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Abstract: Real-time healthcare monitoring uses wearables and bedside sensors to watch patients’ vital signs and alert 

caregivers quickly. Sending all data to the cloud can be slow and risky for privacy. Edge computing processes data close 

to where it is collected, which lowers delay and saves bandwidth. Federated learning lets many devices train a shared 

model without sending raw patient data, which supports privacy. This paper presents a simple, practical framework that 

combines edge computing and federated learning for faster, safer health monitoring. Our design chooses which devices 

should join each training round based on their battery, signal quality, and recent data. We reduce network load using light 

model updates with quantization and sparsification, and we add secure aggregation and differential privacy to protect 

patients’ information. We also include small “personalization” parts in the model so each device can adapt to its patient. 

We describe a step-by-step method, an objective that balances accuracy, latency, and energy, and an evaluation plan 

using public physiological datasets under changing network conditions. Expected results show similar accuracy to 

standard training, with lower latency, fewer false alarms, and less bandwidth use. This work offers a clear path to deploy 

trustworthy, real-time monitoring at the edge. 
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I.      INTRODUCTION 

 

Hospitals and homes now use many connected devices, like smart watches, patches, and bedside monitors, to track heart 

rate, oxygen levels, and other vital signs [1][2]. These devices need to react quickly when something is wrong, like an 

irregular heartbeat or sudden drop in oxygen, highlighting the need for timely interventions in healthcare [3][4]. If every 

signal must travel to a faraway cloud, delays can occur, networks can get crowded, and private data may be exposed, 

posing significant privacy and security risks [5][6]. Edge computing solves part of this problem by handling data close 

to the patient, which cuts delay and saves bandwidth, as demonstrated in similar IoT applications [7][8]. Federated 

learning adds another benefit: devices help train a shared model together, but keep raw data local, supporting enhanced 

privacy and compliance with healthcare regulations [9][10]. However, there are real challenges. Devices have different 

chips, memory, and batteries, leading to heterogeneous edge computing environments [11][12]. Wi‑Fi and cellular links 

can be weak or change suddenly, affecting real-time data processing [13][14]. Patient data is “non-IID,” meaning it varies 

a lot between people, so a single model may not fit everyone, necessitating personalized approaches in machine learning 

for healthcare [15][16]. Also, we must protect privacy not only by keeping data on the device, but also by securing model 

updates and adding noise when needed, in line with differential privacy principles [17][18]. This research offers a 

practical framework to handle these issues. We select clients based on live measurements, compress model updates to 

save bandwidth, and use secure aggregation plus differential privacy, building upon existing federated learning security 

enhancements [19][20]. We personalize part of the model to fit each patient, while keeping a strong shared backbone, a 

technique inspired by recent advances in personalized medicine and AI [21][22]. Our goal is to reach fast, accurate alerts 

with low energy use, so care teams can trust the system in real settings, aligning with the goals of reliable edge AI for 

healthcare [23][24]. 

 

II.       LITERATURE SURVEY 

 

Edge-centric healthcare monitoring demands low-latency inference, strict privacy, and robustness to heterogeneous 

devices and data distributions, making federated learning (FL) a natural fit for IoMT deployments that cannot centralize 

raw patient data due to regulatory and ethical constraints. Foundational work in healthcare FL shows that secure 

aggregation and communication-efficient protocols can protect gradients while enabling collaborative training across 
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wearables, home hubs, and clinics, reducing bandwidth and preserving confidentiality in real time monitoring contexts 

[9]. Within IoMT, integrated edge–FL pipelines have been engineered to reduce communication overhead via update 

compression and to mitigate non-IID skew through robust aggregation and personalization, thereby improving accuracy 

and efficiency for continuous biosignal analysis under constrained compute and energy budgets [7]. Recent systems 

research proposes fused or ensemble FL approaches that combine on-device feature learning with distributed coordination 

to enhance predictive performance for decentralized patient monitoring while maintaining privacy guarantees [4]. For 

instance, a fused FL framework integrating Real-Time Sequential Deep Extreme Learning Machines reports high 

accuracy for Healthcare monitoring using multiple medical sensors, illustrating the value of combining data fusion with 

decentralized learning at the edge. Complementary studies explore blockchain or BigchainDB-backed FL to strengthen 

integrity, auditability, and tamper resistance in IoMT pipelines, positioning ledger mechanisms alongside FL to secure 

updates and metadata in unstable wireless environments typical of home and wearable settings [6]. Methodological 

surveys synthesize challenges including heterogeneity, class imbalance, fairness, and synchronization, recommending 

standardized protocols, compression, and adaptive client selection to sustain convergence and equity across diverse 

populations and devices in healthcare FL. At the algorithmic level, privacy-preserving edge FL applied to mobile-health 

demonstrates that pretraining and partial on-device refinement can support seizure or event detection with secure 

multiparty protocols [1], aligning with strict privacy norms while curbing communication and compute costs on devices. 

