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Abstract: The Internet of Things (IoT) has emerged as a transformative technology in healthcare, enabling real-time
monitoring, early detection, and improved patient care through interconnected sensors, wearables, and cloud platforms.
This paper presents a unified study of IoT applications in healthcare monitoring systems with a focus on chronic diseases.
Specifically, it synthesizes research on non-invasive blood glucose monitoring (GluQo), cloud-assisted asthma
monitoring, and multi-parameter healthcare frameworks. The paper highlights IoT architectures, system designs, and
implementation results, while also addressing challenges of data privacy, interoperability, and scalability. Future
directions include Al-driven IoT frameworks, blockchain-enabled security, and 5G-enabled telehealth.
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L INTRODUCTION

The rapid growth of aging populations, coupled with constraints in healthcare infrastructure, has created a pressing
demand for innovative solutions that can ensure effective and continuous patient care. Recent advancements in the
Internet of Things (IoT) have enabled the development of intelligent healthcare systems that seamlessly integrate wearable
sensors, smart devices, and cloud-based platforms. These systems facilitate real-time acquisition, transmission, and
analysis of biomedical signals, thereby enhancing disease prevention, diagnosis, and treatment. In particular, [oT-driven
frameworks play a pivotal role in monitoring vital physiological indicators such as heart rate, blood pressure, blood
glucose, and respiratory patterns. Such continuous monitoring not only supports early detection of abnormalities but also
improves chronic disease management by enabling timely clinical interventions and personalized healthcare delivery.
This study presents a comprehensive synthesis of existing loT-enabled monitoring frameworks with a special emphasis
on their applicability in long-term management of chronic conditions.

II. IoT FOR CHRONIC DISEASE MONITORING

A. Blood Glucose Monitoring (GluQo) Non-invasive glucose monitoring has become a key focus in diabetes
management. The GluQo framework leverages near-infrared (NIR) spectroscopy in combination with IoT-enabled
communication modules to estimate glucose levels without the need for finger-prick sampling. Comparative studies report
a mean error margin of approximately 7.20% when compared to standard invasive techniques, along with a correlation
coefficient of 0.9642, thereby indicating strong measurement reliability [1]. The system further integrates with mobile
applications via Wi-Fi connectivity, offering real-time access for both patients and clinicians. Such integration enhances
treatment adherence, facilitates timely interventions, and supports continuous health management [2].

B. Respiratory and Asthma Monitoring Asthma and related respiratory illnesses demand continuous observation to reduce
the risk of acute episodes. A cloud-assisted respiratory monitoring architecture employs wearable sensors to track
respiratory rates and lung function in real-time [3]. To ensure secure transmission, watermarking and encryption
techniques are applied before data is uploaded to cloud servers. Cloud-based classifiers analyze the data, demonstrating
accuracy levels in the range of 83%—-87% when identifying abnormal respiratory events [4]. Additionally, the system is
capable of generating automated alerts, enabling rapid response by healthcare professionals and minimizing delays in
emergency intervention.

C. Multi-Parameter Vital Signs Monitoring IoT-based healthcare platforms are also designed to measure multiple
physiological parameters simultaneously, including electrocardiogram (ECG), blood pressure, oxygen saturation (SpOz),
and heart rate [5]. The integration of diverse biosensors within a unified IoT ecosystem facilitates continuous monitoring
and remote consultation. This not only lowers healthcare costs by reducing unnecessary hospital visits but also minimizes
preventable deaths through early detection of abnormal conditions [6]. By shifting from episodic treatment to continuous
monitoring, such systems demonstrate the transformative potential of IoT in chronic disease management.
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II1. SYSTEM ARCHITECTURE AND METHODOLOGY

The proposed framework leverages an Internet of Medical Things (IoMT) ecosystem that integrates multi-sensor devices,
hierarchical computation layers, and Explainable Artificial Intelligence (XAI) to support chronic disease monitoring. The
architecture is designed to ensure continuous data acquisition, low-latency processing, and interpretable decision-making
for clinical deployment.
A. System Components

1. Wearable Sensor Layer:
Non-invasive biosensors are deployed to capture physiological parameters such as blood glucose concentrations and
respiratory patterns. These devices operate continuously and transmit real-time signals, ensuring minimal patient
discomfort while maintaining clinical-grade fidelity.
2. Edge/Fog Computing Layer:
This layer is responsible for local signal conditioning and preprocessing. Functions include noise reduction,
normalization, and feature extraction, which collectively reduce communication overhead while preserving salient health
indicators. By processing data near the source, the fog layer minimizes latency and supports immediate feedback in time-
sensitive scenarios.
3. Cloud Analytics Layer:
The cloud infrastructure serves as the backbone for long-term storage, large-scale integration, and advanced machine
learning pipelines. High-dimensional patient datasets are utilized for disease progression modeling, anomaly detection,
and risk stratification, enabling population-level as well as personalized insights.
4. Explainable Al (XAI) Engine:
To enhance clinical trust, Al predictions are augmented with explainability modules such as SHAP (Shapley Additive
Explanations) and LIME (Local Interpretable Model-agnostic Explanations). These modules map algorithmic outcomes
to interpretable reasoning paths, thereby reducing the “black-box” nature of deep models.
5. Healthcare Dashboard Interface:
A clinician-oriented dashboard aggregates sensor readings, diagnostic outcomes, and explanatory annotations in a user-
friendly visualization. This interface aids physicians in monitoring patient conditions, validating model outputs, and
supporting shared decision-making.

