibilities of caching Gemini responses or local Al inference for offline use.

Mobile Application:
Develop an Android/iOS app using React Native for on-the-go accessibility.

Collaborative Review System:
Allow multiple users to share and review code collaboratively in real time.

Iv. VALIDATION AND RESULTS

Validation and testing are essential stages in the software development lifecycle that ensure the system meets its
functional and non-functional requirements. The AI Code Analyzer Agent was validated through a series of functional,
integration, and performance tests to verify its accuracy, stability, usability, and efficiency.

This chapter presents the testing methodologies, test cases, results obtained, and performance evaluation metrics for the
developed system. The goal of this validation process was to ensure that the system performs reliably across various
programming inputs and real-world usage scenarios.

Objectives of Validation
The main objectives of system validation are:
1. To verify that the system functions according to the specified requirements.

2. To ensure the Al-generated feedback is contextually accurate and meaningful.
3. To test the integration between frontend, backend, database, and AI API.

4. To evaluate system performance in terms of response time and scalability.

5. To ensure the user interface is intuitive and user-friendly.

Validation Methodology
The following validation approaches were used:
1. Functional Testing
Ensures that each feature performs as intended.
e Code input and submission functionality
e Communication with backend server
e Al response retrieval and display
e Syntax highlighting and Markdown rendering
2. Integration Testing
Verifies the seamless communication between system components — frontend, backend, database, and AT API.
3. Performance Testing
Analyzes the response time and stability under varying loads.

© LJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 202

https://ijarcce.com/
https://ijarcce.com/

IJARCCE ISSN (O) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :< Peer-reviewed & Refereed journal :< Vol. 14, Issue 10, October 2025
DOI: 10.17148/IJARCCE.2025.141030

4. Usability Testing

Measures how easily users can interact with the platform, focusing on readability, design, and accessibility.
5. Security Testing

Ensures safe API communication and data handling using CORS and secure POST requests.

V. PROPOSED SOLUTION

The AI Code Analyzer Agent has been developed to overcome the limitations of traditional rule-based code analyzers
by integrating artificial intelligence (AI) with a modern web-based full-stack architecture (MERN Stack).

The system provides a smart, interactive, and real-time platform for analyzing and improving source code using
Google Gemini, a powerful generative Al model.

The proposed solution delivers intelligent code analysis, syntax highlighting, and improvement suggestions directly
within a web interface, making it highly accessible to both students and professional developers. This chapter details the
system’s design, architecture, data flow, and module-level implementation.

System Overview
The AI Code Analyzer Agent is a full-stack web application where users can:
1. Enter or paste their code into an online editor.
2. Submit it to the backend for processing.
3. Receive Al-generated suggestions, including syntax corrections, performance optimizations, and readability
improvements.
The architecture integrates:
e A frontend built with React and Vite,
e A backend using Node.js and Express,
e A database using MongoDB, and
e An Al engine powered by Google Gemini.
User Interface Module (Frontend)
e Developed using React.js with Vite for fast build performance.
e Provides a code editor with syntax highlighting using PrismJS.
e Uses Axios to send HTTP POST requests to the backend.
e Displays Al-generated suggestions using React-Markdown for readable formatting.
e Features responsive design for desktop and mobile users.
Key Features:
e Code Editor (multi-line input area)
e “Analyze” button to trigger Al review
e Al Response section with Markdown formatting
e Real-time syntax highlighting
Server-Side Module (Backend)
e Built using Node.js and Express.js.
e Receives code input via POST requests from the frontend.
e Sends code data to Google Gemini AI API for processing.
e Returns the Al-generated feedback to the frontend.
e Implements CORS middleware for secure communication between client and server.

Workflow of the System
The workflow of the AI Code Analyzer Agent can be summarized as follows:
User Input: The user writes or pastes code into the editor.

Request Generation: The frontend sends a POST request containing the code to the backend API.
Processing: The backend forwards the code to Google Gemini API.

Al Analysis: Gemini analyzes the code and generates a feedback response.

Response Handling: The backend receives, formats, and returns the feedback to the frontend.

Display: The frontend renders the formatted Al response with syntax highlighting and Markdown formatting.
Storage (Optional): The response and code are stored in MongoDB for later review.

© LJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 203

https://ijarcce.com/
https://ijarcce.com/

IJARCCE ISSN (O) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :< Peer-reviewed & Refereed journal :< Vol. 14, Issue 10, October 2025
DOI: 10.17148/IJARCCE.2025.141030
REFERENCES

[1] Google Al “Gemini API Overview — Google AI Developer Documentation,” 2024. [Online]. Available:
https://ai.google.dev

[2] Meta Platforms Inc., “React.js Official Documentation,” 2024. [Online]. Available: https://react.dev

[3] OpenJS Foundation, “Node.js Official Documentation,” 2024. [Online]. Available: https://nodejs.org/en/docs

[4] Express.js Contributors, “Express.js Guide — Web Framework for Node.js,” 2024. [Online]. Available:
https://expressjs.com

[5] MongoDB Inc., “MongoDB Documentation — NoSQL Database for Modern Applications,” 2024. [Online]. Available:
https://www.mongodb.com/docs

[6] PrismJS Community, “PrismJS Syntax Highlighting Library — Open Source Project,” 2024. [Online]. Available:
https://prismjs.com

[7] Axios Developers, “Axios Library Documentation — Promise-Based HTTP Client for Node.js & Browser,” 2024.
[Online]. Available: https://axios-http.com

[8] Unified Community, “React-Markdown Package Documentation — Markdown Renderer for React,” 2024. [Online].
Available: https://www.npmjs.com/package/react-markdown

[9] Evan You et al, “Vite Documentation — Next Generation Frontend Tooling,” 2024. [Online]. Available:
https://vitejs.dev

[10] OpenAl and Google DeepMind, “ChatGPT and Gemini Model Insights — Al-Based Language Models for Code
Understanding,” White Paper, 2024,

[11] SonarSource, “SonarQube Documentation — Static Code Analysis Tool,” 2024. [Online]. Available:
https://docs.sonarqube.org

[12] ESLint Team, “ESLint User Guide - JavaScript Linting Utility,” 2024. [Online]. Available:
https://eslint.org/docs/latest/

[13] Postman Inc., “Postman API Platform — API Testing and Integration Tool,” 2024. [Online]. Available:
https://www.postman.com

[14] GitHub Inc., “GitHub Documentation — Version Control and Collaboration Platform,” 2024. [Online]. Available:
https://docs.github.com

[15] Express.js Community, “CORS Middleware for Express.js — Cross-Origin Resource Sharing,” 2024. [Online].
Available: https://www.npmjs.com/package/cors

© LJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 204

https://ijarcce.com/
https://ijarcce.com/