Broader IoMT and wearable reviews emphasize the role of edge computing and MEC in lowering latency and backhaul, 

enabling continuous monitoring with sub-second responsiveness when combined with lightweight models and local pre-

processing. Communication-efficient secure aggregation variants compatible with sparsification have been proposed to 

reduce uplink burden without sacrificing privacy [5], addressing intermittent connectivity and energy limits in real-world 

IoMT deployments. Collectively, this body of work converges on architectures that pair edge inference and preprocessing 

with privacy-preserving, communication-efficient FL—augmented by blockchain where needed—to achieve accurate, 

low-latency, and trustworthy real-time healthcare monitoring across heterogeneous, resource-constrained IoMT 

ecosystems [13]. 

 

II.      PROPOSED SYSTEM 

 

We propose an edge-first federated learning framework built for streaming vital signs. The design has four main parts: 

1. Smart client selection: Each training round, the system chooses devices using live signals like battery level, link 

quality, free compute, and freshness of data. The goal is to meet strict time limits for updates. 

2. Lean communication: We compress model updates with 8‑bit quantization and top‑k sparsification (with error 

feedback), which cuts payload size while keeping accuracy stable. Secure aggregation is used so the server only 

sees the sum of updates. 

3. Multi-objective control: A lightweight controller tunes local epochs, batch size, and learning rate to balance 

accuracy, latency, and energy. It adapts using simple telemetry from devices and the network. 

4. Personalization: A shared backbone learns general patterns, while a small patient-specific head or adapter is 

trained locally. This helps with non‑IID data and improves on-device predictions. 

The system follows a hierarchical edge layout. Wearables do basic filtering and segmentation. Gateways run training and 

inference. An on-premises server coordinates rounds; the cloud is only for model release and audit. Privacy is reinforced 

with gradient clipping and differential privacy. Asynchronous rounds allow progress even when some devices are slow 

or offline. 

 

III.       METHODOLOGY 

 

System overview 

• Devices collect multivariate time-series xt  (for example, ECG, SpO2). 

• Local preprocessing: filtering, windowing, and normalization on the wearable or gateway. 

• Training and inference happen mainly on gateways; an on-premises aggregator coordinates. 

Optimization goal 

We balance accuracy, latency, and energy with a simple objective: 

 

𝜋𝑚𝑖𝑛𝐽 = 𝛼(1 − 𝐴𝑐𝑐) + 𝛽𝐿ˉ + 𝛾𝐸ˉ  
 

where π is the scheduling policy, Lˉ is average end-to-end latency, and Eˉ is average energy per round. We require 

L≤Lmax  for real-time alerts and ε≤εmax  for privacy. 

Latency model 

Total latency per round:  

𝐿 = 𝐿𝑠𝑒𝑛𝑠 + 𝐿𝑝𝑟𝑒 + 𝐿𝑡𝑥 ↑ + 𝐿𝑐𝑜𝑚𝑝 + 𝐿𝑎𝑔𝑔 + 𝐿𝑡𝑥 ↓ .  .  
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Federated learning 

We use FedAvg on selected clients St:  

𝑤𝑡 + 1 = 𝑘 ∈ 𝑆𝑡∑∑

𝑗

∈ 𝑆𝑡𝑛𝑗𝑛𝑘𝑤𝑡(𝑘), 

 

with compression ratio r∈(0,1] from quantization/sparsification. 

 

Scheduling and energy 

• Utility score per client: 𝑢𝑘 = 𝜆1/𝐿𝑘 + 𝜆2(𝑛𝑘/𝑁) − 𝜆3𝑠𝑡𝑎𝑙𝑒𝑛𝑒𝑠𝑠𝑘. 
• Pick top m clients that meet battery and bandwidth limits. 

• Energy per round: 𝐸𝑘 = 𝑃𝑡𝑥𝑡𝑡𝑥 + 𝑃𝑐𝑜𝑚𝑝𝑡𝑐𝑜𝑚𝑝.   
Privacy and security 

• Clip gradients: 𝑔 ← 𝑔 ⋅ min(1, 𝐶/∥ 𝑔 ∥ 2). 
• Add DP noise: : 𝑔~ = 𝑔 + 𝑁(0, 𝜎2𝐶2𝐼). 
• Use secure aggregation so the server only sees ∑ 𝑔𝑘 ~𝑘.  
 

ARCHITECTURE SUMMARY 

The proposed architecture for real-time healthcare monitoring leverages a hierarchical edge computing paradigm 

integrated with federated learning. This system comprises three primary layers: Edge Devices (e.g., wearables, bedside 

sensors) performing local data acquisition and preliminary processing; Edge Gateways (e.g., local servers, powerful 

embedded systems) acting as aggregation points for a cluster of devices, conducting local model training and inference; 

and a Central Aggregator (on-premises hospital server or secure cloud component) orchestrating federated learning 

rounds. 

The core objective is to optimize a multi-criteria function, balancing accuracy, latency, and energy consumption. This is 

formalized as: 

𝑤, 𝜋min 𝐿 (𝑤, 𝜋) = 𝛼(1 − 𝐴𝑐𝑐(𝑤)) + 𝛽 ⋅ 𝐸[𝐿(𝜋)] + 𝛾 ⋅ 𝐸[𝐸(𝜋)] 
 

Here, w denotes the global model parameters, π represents the client selection and resource allocation policy, Acc(w) is 

the model's predictive accuracy, E[L(π)] is the expected system latency, and E[E(π)] is the expected energy expenditure. 

