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Abstract: Artificial Intelligence (Al) is transforming assistive technologies into intelligent systems that enhance
accessibility across visual, auditory, motor, and cognitive domains. This review examined 52 works published between
2023 and 2025, with 40 peer-reviewed studies systematically analyzed using PRISMA guidelines. The Accessibility
Impact Score (AIS) was introduced as a novel framework to evaluate usability and effectiveness. Findings show that Al-
powered tools such as smart glasses, adaptive exoskeletons, and multimodal learning platforms outperform traditional
assistive devices. Visual and motor applications achieved the highest AIS values, while auditory and cognitive tools
demonstrated strong emerging potential. The integration of multimodal Al, including voice, vision, haptics, and brain—
computer interfaces, enables proactive and context-aware support. These results highlight AI’s role in enhancing
independence, social participation, and quality of life. The review also emphasizes the importance of open datasets for
reproducibility and the need for ethical, inclusive, and scalable adoption of Al in accessibility. Overall, Al offers a
paradigm shift toward inclusive, human-centered assistive systems with potential applications in healthcare, education,
and daily living.
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I. INTRODUCTION

Disabilities encompass a range of physical, sensory, cognitive, and mental health conditions that significantly impact
daily functioning and access to opportunities. Individuals with disabilities often face systemic exclusion from education,
employment, health- care, and public infrastructure, particularly in rural regions where nearly 69% of India’s disabled
population resides [1]. Despite advances in policy and awareness, accessibility remains a significant challenge. Social
stigma and a lack of inclusive design in both digital and physical environments further marginalize these individuals.
These realities underscore the need for technological invention, particularly through artificial intelligence to provide
Equitable access and enhance independence. Inclusive, Al-driven solutions have the potential to transform quality of life
on a scale. In today’s digital era, equal participation in society depends on inclusive access to information and
communication technologies. For individuals with disabilities, this inclusion is often limited by systemic barriers.
However, recent breakthroughs in Artificial Intelligence (Al) are reshaping how people with disabilities interact with their
environments, offering new levels of autonomy and engagement. Innovations such as intelligent screen readers, voice-
controlled assistants, autonomous mobility devices, and personalized learning platforms are transforming accessibility
across domains like education, mobility, and communication [2]-[4]. These Al-driven solutions are not just tools they
are path- ways to independence, helping to bridge long-standing accessibility gaps and fostering a more Equitable digital
future.

The World Bank has highlighted that disability prevalence in India may be considerably higher than official national
estimates, suggesting that between 5-8% of the country’s population could be living with some form of disability [5].
This translates to a staggering 40 to 90 million individuals, underscoring the magnitude of disability as a major public
health and social inclusion challenge. Such global estimates are often regarded as more comprehensive because they
account for under reporting and differences in definitions that frequently affect national level surveys. Recognizing this
broader perspective is important, as it places India’s dis- ability burden within an international context and emphasizes the
need for more accurate measurement tools, standardized reporting practices, and inclusive policy frameworks that
adequately reflect the lived realities of people with disabilities across diverse regions.
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Artificial Intelligence (Al), in this context, refers to technologies designed to emulate human cognition and automate
tasks such as perception, decision-making, and learning. In disability-focused applications, Al plays a pivotal role in
creating assistive technologies that enhance daily life for individuals with impairments. For instance, Al-powered systems
have been integrated into smart canes and wearable devices that assist the visually impaired in real-time obstacle detection
and navigation [6][7]. Al has also enabled hands-free interaction systems tailored for individuals with motor disabilities
and predictive tools for cognitive assistance [3][8][9]. These implementations highlight the significance of Al in fostering
autonomy and accessibility across diverse needs.

Artificial Intelligence (AI) has increasingly enabled natural language based assistive technologies by merging the
capabilities of Natural Language Processing (NLP) and Large Language Models (LLMs) into a unified framework. Recent
advances in NLP, driven largely by LLMs, have transformed accessibility applications. Today, NLP and LLMs are not
considered separate domains but part of a unified ecosystem for understanding and generating human language. These
systems allow machines to understand, generate, and respond to humanlanguage, facilitating communication, navigation,
and learning for individuals with disabilities. Applications include voice assistants and real-time captioning tools for
hearing-impaired users [10][11], conversational agents that guide visually impaired individuals through complex tasks
[12][13], and personalized educational platforms for neuro divergent students [ 14][15]. Tools such as Al-powered glasses
interpret visual scenes and generate descriptive audio [16][17], while adaptive learning platforms dynamically adjust
content based on user responses [ 18][19]. By integrating NLP and LLMs, these Al solutions provide highly personalized,
context aware, and interactive support, bridging communication gaps and enhancing independence across cognitive,
auditory, and motor domains [10][11]. This unified approach enables more seam- less, efficient, and effective assistive
technologies while maintaining all prior citation references.

Machine Learning (ML) refers to the use of statistical algorithms that allow systems to learn and improve from data. In
accessibility domains, ML is extensively used for personalizing user interfaces, predicting user needs, and optimizing
assistive functions. For instance, adaptive learning platforms use ML to tailor educational content to students with
cognitive disabilities, adjusting the difficulty and pacing to suit individual learners [14][15]. In vision-based
applications, ML models can detect daily obstacles and provide feedback through haptic or audio cues for visually
impaired users [6][7]. Systems such as Al-powered reading aids and facial ex- pression recognizers for neuro divergent
users also depend heavily on ML techniques [3][8].