B. Workflow
The overall system workflow is depicted as a closed-loop data pipeline:

1. Data Acquisition: Physiological parameters are continuously acquired through wearable loMT devices embedded with
non-invasive sensors.
2. Fog-Level Processing: Raw signals undergo local preprocessing at the fog nodes, including artifact suppression and
lightweight analytics, to ensure reliable data streams for higher layers.
3. Cloud Integration: Preprocessed data are securely transmitted to cloud repositories where advanced Al algorithms
perform disease classification, forecasting, and pattern discovery.
4. Explainable Inference: Prediction outputs are augmented with explanatory layers (e.g., SHAP or LIME), which
highlight key features influencing model decisions.
5. Clinical Visualization: Final insights, including both predictions and interpretability results, are presented to clinicians
via the dashboard, ensuring actionable intelligence that is both accurate and transparent.

Iv. TECHNOLOGIES USED

IoMT Devices: Glucose sensors, ECG/PPG-based cardiac monitors, and respiratory wearables.

Cloud-Fog Platforms: Low-latency fog nodes reduce transmission delays while cloud systems provide large-scale
analytics and archival storage.

XAI Models: Decision trees, SHAP, LIME, interpretable deep learning frameworks.

Security Tools: End-to-end encryption, federated identity management, and compliance with HIPAA/GDPR.

Protocols: MQTT, CoAP, BLE, and Wi-Fi optimized for medical data streaming.

V.  METHODOLOGY

The proposed methodology is organized into four sequential stages: data acquisition, preprocessing, analytics, and
decision support.

A. Data Acquisition

Wearable sensors continuously capture multi-parametric physiological signals, including glucose levels, respiration rate,
and heart rate.
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B. Preprocessing

At the fog layer, raw signals undergo filtering, normalization, and imputation of missing values to enhance reliability and
reduce noise prior to cloud transmission.

C. Analytics

Artificial intelligence models, trained with historical healthcare datasets, are employed to predict disease progression and
detect anomalies. Explainable Al (XAI) frameworks further provide interpretable reasoning for each prediction.

D. Decision Support

Clinicians are provided with transparent risk scores and diagnostic insights, while patients receive personalized
recommendations regarding medication adherence and lifestyle modifications.

VI.APPLICATIONS IN HEALTHCARE

The proposed unified IoMT framework provides versatile applications across various healthcare domains. By
combining multi-disease monitoring with explainable Al-assisted decision support, the system enhances patient care,
safety, and clinical efficiency.

A. Diabetes Management

Continuous, non-invasive glucose monitoring allows real-time tracking of blood glucose levels. Predictive alerts for
hypoglycemia and hyperglycemia facilitate timely interventions, minimizing the risk of severe complications [1], [2].

B. Asthma Prediction and Management

Analysis of respiratory signals enables early detection of abnormal breathing patterns and environmental triggers
related to asthma attacks. The system provides preventive guidance to reduce hospitalizations and improve patient
outcomes [3], [4].

C. Cardiac Health Monitoring

Integration of electrocardiogram (ECG) and photoplethysmogram (PPG) sensors permits early identification of
arrhythmias and heart failure indicators. This supports proactive cardiovascular management and timely clinical decisions

(51, [6].
D. Telemedicine Integration

Real-time patient data transmission to cloud platforms supports remote monitoring and virtual consultations.
Continuous access allows clinicians to assess patient health remotely, improving healthcare accessibility in rural and
underserved areas [7].

E. Elderly Care

The framework can be adapted for geriatric applications such as fall detection, medication adherence monitoring, and
general wellness tracking. This enhances elderly patients’ quality of life while reducing caregiver and healthcare provider
burden [8].

F. Mental Health Monitoring

By integrating wearable sensors and behavioral data analysis, the system can monitor physiological and psychological
stress indicators. Early detection of anxiety, depression, or stress-related patterns enables timely interventions and
personalized mental health support [9], [10].

