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Abstract: Artificial Intelligence (AI) is transforming assistive technologies into intelligent systems that enhance 

accessibility across visual, auditory, motor, and cognitive domains. This review examined 52 works published between 

2023 and 2025, with 40 peer-reviewed studies systematically analyzed using PRISMA guidelines. The Accessibility 

Impact Score (AIS) was introduced as a novel framework to evaluate usability and effectiveness. Findings show that AI-

powered tools such as smart glasses, adaptive exoskeletons, and multimodal learning platforms outperform traditional 

assistive devices. Visual and motor applications achieved the highest AIS values, while auditory and cognitive tools 

demonstrated strong emerging potential. The integration of multimodal AI, including voice, vision, haptics, and brain–

computer interfaces, enables proactive and context-aware support. These results highlight AI’s role in enhancing 

independence, social participation, and quality of life. The review also emphasizes the importance of open datasets for 

reproducibility and the need for ethical, inclusive, and scalable adoption of AI in accessibility. Overall, AI offers a 

paradigm shift toward inclusive, human-centered assistive systems with potential applications in healthcare, education, 

and daily living. 
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Learning. 
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I.     INTRODUCTION 

 
Disabilities encompass a range of physical, sensory, cognitive, and mental health conditions that significantly impact 

daily functioning and access to opportunities. Individuals with disabilities often face systemic exclusion from education, 

employment, health- care, and public infrastructure, particularly in rural regions where nearly 69% of India’s disabled 

population resides [1]. Despite advances in policy and awareness, accessibility remains a significant challenge. Social 

stigma and a lack of inclusive design in both digital and physical environments further marginalize these individuals. 

These realities underscore the need for technological invention, particularly through artificial intelligence to provide 

Equitable access and enhance independence. Inclusive, AI-driven solutions have the potential to transform quality of life 

on a scale. In today’s digital era, equal participation in society depends on inclusive access to information and 

communication technologies. For individuals with disabilities, this inclusion is often limited by systemic barriers. 

However, recent breakthroughs in Artificial Intelligence (AI) are reshaping how people with disabilities interact with their 

environments, offering new levels of autonomy and engagement. Innovations such as intelligent screen readers, voice-

controlled assistants, autonomous mobility devices, and personalized learning platforms are transforming accessibility 

across domains like education, mobility, and communication [2]-[4]. These AI-driven solutions are not just tools they 

are path- ways to independence, helping to bridge long-standing accessibility gaps and fostering a more Equitable digital 

future. 

 

The World Bank has highlighted that disability prevalence in India may be considerably higher than official national 

estimates, suggesting that between 5-8% of the country’s population could be living with some form of disability [5]. 

This translates to a staggering 40 to 90 million individuals, underscoring the magnitude of disability as a major public 

health and social inclusion challenge. Such global estimates are often regarded as more comprehensive because they 

account for under reporting and differences in definitions that frequently affect national level surveys. Recognizing this 

broader perspective is important, as it places India’s dis- ability burden within an international context and emphasizes the 

need for more accurate measurement tools, standardized reporting practices, and inclusive policy frameworks that 

adequately reflect the lived realities of people with disabilities across diverse regions. 
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Artificial Intelligence (AI), in this context, refers to technologies designed to emulate human cognition and automate 

tasks such as perception, decision-making, and learning. In disability-focused applications, AI plays a pivotal role in 

creating assistive technologies that enhance daily life for individuals with impairments. For instance, AI-powered systems 

have been integrated into smart canes and wearable devices that assist the visually impaired in real-time obstacle detection 

and navigation [6][7]. AI has also enabled hands-free interaction systems tailored for individuals with motor disabilities 

and predictive tools for cognitive assistance [3][8][9]. These implementations highlight the significance of AI in fostering 

autonomy and accessibility across diverse needs. 

 

Artificial Intelligence (AI) has increasingly enabled natural language based assistive technologies by merging the 

capabilities of Natural Language Processing (NLP) and Large Language Models (LLMs) into a unified framework. Recent 

advances in NLP, driven largely by LLMs, have transformed accessibility applications. Today, NLP and LLMs are not 

considered separate domains but part of a unified ecosystem for understanding and generating human language. These 

systems allow machines to understand, generate, and respond to humanlanguage, facilitating communication, navigation, 

and learning for individuals with disabilities. Applications include voice assistants and real-time captioning tools for 

hearing-impaired users [10][11], conversational agents that guide visually impaired individuals through complex tasks 

[12][13], and personalized educational platforms for neuro divergent students [14][15]. Tools such as AI-powered glasses 

interpret visual scenes and generate descriptive audio [16][17], while adaptive learning platforms dynamically adjust 

content based on user responses [18][19]. By integrating NLP and LLMs, these AI solutions provide highly personalized, 

context aware, and interactive support, bridging communication gaps and enhancing independence across cognitive, 

auditory, and motor domains [10][11]. This unified approach enables more seam- less, efficient, and effective assistive 

technologies while maintaining all prior citation references. 