Reinforcement Learning (RL), a technique in which agents learn optimal actions through feedback, has been instrumental
in interactive assistive technologies. In rehabilitation and motor skill training, RL-powered robotic exoskeletons adapt
to the progress of users by modifying exercises in real-time [20][21]. Similarly, RL models have been implemented in
cognitive training tools where Al dynamically adjusts content difficulty based on user responses [13][22]. These adaptive
systems are particularly useful for long-term therapies and skill development among individuals with motor or cognitive
impairments [14][15].

After a careful examination of multiple studies and technological approaches, this review highlights how the integration
of Al subfields, computer vision, NLP, ML, RL, and LLMs, is reshaping accessibility for individuals with disabilities.
Across visual, auditory, motor, and cognitive domains, research consistently demonstrates that assistive devices are
evolving from simple aids into intelligent, context-aware systems. Innovations such as smart canes for real-time
navigation, LLM-powered glasses for scene understanding, adaptive learning platforms, and Reinforcement driven
robotic exoskeletons exemplify the transition toward personalized and proactive support solutions [6][12][20].
Collectively, these technologies bridge critical gaps in communication, mobility, and education, fostering independence
and social inclusion. Studies also emphasize their potential for scalable implementation in both urban and rural settings,
promoting Equitable access to opportunities [2][4][15]. Overall, the convergence of these Al-driven solutions represents
a transformative step toward building an inclusive and accessible society.
This paper addresses the following key points:
e Al transforms traditional assistive technologies into intelligent and proactive systems.
e  Core Al areas like computer vision, NLP, reinforcement learning, and LLMs are used for solutions such as Al-
powered glasses, speech-to-text systems, exoskeletons, and learning tools.
e Accessibility Impact Score (AIS) is used to evaluate usability and effectiveness, with visual and motor tools
showing strong results.
e  Multimodal Al (voice, vision, haptic feedback, brain computer interfaces) provides real-time, context-aware
support.
e Al systems enhance independence, inclusion, and quality of life, focusing on user-centered and ethical design.
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II. PROCEDURE OF CHOOSING PAPER

The initial database search identified 52 papers that appeared relevant to our subject. After applying inclusion and
exclusion criteria, 40 peer-reviewed studies were retained for review. The studies considered in this review include
multimodal Al systems for accessibility [6][8][13][14][20][21][23-25], Al for wearable assistive devices [6][9][12],
robotics and rehabilitation systems [9][20], multimodal navigation and interaction [4][10][13], and cognitive/audio
learning systems [14][15]. This paper cites 47 references, focusing on Al methods relevant to accessibility, human
computer interaction, and multimodal assistive technologies [11][17][18][26].

The distribution of selected references by publication year is illustrated in Fig. 1, while the categorization of research focus
areas in Al-driven assistive technologies is depicted in Fig. 2. The trend of Fig.1 shows a sharp rise in Al accessibility
research after 2023, indicating strong timeliness, while Fig. 2 outlines the core Al fields including NLP, CV, RL, and
LLMs, mapped to disability domains.

Distribution of Selected References by Year (2022-2025)

1af
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Fig 1. Number of selected references (2022-2025)

2.1 Methodological Rigor

To ensure scientific validity, paper selection followed the PRISMA systematic review guidelines as illustrated in Fig 3.
Inclusion criteria required (i) publication between 2023-2025, (ii) empirical validation or technical framework, and (iii)
direct focus on Al-driven accessibility. Exclusion criteria removed duplicate studies and non-peer-reviewed content. A
four-stage process was applied: identification, screening, eligibility, and inclusion, as shown in Fig. 3. To quantify im-
pact, the proposed Accessibility Impact Score (AIS) was calculated as:

AlS =~ 30, Uy X E; 0

Where U; represents usability ratings (e.g., SUS survey scores) and E; denotes effectiveness (task accuracy, mobility
gains, or learning outcomes).
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Fig 2. Categorization of research focus areas in Al- driven assistive technologies.

The Accessibility Impact Score (AIS) was adapted from established evaluation frameworks in assistive technology
research [21][22]. It provides a simple, interpretable scale  (0—5) to compare accessibility features across technologies,
where higher scores indicate broader inclusivity.

Interpretation of AIS values: Scores of 0—1.5 indicate low accessibility impact (minimal usability and effectiveness),
values between 1.6-3.0 represent moderate impact (effective but with no TABLE limitations), and scores of 3.1-5.0
correspond to high impact (broad usability and strong real-world effectiveness). This classification enables consistent
comparison of accessibility technologies across domains. This rigorous approach strengthens reproducibility and
highlights novelty compared to earlier reviews [4] [6] [8].
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Fig 3. PRISMA—style flow diagram of study selection

III. ARCHITECTURE FOR ACCESSIBILITY FRAMEWORK

The workflow architecture for Al-Based Accessibility Framework shown in Fig. 4 demonstrates how multimodal user
inputs are transformed into meaningful assistive outcomes for individuals with disabilities. The process begins with the
Input Layer, where text entries, voice commands, visual inputs, and physiological sensor data such as EEG
(Electroencephalography) or BCI (Brain Computer Interface) signals are captured [1][10][27]. These data streams are
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processed in the Al Processing Layer, leveraging techniques like NLP, LLM, ML, and CV to interpret, classify, and adapt
responses to user-specific needs [13][28][29]. The interpreted data then flows into the Assistive Tools and Devices Layer,
enabling applications such as STT (Speech-to-Text) converters, adaptive e-learning platforms, robotic wheelchairs, EXO
(Exoskeletons), and SG (Smart Glasses) with scene recognition [6][9][20]. Finally, the Output Layer delivers enhanced
accessibility outcomes, including improved mobility, independent navigation, personalized education. and enriched
communication for users [25][28]. Beyond individual benefits, this framework promotes social inclusion by bridging gaps
in communication, education, and mobility for people with disabilities. Its modular nature allows easy integration of new
Al innovations, such as BCI (Brain Computer Interface) and MML (Multimodal Learning Systems), to expand real-world
applications [8, 4]. Moreover, the workflow supports scalability for diverse environments, from urban smart cities to rural
communities, enabling global adoption and ensuring Equitable access to technology. Collectively, this architecture
represents a transformative pathway toward building an inclusive, Al-driven society where assistive technologies are
proactive, intelligent, and context-aware.