α,β,γ are tunable weights reflecting the relative importance of each factor. 

The model update mechanism employs Federated Averaging (FedAvg), where the global model wt+1 for the next round 

is an aggregation of locally trained models wt(k)  from selected clients St: 
 

𝑤𝑡 + 1  = 𝑘 ∈ 𝑆𝑡  ∑ 𝑁𝑡   𝑛𝑘  𝑤𝑡(𝑘)   
 

where nk  is the number of data samples on client k, and Nt =∑k∈St  nk  is the total samples from participating clients. 
 

Architecture Diagram Description: 
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Fig: Architecture Diagram 

A visual representation of this architecture would typically show: 

1. Bottom Layer: Multiple "Edge Devices" (icons for smartwatches, ECG monitors, etc.) connected wirelessly 

to... 

2. Middle Layer: "Edge Gateways" (icon for a small server or specialized computing unit) in a local network. 

Arrows would indicate data flow from devices to gateways. 

3. Top Layer: A "Central Aggregator" (icon for a server rack or cloud symbol), connected to the Edge Gateways. 

4. Flows: Bidirectional arrows would show model updates flowing from gateways to the aggregator, and 

aggregated global models flowing from the aggregator to gateways (and then potentially to devices for 

inference). Privacy and security mechanisms could be indicated as shields or locks over data paths. 

 

IV.        RESULTS AND DISCUSSION 

 

Based on the design and prior findings, we expect three main outcomes. First, latency should drop because training and 

inference happen near the sensors, and because we choose clients with good links and enough compute. Asynchronous 

rounds help avoid waiting for slow devices. Second, bandwidth use should shrink because model updates are compressed, 

and fewer retries are needed when links are unstable. Third, accuracy should remain close to a non-compressed baseline, 

even with quantization and sparsification, especially when we use error feedback and tune local epochs. 

 

Personalization is important for non‑IID data. A small patient-specific head can improve sensitivity for rare events (like 

certain arrhythmias) without hurting general performance. Privacy tools, including clipping and differential privacy, may 

reduce accuracy slightly, but careful settings (for example, moderate noise and well-chosen clipping) keep the trade-off 

reasonable for clinical use. 

 

Energy results usually show that radio transmission costs more than computation on small devices. This supports our 

choice to compress updates and to run more work on gateways rather than wearables. Overall, the approach points to 

fewer false alarms, faster time-to-decision, and a more stable system under changing network conditions, which can build 

trust with clinicians. 

 

V.       CONCLUSION AND FUTURE ENHANCEMENT 

 

Edge computing and federated learning work well together for real-time health monitoring. Edge computing keeps delay 

low by processing data close to the patient. Federated learning trains shared models without sharing raw data, which 

helps protect privacy and follow health rules. In this paper, we presented a practical framework that picks the right clients, 

compresses updates, protects privacy, and personalizes part of the model. We also gave a simple objective that balances 

accuracy, latency, and energy, with limits for real-time use and privacy risk. 

 

Our design fits a hospital-friendly layout with sensors, gateways, and an on-premises server. Expected outcomes include 

faster alerts, lower bandwidth use, and stable accuracy on non‑IID data. Personalization and asynchronous training help 
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with device diversity and network changes. Privacy tools like secure aggregation and differential privacy add important 

safeguards with limited impact on performance. 

 

There is still work to do, such as stronger defenses against attacks, better handling of data drift, and more real-world 

testing. Even so, this approach provides a clear path to build trustworthy, low-latency systems that reduce false alarms 

and support earlier intervention, both in hospitals and at home. It aims to make monitoring safer, faster, and more 

respectful of patient privacy. 

 

VI.     FUTURE ENHANCEMENT 

 

• Better personalization: Use self-supervised pretraining on unlabeled streams and quick on-device fine-tuning so 

models adapt to each patient and sensor. 

• Drift handling: Add change-point detection and small replay buffers to track shifts in vital signs over time without 

forgetting past patterns. 

• Robust security: Combine secure aggregation with trusted hardware (TEE/TPM) and robust aggregation rules to 

resist poisoned or faulty updates. 

• Smarter compression: Learn which weights to send and when, and match update timing with 5G/6G schedulers for 

even lower delay. 

• Energy-aware design: Apply mixed precision and duty-cycling on wearables; schedule heavy tasks when devices are 

charging. 

• Stronger privacy: Improve DP accounting across many rounds and support consent policies that let patients choose 

how often to participate. 

• Interoperability: Use standard formats (FHIR/HL7), containers for easy updates, and clear audit trails for hospital IT 

teams. 

• Real-world trials: Run shadow-mode pilots in hospitals and homes to measure alarm fatigue, response time, and 

caregiver workload. Share datasets, scripts, and network traces for fair comparisons. 

These steps can turn a promising framework into a dependable, certified system that works across many settings 

while protecting patient trust. 
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