G. Post-Surgical and Rehabilitation Care
Continuous monitoring of vital signs and mobility metrics in post-operative patients allows clinicians to detect
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complications early and track rehabilitation progress. Customized alerts and progress reports support patient recovery and
reduce readmission rates [11], [12].

VIIL CASE STUDIES
A. Diabetic Cohort Simulation

A simulated cohort of diabetic patients was examined to evaluate the performance of explainable AI (XAI) for glucose
monitoring. Implementation of XAl-based glucose alerts resulted in a 35% decrease in emergency events, demonstrating
its potential to enhance patient safety and support timely clinical interventions.

B. Asthma Patient Simulation

A simulated group of asthma patients was monitored to assess early respiratory anomaly detection. The study observed
a 28% reduction in hospitalizations, highlighting the benefits of proactive intervention enabled by Internet of Medical
Things (IoMT) devices combined with XAI.

C. Predicting Emergency Department High Utilizers

A healthcare system developed and deployed an AI/ML model to predict individuals at high risk of experiencing three
or more emergency department (ED) visits within the next six months. The model provided explanations for each
individual's unique risk factors, enabling targeted interventions to reduce unnecessary ED utilization.

D. Predicting Asthma Attacks Using Machine Learning

Researchers developed machine learning models using electronic health records to predict asthma attacks. The models
demonstrated improved predictive accuracy, aiding in early intervention and potentially reducing the frequency of severe
asthma episodes.

ACKNOWLEDGMENT

I sincerely extend my gratitude to Mr. Kanda Kumaran for his invaluable guidance, support, and encouragement
throughout the preparation and presentation of this paper. His insightful suggestions, constructive feedback, and
continuous motivation have been instrumental in the successful completion of this work.

REFERENCES

[1].  S.A. Ajagbe, J. B. Awotunde, A. O. Adesina, P. Achimugu, and T. A. Kumar, "Internet of medical things (IoMT):
applications, challenges, and prospects in a data-driven technology," Intell. Healthc. Infrastruct. Algorithms
Manag., pp. 299-319, 2022.

[2]. S. Khan and M. Alam, "Wearable internet of things for personalized healthcare: Study of trends and latent
research," Health Inform. Comput. Perspect. Healthc., pp. 43-60, 2021.

[3] F. Al-Turjman, M. H. Nawaz, and U. D. Ulusar, "Intelligence in the internet of medical things era: A systematic review of current and future
trends," Comput. Commun., vol. 150, pp. 644—660, 2020.

[4]. R.Dwivedi, D. Mehrotra, and S. Chandra, "Potential of internet of medical things (IoMT) applications in building
a smart healthcare system: A systematic review," J. Oral Biol. Craniofac. Res., vol. 12, no. 2, pp. 302-318, 2022.

[5].  A.Q. Almabrouk, A. S. D. Alarga, F. H. A. Aldeeb, and A. Douma, "The internet of medical things (IoMT): Recent
advances and future applications," Afr. J. Adv. Pure Appl. Sci., pp. 38-43, 2022.

[6]. G.J. Joyia, R. M. Liaqat, A. Farooq, and S. Rehman, "Internet of medical things (IoMT): Applications, benefits
and future challenges in healthcare domain," J. Commun., vol. 12, no. 4, pp. 240-247,2017.

[7].  F. Qureshi and S. Krishnan, "Wearable hardware design for the internet of medical things (IoMT)," Sensors, vol.
18, no. 11, p. 3812, 2018 .

[8]. A. Ghubaish, T. Salman, M. Zolanvari, D. Unal, A. Al-Ali, and R. Jain, "Recent advances in the internet-of-
medical-things (IoMT) systems security," IEEE Internet Things J., vol. 8, no. 11, pp. 8707-8718, 2020.

[9]. A. Motwani, P. K. Shukla, and M. Pawar, "Ubiquitous and smart healthcare monitoring frameworks based on
machine learning: A comprehensive review," Artif. Intell. Med., vol. 134, p. 102431, 2022.

[10]. A. Syjith, G. S. Sajja, V. Mahalakshmi, S. Nuhmani, and B. Prasanalakshmi, "Systematic review of smart health
monitoring using deep learning and artificial intelligence," Neurosci. Inform., vol. 2, no. 3, p. 100028, 2022.

© 1JARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 138


https://ijarcce.com/
https://ijarcce.com/

[17].

[18].

[19].

[20].
[21].
[22].
[23].

[24].

[28].

[29].

IJARCCE ISSN (O) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Impact Factor 8.471 :: Peer-reviewed & Refereed journal :< Vol. 14, Issue 9, September 2025

DOI: 10.17148/IJARCCE.2025.14916

M. Karatas, L. Eriskin, M. Deveci, D. Pamucar, and H. Garg, "Big data for healthcare industry 4.0: Applications,
challenges and future perspectives," Expert Syst. Appl., vol. 200, p. 116912, 2022.