domains such as speech recognition, gesture detection, object tracking, and sign language interpretation. For instance,
datasets like SL-MNIST (Sign Language Modified National domains such as speech recognition, gesture detection, object
tracking, and sign language interpretation. For instance, datasets like SL-MNIST (Sign Language Modified National
Institute of Standards and Technology Dataset) and RWTH- -domains such as speech recognition, gesture detection,
object tracking, and sign language interpretation. For instance, datasets like SL-MNIST (Sign Language Modified
National domains such as speech recognition, gesture detection, object tracking, and sign language interpretation. For
instance, datasets like SL-MNIST (Sign Language Modified National Institute of Standards and Technology Dataset)
and RWTH- - PHOENIX (Rheinisch-Westfa lische Technische Hochschule Phoenix Sign Language Corpus) empower
Machine Learning models to translate sign gestures for the hearing impaired [30]-[32]. Open-SLR (Open Speech and
Language Resources) and VGG-Sound enhance speech based assistive technologies like voice-controlled aids and reading
tools for the visually impaired [33][34]. Datasets such as Gaze-capture and Ego-hands assist in building Al systems for
mobility or hand gesture control [35][36], while Wheelchair Detection Dataset supports navigation and environment
understanding for users with mobility impairments [37]. Together, these datasets form the backbone of Al-driven
accessibility tools, enabling researchers and developers to build more personalized, inclusive, and effective assistive
technologies for individuals with diverse disabilities.
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Fig 4. Block diagram of Al-Based accessibility framework

To support the development of inclusive and intelligent assistive systems (see Appendix A for detailed dataset
descriptions), numerous open datasets have emerged across 3.1 Highlights of Paper Using MultiModal Dataset:
Rashmi and Mohanty [1] demonstrated that wearable Al vision systems trained on multimodal camera datasets
enhanced real-time obstacle detection and improved navigation safety. Padilla and Kumar [21] showed that speech-to-
text datasets with noise augmentation significantly improved transcription accuracy for deaf and hard-of-hearing users.
Sarker et al. [20] integrated sensor fusion and movement datasets to develop adaptive rehabilitation exoskeletons for motor-
impaired individuals. Yang and Taele [14] utilized adaptive audio learning datasets to increase engagement and
comprehension for students with cognitive disabilities. The key studies and their technical contributions are summarized
in Table I.
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3.1 Highlights of Papers Using Device-Captured Data:

Refer Table 1 for an overview of key contributions from device-captured datasets in assistive Al research.
These studies highlight how real-world data from wearables, sensors, and brain computer interfaces enable
advancements in mobility, communication, and independent living. Brilli et al. [6] achieved high accuracy in
scene description and text recognition using Artificial Intelligence-powered wearable assistive device (Airis) datasets.
Padmanabha et al. [25] leveraged Large Language Modules-Glasses recordings to generate context-aware navigation
instructions for visually impaired users. EEG/BCI (Electroencephalography/Brain—Computer Interface) datasets
[8][27] enabled hands-free control and communication for users with severe motor impairments. Combined device-
captured datasets support contextual Al decision-making, bridging gaps in mobility, communication, and independent
living.

3.2 Feature Selection Techniques in AI Accessibility:

Feature selection plays a pivotal role in the development of Al-powered accessibility tools for individuals with
disabilities. By identifying and prioritizing the most informative features from visual data, auditory signals, movement
sensors, and brain computer inter- face (BCI) recordings, researchers can enhance model accuracy while reducing
computational overhead. Refer Appendix A, Table 3, for a summary of key feature selection techniques, algorithms, and
their applications in assistive Al. Optimized feature selection ensures that Al models focus on critical accessibility cues,
such as obstacle edges for vision impaired navigation, phonemes for hearing-impaire communication, models to translate
sign gestures for the hearing impaired [30]-[32]. Open-SLR (Open Speech and Language Resources) and VGG-Sound
enhance speech based assistive technologies like voice-controlled aids and reading tools for the visually impaired
[33][34]. Datasets such as Gaze-capture and Ego-hands assist in building Al systems for mobility or hand gesture control
[35][36], while Wheelchair Detection Dataset supports navigation and environment understanding for users with mobility
impairments [37]. Together, these datasets form the backbone of Al-driven accessibility tools, enabling researchers and
developers to build more personalized, inclusive, and effective assistive technologies for individuals with diverse
disabilities.

3.3 Highlights of Papers Using Multimodal Datasets:

Rashmi and Mohanty [1] demonstrated that wearable Al vision systems trained on multimodal camera datasets
enhanced real-time obstacle detection and improved navigation safety. Padilla and Kumar [21] showed that speech-to-
text datasets with noise augmentation significantly improved transcription accuracy for deaf and hard-of-hearing users.
Sarker et al. [20] integrated sensor fusion and movement To support the development of inclusive and intelligent assistive
systems (see Appendix A for detailed dataset descriptions), numerous open datasets have emerged across and motor
signal patterns for adaptive robotic assistance [6][8][14][20].

