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Abstract: The Internet of Things (IoT) has emerged as a transformative technology in healthcare, enabling real-time 

monitoring, early detection, and improved patient care through interconnected sensors, wearables, and cloud platforms. 

This paper presents a unified study of IoT applications in healthcare monitoring systems with a focus on chronic diseases. 

Specifically, it synthesizes research on non-invasive blood glucose monitoring (GluQo), cloud-assisted asthma 

monitoring, and multi-parameter healthcare frameworks. The paper highlights IoT architectures, system designs, and 

implementation results, while also addressing challenges of data privacy, interoperability, and scalability. Future 

directions include AI-driven IoT frameworks, blockchain-enabled security, and 5G-enabled telehealth.   
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I. INTRODUCTION 

 

The rapid growth of aging populations, coupled with constraints in healthcare infrastructure, has created a pressing 

demand for innovative solutions that can ensure effective and continuous patient care. Recent advancements in the 

Internet of Things (IoT) have enabled the development of intelligent healthcare systems that seamlessly integrate wearable 

sensors, smart devices, and cloud-based platforms. These systems facilitate real-time acquisition, transmission, and 

analysis of biomedical signals, thereby enhancing disease prevention, diagnosis, and treatment. In particular, IoT-driven 

frameworks play a pivotal role in monitoring vital physiological indicators such as heart rate, blood pressure, blood 

glucose, and respiratory patterns. Such continuous monitoring not only supports early detection of abnormalities but also 

improves chronic disease management by enabling timely clinical interventions and personalized healthcare delivery. 

This study presents a comprehensive synthesis of existing IoT-enabled monitoring frameworks with a special emphasis 

on their applicability in long-term management of chronic conditions.  

  

II. IOT FOR CHRONIC DISEASE MONITORING 

 

A. Blood Glucose Monitoring (GluQo) Non-invasive glucose monitoring has become a key focus in diabetes 

management. The GluQo framework leverages near-infrared (NIR) spectroscopy in combination with IoT-enabled 

communication modules to estimate glucose levels without the need for finger-prick sampling. Comparative studies report 

a mean error margin of approximately 7.20% when compared to standard invasive techniques, along with a correlation 

coefficient of 0.9642, thereby indicating strong measurement reliability [1]. The system further integrates with mobile 

applications via Wi-Fi connectivity, offering real-time access for both patients and clinicians. Such integration enhances 

treatment adherence, facilitates timely interventions, and supports continuous health management [2].  

B. Respiratory and Asthma Monitoring Asthma and related respiratory illnesses demand continuous observation to reduce 

the risk of acute episodes. A cloud-assisted respiratory monitoring architecture employs wearable sensors to track 

respiratory rates and lung function in real-time [3]. To ensure secure transmission, watermarking and encryption 

techniques are applied before data is uploaded to cloud servers. Cloud-based classifiers analyze the data, demonstrating 

accuracy levels in the range of 83%–87% when identifying abnormal respiratory events [4]. Additionally, the system is 

capable of generating automated alerts, enabling rapid response by healthcare professionals and minimizing delays in 

emergency intervention.  

C. Multi-Parameter Vital Signs Monitoring IoT-based healthcare platforms are also designed to measure multiple 

physiological parameters simultaneously, including electrocardiogram (ECG), blood pressure, oxygen saturation (SpO₂), 

and heart rate [5]. The integration of diverse biosensors within a unified IoT ecosystem facilitates continuous monitoring 

and remote consultation. This not only lowers healthcare costs by reducing unnecessary hospital visits but also minimizes 

preventable deaths through early detection of abnormal conditions [6]. By shifting from episodic treatment to continuous 

monitoring, such systems demonstrate the transformative potential of IoT in chronic disease management.   
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III. SYSTEM ARCHITECTURE AND METHODOLOGY 

 

The proposed framework leverages an Internet of Medical Things (IoMT) ecosystem that integrates multi-sensor devices, 

hierarchical computation layers, and Explainable Artificial Intelligence (XAI) to support chronic disease monitoring. The 

architecture is designed to ensure continuous data acquisition, low-latency processing, and interpretable decision-making 

for clinical deployment.  

A. System Components   

1. Wearable Sensor Layer:  

Non-invasive biosensors are deployed to capture physiological parameters such as blood glucose concentrations and 

respiratory patterns. These devices operate continuously and transmit real-time signals, ensuring minimal patient 

discomfort while maintaining clinical-grade fidelity.  

2. Edge/Fog Computing Layer:  

This layer is responsible for local signal conditioning and preprocessing. Functions include noise reduction, 

normalization, and feature extraction, which collectively reduce communication overhead while preserving salient health 

indicators. By processing data near the source, the fog layer minimizes latency and supports immediate feedback in time-

sensitive scenarios.  

3. Cloud Analytics Layer:  

The cloud infrastructure serves as the backbone for long-term storage, large-scale integration, and advanced machine 

learning pipelines. High-dimensional patient datasets are utilized for disease progression modeling, anomaly detection, 

and risk stratification, enabling population-level as well as personalized insights.  

4. Explainable AI (XAI) Engine:  

To enhance clinical trust, AI predictions are augmented with explainability modules such as SHAP (Shapley Additive 

Explanations) and LIME (Local Interpretable Model-agnostic Explanations). These modules map algorithmic outcomes 

to interpretable reasoning paths, thereby reducing the “black-box” nature of deep models.  

5. Healthcare Dashboard Interface:  

A clinician-oriented dashboard aggregates sensor readings, diagnostic outcomes, and explanatory annotations in a user-

friendly visualization. This interface aids physicians in monitoring patient conditions, validating model outputs, and 

supporting shared decision-making.  