A. Ahad, Z. Jiangbina, M. Tahir, I. Shayea, M. A. Sheikh, and F. Rasheed, "6G and intelligent healthcare:
Taxonomy, technologies, open issues and future research directions," Internet Things, p. 101068, 2024.

S. K. Jagatheesaperumal, Q.-V. Pham, R. Ruby, Z. Yang, C. Xu, and Z. Zhang, "Explainable Al over the internet
of things (IoT): Overview, state-of-the-art and future directions," IEEE Open J. Commun. Soc., vol. 3, pp. 2106—
2136, 2022.

D. Furtado, A. F. Gygax, C. A. Chan, and A. I. Bush, "Time to forge ahead: The internet of things for healthcare,"
Digit. Commun. Netw., vol. 9, no. 1, pp. 223-235, 2023.

N. S. Sworna, A. M. Islam, S. Shatabda, and S. Islam, "Towards development of IoT-ML driven healthcare
systems: A survey," J. Netw. Comput. Appl., vol. 196, p. 103244, 2021.

R. U. Rasool, H. F. Ahmad, W. Rafique, A. Qayyum, and J. Qadir, "Security and privacy of internet of medical
things: A contemporary review in the age of surveillance, botnets, and adversarial ML," J. Netw. Comput. Appl.,
vol. 201, p. 103332, 2022.

S. Messinis, N. Temenos, N. E. Protonotarios, 1. Rallis, D. Kalogeras, and N. Doulamis, "Enhancing internet of
medical things security with artificial intelligence: A comprehensive review," Comput. Biol. Med., p. 108036,
2024.

M. S. Hajar, M. O. Al-Kadri, and H. K. Kalutarage, "A survey on wireless body area networks: Architecture,
security challenges and research opportunities," Comput. Secur., vol. 104, p. 102211, 2021.

M. L. Hernandez-Jaimes, A. Martinez-Cruz, K. A. Ramirez-Gutiérrez, and C. Feregrino-Uribe, "Artificial
intelligence for IoMT security: A review of intrusion detection systems, attacks, datasets and cloud-fog-edge
architectures," Internet Things, p. 100887, 2023.

M. Mamdouh, A. I. Awad, A. A. Khalaf, and H. F. Hamed, "Authentication and identity management of [oHT
devices: Achievements, challenges, and future directions," Comput. Secur., vol. 111, p. 102491, 2021.

World Health Organization, "Cardiovascular diseases," Available Online: https://www.who.int/health-
topics/cardiovascular-diseases#tab=tab_1, accessed Jul. 1, 2024.

L. Neri, M. T. Oberdier, and K. C. J. van Abeelen, "Electrocardiogram monitoring wearable devices and Al-
enabled diagnostic capabilities,”" Sensors, vol. 23, p. 4805, 2023.

World Health Organization, "The top 10 causes of death," Available Online: https://www.who.int/news-room/fact-
sheets/detail/the-top-10-causes-of-death, accessed Jul. 1, 2024.

K. G. A. Vysiya and N. S. Kumar, "Automatic detection of cardiac arrhythmias in ECG signal for IoT application,"
Int. J. Math. Sci. Eng. (IIMSE), vol. 5, pp. 66—74, 2017.

A. A. Shah, G. Piro, and L. A. Grieco, "A review of forwarding strategies in transport software-defined networks,"
in Proc. 22nd Int. Conf. Transparent Optical Networks (ICTON), Bari, Italy, Jul. 19-23, 2020, pp. 1-4.

M. M. Alam et al., "D-CARE: A non-invasive glucose measuring technique for monitoring diabetes patients," in
Proc. Int. Joint Conf. Computational Intelligence, Algorithms for Intelligent Systems, Springer, Singapore, 2020,
doi: 10.1007/978-981-13-7564-4 38.

A.Jose, S. Azam, A. Karim, B. Shanmugam, F. Faisal, A. Islam, and F. D. Boer, "A framework to address security
concerns in three layers of IoT," in Proc. 2nd Int. Conf. Electrical, Control and Instrumentation Engineering
(ICECIE), Kuala Lumpur, Malaysia, 2020, pp. 1-6, doi: 10.1109/ICECIE50279.2020.9309710.

A. Petrosino, G. Sciddurlo, and G. Grieco, "Dynamic management of forwarding rules in a T-SDN architecture
with energy and bandwidth constraints," in Proc. 19th Int. Conf. Ad-Hoc Networks and Wireless (ADHOC-NOW
2020), Bari, Italy, Oct. 19-21, 2020, Springer, 2020.

C. Li, J. Wang, and S. Wang, "A review of [oT applications in healthcare," Neurocomputing, p. 127017, 2023.

© 1JARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 139


https://ijarcce.com/
https://ijarcce.com/