3.4 Highlights of Papers Using Feature Selection Techniques:

Brilli et al. [6] utilized embedded deep learning feature extraction to identify essential visual cues for real-time navigation
in wearable Al devices. Sarker et al. [20] applied Principal Component Analysis (PCA) to eliminate redundant sensor
data, enhancing adaptive control in robotic exoskeletons. EEG/BCI (Electroencephalography/Brain—Computer Interface)
studies [8][27] implemented Mutual Information (MI) and advanced signal filtering to select the most informative
brainwave features for hands-free communication Integrated approaches combining Recursive Feature Elimination
(RFE) and tree-based selection optimized both motor and visual accessibility models in edge-computing scenarios. As
summarized in Appendix A,Table III, these studies demonstrate how diverse feature selection methods can reduce
computational overhead while improving the responsiveness and reliability of Al-based assistive technologies.
Collectively, these feature selection strategies enable high accuracy, low latency, and efficient processing, making Al-
driven assistive tools reliable, responsive, and effective across visual, auditory, and motor impairment applications.

IV. RESULTS AND ANALYSIS

For clarity, we condensed the tabular results to high- light only the most essential datasets and performance metrics.
Supplementary TABLEs are provided in the appendix.This study synthesizes insights from the 40 selected research
papers, translating their findings into a comparative analysis of Al-driven accessibility solutions[1][3]-[47]. evaluation
focuses on how various Al subfields computer vision, natural language processing, reinforcement learning, and large
language models enhance independence, mobility, communication, and learning for individuals with disabilities
[17[41112][21][38][39]. The results are presented across four primary domains: visual, auditory, motor, and cognitive
accessibility, high- lighting the practical impact of state-of-the-art Al tools and frameworks as reported in the reviewed
literature [2][3][5].
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TABLE 1. HIGHLIGHTS OF MULTIMODAL AI STUDIE
Feature . . o
Author Method Selection Algorithm Used Key Contribution

Brilli et al. [6]

CNN (Convolutional
Neural Network) feature
extraction + PCA
(Principal Component
Analysis)

CNN (Convolutional
Neural Network)

Developed Artificial Intelligence powered

wearable assistive device (Alris wearable

device) for real-time scene description and
text recognition for navigation [12].

Smithson et
al. [8]

MI (Mutual Information)
+ SVM-RFE (Support
Vector Machine
Recursive Feature

SVM (Support
Vector Machine)

Enabled hands-free communication and
device control using EEG
(Electroencephalography) / EOG
(Electrooculography) signals captured in

Elimination) realtime [18].
Tokmurzivev Multimodal Transformer-based Generated context-aware navigation
etal [13y] embedding + Attention LLM (Large instructions using device-captured visual and
) Language Model) textual data [4].
MFCC (Mel—Freguency . Enhanced personalized audio-learning
Cepstral Coefficients) + Adaptive Deep . oo e .
Yang et al. [14] . experiences for cognitive accessibility using
Temporal Feature Ex- Learning .
) device logs [15].
traction
RFE.(R.ecu.rswe Feature RL(Reinforcement | Optimized motor signal features for adaptive
Sarker et al. [20] Elimination) + Tree . . e
. Learning) robotic exoskeletons for rehabilitation [9].
based selection
CV (Computer
. Embedded Feature Ex- Vision) + RL Improved smart wheelchair navigation using
Naayini et al. [21] . . . . ot .
traction (Reinforcement reinforcement learning with visual inputs.
Learning)

YOLOVS5 (You Only
Look Once, version

System [25]

- . . Improved urban accessibility by mapping
+
Accessibility Edge detection ‘Spatlal 5) + CNN realworld paths from device-captured
Scout [23] feature selection . .
(Convolutional environment scans [26].
Neural Net- work)
Ahmed Baig RFE (Recursive Feature ViT (Vision Enhanced outdoqr obstacle de‘gectlon using
L hat-mounted device-captured video streams
et al. [24] Elimination) Transformer) [17]
Frame-level feature ex- CII:]I:L Egoggtl;gflgal
Pilot traction + PCA Provided real time device-captured video
“VideoAlly” [24]| (Principal Component * RNN (Recurrent captioning for hearing-impaired users [11]
y gnal sis)p Neural Network) P & g-1mp ’
Y Hybrid
MATE (Multi-
modal Adaptive
Technology RFE (Recursive Feature| MDL (Multimodal Enabled adaptlve.cross—modal 1nter.act10ns
For Education Elimination) Deep Learning) from logs of device-captured multimodal
/ Assistive P & inputs [10].
Environments)
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Usage of Al Technologies Across Disability Types

Motar Visusl fuditary Cogritive
Disability type

Fig. 5. Al technologies used by each disability type [12]

Fig. 5, illustrates the variety of Al tools designed for visual accessibility, highlighting the growing shift from passive
assistive devices to proactive, intelligent systems. These solutions do more than just recognize objects they actively
interpret and contextualize environments for the user. For instance, wearable Al glasses can provide detailed scene
descriptions, alert users to moving obstacles, and even identify the emotional expressions of people nearby, enabling
richer social interactions. Smartphone-based applications with integrated YOLO based detection and LLM driven
reasoning can guide users through crowded streets, assist in locating specific items in stores, or read textual content on
signboards and documents in real time. Furthermore, the combination of multimodal feedback including haptic
vibrations for immediate hazard alerts and voice- based narration for contextual understanding ensures that users receive
comprehensive environmental awareness. Such advancements not only support safer navigation but also empower
visually impaired individuals to engage more independently in education, employment, and social activities, effectively
bridging long- standing accessibility gaps. The growing ecosystem of Al-powered visual tools demonstrates how
intelligent systems are transforming visual impairment sup- port from basic assistance into an experience of active,
context-aware, and inclusive mobility.