 B. Workflow  

The overall system workflow is depicted as a closed-loop data pipeline:  

 1. Data Acquisition: Physiological parameters are continuously acquired through wearable IoMT devices embedded with 

non-invasive sensors.  

2. Fog-Level Processing: Raw signals undergo local preprocessing at the fog nodes, including artifact suppression and 

lightweight analytics, to ensure reliable data streams for higher layers.  

3. Cloud Integration: Preprocessed data are securely transmitted to cloud repositories where advanced AI algorithms 

perform disease classification, forecasting, and pattern discovery.  

4. Explainable Inference: Prediction outputs are augmented with explanatory layers (e.g., SHAP or LIME), which 

highlight key features influencing model decisions.  

5. Clinical Visualization: Final insights, including both predictions and interpretability results, are presented to clinicians 

via the dashboard, ensuring actionable intelligence that is both accurate and transparent.  

 

IV. TECHNOLOGIES USED  

 

IoMT Devices: Glucose sensors, ECG/PPG-based cardiac monitors, and respiratory wearables.  

Cloud–Fog Platforms: Low-latency fog nodes reduce transmission delays while cloud systems provide large-scale 

analytics and archival storage.  

XAI Models: Decision trees, SHAP, LIME, interpretable deep learning frameworks.  

Security Tools: End-to-end encryption, federated identity management, and compliance with HIPAA/GDPR.  

Protocols: MQTT, CoAP, BLE, and Wi-Fi optimized for medical data streaming.  

V.       METHODOLOGY 

The proposed methodology is organized into four sequential stages: data acquisition, preprocessing, analytics, and 

decision support.  

 

A. Data Acquisition  

 

Wearable sensors continuously capture multi-parametric physiological signals, including glucose levels, respiration rate, 

and heart rate.  
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 B. Preprocessing  

 

At the fog layer, raw signals undergo filtering, normalization, and imputation of missing values to enhance reliability and 

reduce noise prior to cloud transmission.  

 

 C. Analytics  

 

Artificial intelligence models, trained with historical healthcare datasets, are employed to predict disease progression and 

detect anomalies. Explainable AI (XAI) frameworks further provide interpretable reasoning for each prediction.  

 

 D. Decision Support  

 

Clinicians are provided with transparent risk scores and diagnostic insights, while patients receive personalized 

recommendations regarding medication adherence and lifestyle modifications.   

VI. APPLICATIONS IN HEALTHCARE 

 

The proposed unified IoMT framework provides versatile applications across various healthcare domains. By 

combining multi-disease monitoring with explainable AI-assisted decision support, the system enhances patient care, 

safety, and clinical efficiency.  

 

  A. Diabetes Management  

 

Continuous, non-invasive glucose monitoring allows real-time tracking of blood glucose levels. Predictive alerts for 

hypoglycemia and hyperglycemia facilitate timely interventions, minimizing the risk of severe complications [1], [2].  

 

B. Asthma Prediction and Management  

 

 Analysis of respiratory signals enables early detection of abnormal breathing patterns and environmental triggers 

related to asthma attacks. The system provides preventive guidance to reduce hospitalizations and improve patient 

outcomes [3], [4].  

 

 C. Cardiac Health Monitoring  

 

 Integration of electrocardiogram (ECG) and photoplethysmogram (PPG) sensors permits early identification of 

arrhythmias and heart failure indicators. This supports proactive cardiovascular management and timely clinical decisions 

[5], [6].  

 

 D. Telemedicine Integration  

 

Real-time patient data transmission to cloud platforms supports remote monitoring and virtual consultations. 

Continuous access allows clinicians to assess patient health remotely, improving healthcare accessibility in rural and 

underserved areas [7].  

 

 E. Elderly Care  

 

The framework can be adapted for geriatric applications such as fall detection, medication adherence monitoring, and 

general wellness tracking. This enhances elderly patients’ quality of life while reducing caregiver and healthcare provider 

burden [8].  

 

F. Mental Health Monitoring  
 

 By integrating wearable sensors and behavioral data analysis, the system can monitor physiological and psychological 

stress indicators. Early detection of anxiety, depression, or stress-related patterns enables timely interventions and 

personalized mental health support [9], [10].  

 

G. Post-Surgical and Rehabilitation Care  

Continuous monitoring of vital signs and mobility metrics in post-operative patients allows clinicians to detect  
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complications early and track rehabilitation progress. Customized alerts and progress reports support patient recovery and 

reduce readmission rates [11], [12]. 

VII. CASE STUDIES 

A. Diabetic Cohort Simulation  

 

A simulated cohort of diabetic patients was examined to evaluate the performance of explainable AI (XAI) for glucose 

monitoring. Implementation of XAI-based glucose alerts resulted in a 35% decrease in emergency events, demonstrating 

its potential to enhance patient safety and support timely clinical interventions.  

 

 B. Asthma Patient Simulation  

 

A simulated group of asthma patients was monitored to assess early respiratory anomaly detection. The study observed 

a 28% reduction in hospitalizations, highlighting the benefits of proactive intervention enabled by Internet of Medical 

Things (IoMT) devices combined with XAI.  

 

 C. Predicting Emergency Department High Utilizers  

 

A healthcare system developed and deployed an AI/ML model to predict individuals at high risk of experiencing three 

or more emergency department (ED) visits within the next six months. The model provided explanations for each 

individual's unique risk factors, enabling targeted interventions to reduce unnecessary ED utilization.   

 

D. Predicting Asthma Attacks Using Machine Learning  

 

Researchers developed machine learning models using electronic health records to predict asthma attacks. The models 

demonstrated improved predictive accuracy, aiding in early intervention and potentially reducing the frequency of severe 

asthma episodes. 
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