4.2 Al for Auditory Impairments

Al-driven speech recognition and real-time transcription tools, such as Audio Sight, play a transformative role in enabling
communication for people who are deaf or hard of hearing (refer Fig. 6) [13][14]. These systems utilize automatic speech
recognition (ASR), noise suppression algorithms, and NLP to generate accurate captions in real-time, even in noisy
environments [11][29]. These applications allow users to fully participate in social and professional interactions.

Al Tool Distribution by Disability Type

Visual Auditory

12.0% 20.0%

28.0%
40.0%

Motor

Cognitive

Fig. 6. Al tool distribution by disability type

Advanced auditory Al tools can also translate speech into sign language animations or generate context aware visual
notifications on smart devices. As Fig. 6, highlights, auditory Al solutions are a significant presence in the accessibility
ecosystem, providing instant captioning and live subtitles for various events. These systems also support environmental
awareness by detecting critical sounds like alarms, doorbells, or approaching vehicles. Advanced tools are integrated
with multimodal feedback mechanisms, enabling alerts through visual notifications or subtle haptic vibrations. The ability
to operate in low-bandwidth or offline scenarios has further enhanced their usability. Overall, the growth of auditory Al
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demonstrates a shift from isolated assistive tools to intelligent, interconnected ecosystems that redefine accessibility for
the deaf and hard-of- hearing community.

4.3 Al for Motor Impairments
Al enabled smart wheelchairs, robotic prosthetics, and exoskeleton systems enhance independence and mobility for
individuals with motor impairments (as shown in Fig. 7.) [9][20][40]. These technologies integrate sensor fusion,
computer vision, and reinforcement learning to interpret environmental data and user intent, providing smooth navigation
and adaptive motion assistance.

Al Technologies Used by Each Disability Type

Al Tech Distribution for Visual Al Tech Distribution for Augitory

Reinforcement Learing Reinforcement Learring

na% 70.0% s

200%

s 33.3%
60.0%

e
Al Tech Distribution for Mator Al Tech Distributian for Cognitive
Compuler Vision

Reinforsement Learning ]

135 10.0%
25.6%
Reinfercement Leaming

o 50.0%

Genarative Al

Fig. 7. Comparison of Al technology usage by disability type [20]

Fig. 7. compares the adoption of Al technologies across different disability types, drawing attention to the increasing
prominence of motor-assistive Al. These solutions play a critical role in supporting individuals with spinal cord injuries,
neuromuscular disorders, or post-stroke mobility limitations, enabling them to regain functional independence. Motor
focused Al systems encompass a wide range of applications, including robotic exoskeletons, Al-driven prosthetic limbs,
adaptive wheelchairs, and rehabilitation robotics that assist in performing precise movements or repetitive exercises
tailored to a user’s condition. Through the integration of machine learning and sensor fusion technologies, these systems
can monitor gait patterns, predict motion intent, and adapt in real time to the user’s physical capabilities, thereby enhancing
both safety and effectiveness. Additionally, emerging brain computer interface (BCI) solutions are transforming mobility
support by allowing users to control wheelchairs, robotic arms, or home automation systems through neural signals,
further reducing dependency on caregivers. By promoting personal mobility, rehabilitation efficiency, and autonomous
interaction with the environment, motor assistive Al not only improves the quality of life for users but also fosters long-
term social participation and inclusion in work, education, and public life.

4.4 Al for Cognitive Impairments and Education

Advanced Al systems, including Large Language Models (LLMs), reinforcement learning, and adaptive educational
platforms, provide personalized support for learners with cognitive challenges (illustrated in Fig. 8.) [2][10][15][21].
These tools can dynamically adjust learning content, pace, and modality based on user performance and engagement.
Cognitive Al applications include memory aids, Al-powered tutors, gamified therapy tools, and reading comprehension
assistants. LLM-based dialogue systems further support neuro divergent learners by providing context-aware prompts,
reminders, and emotional support.

Fig. 8. illustrates the integration of Al tools in inclusive education, demonstrating how technology is reshaping learning
environments for students with diverse cognitive and learning needs. Al-powered educational systems provide
personalized learning paths, real-time speech-to-text note-taking, and adaptive quizzes, which are particularly effective
for learners with dyslexia, ADHD, autism spectrum disorders, or memory impairments. By analyzing individual
performance and engagement patterns, these systems dynamically adjust lesson difficulty, suggest targeted exercises,
and highlight areas requiring additional support. Advanced tools also incorporate multimodal content delivery, offering
visual, auditory, and interactive feedback to ensure that students can absorb information in the way that best suits their
cognitive style. Moreover, features such as automatic summarization, Al-driven tutoring, and predictive learning
assistance foster both confidence and self-paced learning, reducing reliance on human intervention. The broader impact
of these Al-driven educational solutions extends beyond academic performance, promoting independence, long-term
retention, and inclusive participation in both virtual and physical classrooms.

© 1JARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 159


https://ijarcce.com/
https://ijarcce.com/

IJARCCE ISSN (0) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :: Peer-reviewed & Refereed journal :: Vol. 14, Issue 9, September 2025
DOI: 10.17148/IJARCCE.2025.14919

Comparison of Al Technology Usage by Disability Type
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4.5 Overall AI Impact

Al technologies collectively enhance independence, communication, and participation across all major categories of
disabilities (depicted in Fig. 9) [1][3][5]. By combining computer vision, natural language processing, multimodal
learning, and reinforcement learning, Al transforms traditional assistive devices into intelligent, proactive support
systems [6][9][20]. Applications like LLM-Glasses, smart canes, Audio Sight transcription tools, and adaptive
exoskeletons exemplify how Al bridges accessibility gaps in real-world environments [7][40][46].

A Technologies Used by Each Disability Type
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Fig. 9. Overall Distribution of Al Accessibility Tools

Fig. 9. presents the overall distribution of Al accessibility tools across multiple disability categories, offering a
comprehensive overview of how assistive technologies are evolving. Visual and motor-focused Al applications currently
dominates, largely due to advancements in computer vision, wearable navigation systems, robotic exoskeletons, and
smart mobility aids that directly address the daily mobility and safety challenges faced by users with visual or motor
impairments. These tools have achieved widespread adoption in real- world scenarios, including indoor navigation,
obstacle detection, autonomous wheelchairs, and rehabilitation robotics, highlighting their tangible impact on
independence and quality of life. Meanwhile, cognitive and auditory Al tools are experiencing steady growth, fueled by
innovations in natural language processing, real-time transcription, adaptive learning systems, and context- aware
notifications. This trend reflects the increasing importance of multimodal and cross sensory Al solutions, where visual,
auditory, and haptic feedback are combined to create inclusive and high impact accessibility experiences. Overall, the
distribution pattern underscores a global movement toward Al-powered inclusivity, with future developments expected to
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close the adoption gap for cognitive and auditory assistive technologies while further strengthening mobility and
environmental awareness solutions.

4.6 Formula Used for Impact Measurement
AIS values were computed (see Section 2.1 for definition and interpretation), providing a comparative measure of

usability and effectiveness across different Al- based assistive technologies.
- Accessibility Impact Score (AIS) for Al Tools by Disability Type
Disability Type
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Fig. 10. Accessibility Impact Score (AIS) Across Different Al Tools [28]

As shown in Fig. 10, wearable devices such as the Artificial Intelligence-powered wearable assistive device (Alris)
and LLM-Glasses achieved the highest AIS scores, reflecting their strong real-time responsiveness and high user
satisfaction. In contrast, tools designed for cognitive and auditory support exhibited slightly lower scores due to usability
challenges and higher learning curves. Overall, multimodal Al systems that integrate computer vision, NLP, and
reinforcement learning consistently demonstrated the greatest accessibility impact, offering valuable guidance for
prioritizing future research and development.

V. FUTURE SCOPE

The domain of Artificial Intelligence in accessibility is poised for transformative change, offering unprecedented potential
to enhance independence, inclusion, and quality of life for people with disabilities. Current assistive technologies are
evolving from passive tools to intelligent, context sensitive systems that can autonomously adapt to a user’s
surroundings, habits, and needs [1][21][38][39]. This aligns with the broader goal of creating a fully inclusive digital
society, where technology bridges rather than widens accessibility gaps [4][12].

Emerging technologies such as brain computer interfaces and electrooculography-based control systems are expected to
revolutionize motor and communication accessibility. These tools can enable individuals with severe motor impairments
to interact with devices, man- age smart environments, and operate hands free, offering a new level of autonomy [2][5].
Integrating brain—computer interfaces with robotic exoskeletons, smart wheelchairs, and adaptive prosthetics promises
fully personalized mobility solutions that respond to neural or muscle signals in real time. Multimodal Artificial
Intelligence systems, which combine visual perception, speech analysis, haptic feedback, and physiological signal
monitoring, will allow seamless and adaptive human—machine interaction [3][20][25]. These systems are critical for
cognitive and sensory accessibility, enabling Al to respond intelligently to context for instance, providing route guidance
through voice and touch feedback for visually impaired users or generating real-time captions and sign language
translations for hearing-impaired individuals [13][14].

Deployment of low-power edge Artificial Intelligence devices will expand accessibility to rural and resource
constrained areas where cloud connectivity is limited. By processing data locally, these devices reduce latency, improve
reliability, and preserve user privacy, making Al tools practical for daily life [6][8]. This is especially significant in
countries such as India, where many individuals with disabilities reside in rural regions with limited access to high speed
internet [26][44]. The next generation of Al accessibility solutions will also target mental health, emotional support, and
social inclusion. Artificial Intelligence driven emotion recognition, conversational agents, and therapeutic virtual reality
environments can alleviate psycho logical challenges, fostering social and digital inclusion [16][42]. Personalized adaptive
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learning platforms using reinforcement learning and large language models will continue to transform special education
and cognitive rehabilitation for neuro divergent users [9][30].

Emerging trends suggest that Al in accessibility will evolve from supportive aids into empathetic, context sensitive
ecosystems. Key directions include:
*  Brain—Computer Interface Integration: Combining brain computer interfaces with robotic exoskeletons and
smart wheelchairs for seamless mobility support [31].
*  Multimodal Artificial Intelligence: Integrating visual, auditory, tactile, and cognitive signals for real-time,
adaptive accessibility across domains [27][32].
+ Edge Artificial Intelligence Deployment: Low power devices performing real-time accessibility functions in
rural or low-connectivity regions [34][43].
* Inclusive Design: Participatory development in- volving people with disabilities to reduce algorithmic bias and
ensure ethical Al adoption [35][36][37].
This forward-looking approach positions Al not only as a compensatory tool but as a transformative driver of independence,
social inclusion, and equitable access. Possible future research directions include:
e Developing brain—computer interface-integrated smart assistive devices for hands free interaction and adaptive
mobility.
e Designing multimodal artificial intelligence systems that integrate visual, auditory, tactile, and cognitive support
in a unified framework.
e Deploying edge artificial intelligence and energy- efficient models for real-time accessibility in low-
connectivity regions.
e Creating mental wellness and emotional support tools to enhance social inclusion and user wellbeing.
e  Ensuring privacy preserving and ethically driven Al development through participatory design with disability
communities.
e  Advancing cross-border interoperability and inclusive Al development through global standardization.
These developments collectively point toward an Al-driven accessibility future where technology does not merely fill
gaps but enhances human capabilities. Through integrated multimodal systems, ethical innovation, and user centered
design, Al will foster a culture where technology is inclusive by default, enabling independence, equity, and universal
participation.
Overall, the distribution pattern underscores a global movement toward Al-powered inclusivity, with future developments
expected to close the adoption gap for cognitive and auditory assistive technologies while further strengthening mobility
and environmental awareness solutions.

VI. ETHICAL CONSIDERATIONS

Al-driven assistive technologies bring tremendous potential to improve accessibility, but they also raise important ethical
concerns. First, the collection of sensitive data such as speech recordings, mobility patterns, and brain computer interface
(BCI) signals requires strong safeguards for privacy and informed consent [18]. Second, fairness and inclusivity must be
ensured, since biased datasets may disadvantage individuals from underrepresented linguistic, cultural, or disability
groups [26]. Transparency and explainability are also critical, as users and caregivers must be able to trust and
understand Al-generated outputs that affect mobility, communication, and healthcare decisions. Finally, long term
deployment of assistive systems should consider accessibility across socioeconomic contexts, avoiding solutions that only
benefit users in high resource settings. Addressing these ethical challenges is essential for building responsible and
Equitable Al systems that truly advance accessibility.

VII. SUMMARY OF RESEARCH PAPER

This systematic review synthesized findings from 40 peer-reviewed studies, selected from an initial pool of 52 works
published between 2023 and 2025, to examine how Artificial Intelligence (Al) is advancing accessibility for individuals
with disabilities. While 40 studies were included in the final analysis, the complete reference list of this paper contains
47 entries, as it also includes datasets, frameworks, and supporting resources. Earlier assistive approaches relied on
traditional tools such as screen readers and mechanical devices, but recent trends show a decisive shift toward intelligent,
Al-driven systems. Innovations such as wearable vision aids, real-time transcription services, adaptive learning
platforms, robotic exoskeletons, and brain computer interface devices demonstrate how Al can empower users with
greater autonomy and inclusion in daily life. Globally, over one billion people live with some form of disability, with India
alone accounting for tens of millions facing barriers to education, healthcare, and employment. Al-based accessibility
solutions have the potential to close these gaps by offering adaptive, context aware support that can scale across diverse
environments.
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The studies reviewed span four main domains visual, auditory, motor, and cognitive accessibility highlighting the
role of computer vision for image and video analysis, natural language processing for speech and text understanding,
reinforcement learning for adaptive decision-making, and large language models for contextual reasoning. The proposed
workflow architecture integrates multimodal inputs such as speech, visual data, tactile feedback, and neural signals into
processing layers powered by ma- chine learning, natural language processing, and large language models, producing
outputs like navigation assistance, adaptive e-learning, and speech-to-text conversion. Feature selection techniques,
including Principal Component Analysis and Recursive Feature Elimination, were found to improve accuracy, reduce
latency, and optimize Al performance in real-time assistive contexts.

Applications illustrate the breadth of AI’s contribution: wearable vision systems such as Al-powered glasses deliver
real-time scene understanding for visually impaired users; auditory accessibility is supported by advanced transcription
and speech-to-text tools; motor impairments benefit from adaptive exoskeletons and Al-driven prosthetics; and cognitive
accessibility is enhanced through Al tutors, memory aids, and personalized e-learning platforms. To evaluate impact,
this re- view introduced the Accessibility Impact Score, a composite metric combining usability and effectiveness.
Multimodal AI systems that integrate computer vision, natural language processing, and reinforcement learning
consistently achieved the highest scores, showing measurable improvements in independence, safety, and quality of life.
In summary, the review positions Al as a transformative force in accessibility, elevating assistive devices from basic
compensatory aids into intelligent, proactive, and context sensitive companions. At the same time, persistent challenges
such as algorithmic bias, privacy risks, and high implementation costs remain. Ethical considerations including data
privacy, fairness across disability groups, inclusivity in design, and accessibility in low-resource settings are essential for
responsible adoption. Looking ahead, emerging directions such as brain computer interface integration, multimodal
learning, and low power edge Al devices are poised to deliver universally accessible and Equitable technologies for
diverse disability communities world- wide.

VIII. CONCLUSION

This review demonstrates how Artificial Intelligence (AI) is reshaping accessibility by transforming assistive
technologies from compensatory tools into proactive, intelligent, and context aware systems. From an initial pool of 52
works (2023-2025), 40 peer-reviewed studies were systematically analyzed, with a final reference list of 47 entries
incorporating both applied research and supporting datasets. This ensures a comprehensive and reproducible evaluation
of the field. The findings indicate that Al-powered applications enhance independence, communication, learning, and
mobility across multiple disability domains. For visual impairments, computer vision, wearable navigation aids, and Al-
driven object recognition systems show strong maturity and real-world deployment, though future work should prioritize
low-power edge Al to expand bene- fits into rural and low-connectivity areas. In the motor domain, robotic exoskeletons,
prosthetics, and adaptive wheelchairs demonstrate high effectiveness, with future research needed on brain computer
interface (BCI) integration and cost reduction to improve large-scale adoption.

For auditory impairments, transcription systems, adaptive speech recognition, and multimodal captioning tools expand
communication opportunities but still face challenges in noisy and multilingual environments; here, robust ASR and Al-
driven sign language translation represent important future directions. Cognitive impairments benefit from Al-driven
tutors, memory aids, and adaptive e-learning platforms, though these remain underexplored in large-scale trials, calling for
reinforcement learning—driven personalized rehabilitation and greater attention to neuro diverse learners. The proposed
Accessibility Impact Score (AIS) underscores that technical accuracy alone is insufficient, as usability, adaptability, and
real-world effectiveness are equally critical. AIS analysis further shows that multi- modal systems integrating vision,
speech, haptics, and brain computer interface signals consistently achieve the highest impact. Looking ahead, progress
in Al- driven accessibility will depend on ethical data practices, participatory design with disability communities, and
culturally inclusive frameworks to reduce bias. By addressing domain-specific gaps while fostering multi- modal, edge
enabled, and user centered innovations, Al can evolve from supportive aids into inclusive ecosystems that ensure
Equitable participation, independence, and dignity for people with disabilities worldwide.
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APPENDIX A

Supplementary Dataset and Feature Selection Table
TABLE II. PUBLICLY AVAILABLE MULTIMODAL AND ASSISTIVE DATASETS

Dataset .
(Abbreviation) Source Total Samples Access Link
80 Hours Sign
How2sign Carnegie Mellon Videos+16,000 ) . . .
(How2sign) [30] University Gloss https://how2sign.github. io/
Annotations
. . . . 124 Subjects, . . <o
Casia Gait (Casia- | Chinese Academy of > | http://www.cbsr.ia.ac.cn/english/Gait%20Databas
. . . 20,000 + Gait
Gait) [20] Sciences (Casia) es. asp
Sequences
Sign Language )
Mnist (SI- Mnist) Kaggle 27,455 Images hitp s.//ww.kaggle. com/d.a tamunge/
[32] sign-language-mnist
Rwth-Phoenix Rwth Aachen 8,000 + Sign https://www-i6.informatik.rwth-aachen.
[31] University Language Videos de/~koller/RWTH-PHOENIX/
50+
Open Speech and )
Open-SLR [33] Language Resources Spee](:)};f;:;%uage https://www.openslr.org/

Embci [27]

Physionet /
Massachusetts General
Hospital

1,600 Eeg Trials

https://physionet.org/ content/eegmmidb/1.0.0/

Ego-Hands (Ego-
Hands) [36]

Georgia Tech /
Indiana University

4,800 Frames

http://vision.soic. indiana.edu/projects/ egohands/

~2.5 million

MIT (Massachusetts . ) oo
Gaze-Capture [35] Institute of Technology) Eye- Tracking http://gazecapture.csail. mit.edu/
Frames
Urbansound8k L . https://urbansounddataset.
(US8K) [43] New York University | 8,732 Audio Clips weebly.com/urbansound8k. html
Wheelchair
Detection Georgia Institute of ~22,000 https://universe.roboflow. com/roboflow-100/
(Wheelchair- Technology Annotated Images wheelchair-detection
Dataset) [37]
VGG-Sound
(Visual Geometry . . 200,000 Video- hitps: K~
Group- Sound) University Of Oxford Sound Pairs ttps://www.robots.ox.ac. uk/~vgg/data/vggsound/
[34]
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TABLE III. FEATURE SELECTION TECHNIQUES IN AT ACCESSIBILITY

Author Featlll\;i tif:)lsctlon Algorithm Used Key Contribution
CNN Feature
Extraction CNN Developed Artificial Intelligence-Powered
Brilli Et AL [6]| + PCA (Principal (Convolutional Wearable Assistive Device (Airis) For Real-Time
Com- Ponent Neural Network) Scene Description and Text Recognition.
Analysis)
RFE (Recursive
Sarker Et Al. | Feature Elimination) | RL (Reinforcement  Optimized Motor Signal Features for Adaptive
[20] + Tree Based Learning) Robotic Exoskeletons.
Selection
Tokmurziyev Multlmoldal Transformer- Generated Context-Aware Navigation Instructions
Embedding Based Large Using Device-Captured Data
Et Al [13] + Attention Language Module & P ’
MI (Mutual
Smithson Information) Enabled Hands-Free Communication and Control
+ SVM-RFE SVM (Support .
. Using EEG (Electroencephalography)/ EOG
Et AL [8] (Support Vector Vector Machine) (Electrooculography) Signals
' Machine — Recursive ’
Feature Elimination)
MFCC (Mel Adaptive
Yang Et Al. | Frequency Cepstral P De Enhanced Personalized Audio-Learning for
[14] Coefficients) + Learni Cognitive Accessibility.
Temporal Extraction °p Learning
LDA (Linear
Discriminant CNN
Garcia Et AL Analysis) + PCA . Enhanced Emotion and Cognitive State Recognition
[23] (Principal (Convolutional for Cognitive Support Tools
Neural Network) '
Component
Analysis)
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