 

Machine Learning (ML) refers to the use of statistical algorithms that allow systems to learn and improve from data. In 

accessibility domains, ML is extensively used for personalizing user interfaces, predicting user needs, and optimizing 

assistive functions. For instance, adaptive learning platforms use ML to tailor educational content to students with 

cognitive disabilities, adjusting the difficulty and pacing to suit individual learners [14][15]. In vision-based 

applications, ML models can detect daily obstacles and provide feedback through haptic or audio cues for visually 

impaired users [6][7]. Systems such as AI-powered reading aids and facial ex- pression recognizers for neuro divergent 

users also depend heavily on ML techniques [3][8]. 

 

Reinforcement Learning (RL), a technique in which agents learn optimal actions through feedback, has been instrumental 

in interactive assistive technologies. In rehabilitation and motor skill training, RL-powered robotic exoskeletons adapt 

to the progress of users by modifying exercises in real-time [20][21]. Similarly, RL models have been implemented in 

cognitive training tools where AI dynamically adjusts content difficulty based on user responses [13][22]. These adaptive 

systems are particularly useful for long-term therapies and skill development among individuals with motor or cognitive 

impairments [14][15]. 

 

After a careful examination of multiple studies and technological approaches, this review highlights how the integration 

of AI subfields, computer vision, NLP, ML, RL, and LLMs, is reshaping accessibility for individuals with disabilities. 

Across visual, auditory, motor, and cognitive domains, research consistently demonstrates that assistive devices are 

evolving from simple aids into intelligent, context-aware systems. Innovations such as smart canes for real-time 

navigation, LLM-powered glasses for scene understanding, adaptive learning platforms, and Reinforcement driven 

robotic exoskeletons exemplify the transition toward personalized and proactive support solutions [6][12][20]. 

Collectively, these technologies bridge critical gaps in communication, mobility, and education, fostering independence 

and social inclusion. Studies also emphasize their potential for scalable implementation in both urban and rural settings, 

promoting Equitable access to opportunities [2][4][15]. Overall, the convergence of these AI-driven solutions represents 

a transformative step toward building an inclusive and accessible society.  

This paper addresses the following key points: 

• AI transforms traditional assistive technologies into intelligent and proactive systems. 

• Core AI areas like computer vision, NLP, reinforcement learning, and LLMs are used for solutions such as AI-

powered glasses, speech-to-text systems, exoskeletons, and learning tools. 

• Accessibility Impact Score (AIS) is used to evaluate usability and effectiveness, with visual and motor tools 

showing strong results. 

• Multimodal AI (voice, vision, haptic feedback, brain computer interfaces) provides real-time, context-aware 

support. 

• AI systems enhance independence, inclusion, and quality of life, focusing on user-centered and ethical design. 
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II.      PROCEDURE OF CHOOSING PAPER 

 
The initial database search identified 52 papers that appeared relevant to our subject. After applying inclusion and 

exclusion criteria, 40 peer-reviewed studies were retained for review. The studies considered in this review include 

multimodal AI systems for accessibility [6][8][13][14][20][21][23-25], AI for wearable assistive devices [6][9][12], 

robotics and rehabilitation systems [9][20], multimodal navigation and interaction [4][10][13], and cognitive/audio 

learning systems [14][15]. This paper cites 47 references, focusing on AI methods relevant to accessibility, human 

computer interaction, and multimodal assistive technologies [11][17][18][26]. 

 

The distribution of selected references by publication year is illustrated in Fig. 1, while the categorization of research focus 

areas in AI-driven assistive technologies is depicted in Fig. 2. The trend of  Fig.1 shows a sharp rise in AI accessibility 

research after 2023, indicating strong timeliness, while Fig. 2 outlines the core AI fields including NLP, CV, RL, and 

LLMs, mapped to disability domains. 

 

 
Fig 1. Number of selected references (2022-2025) 

 

2.1 Methodological Rigor 

To ensure scientific validity, paper selection followed the PRISMA systematic review guidelines as illustrated in Fig 3. 

Inclusion criteria required (i) publication between 2023–2025, (ii) empirical validation or technical framework, and (iii) 

direct focus on AI-driven accessibility. Exclusion criteria removed duplicate studies and non-peer-reviewed content. A 

four-stage process was applied: identification, screening, eligibility, and inclusion, as shown in Fig. 3. To quantify im- 

pact, the proposed Accessibility Impact Score (AIS) was calculated as: 

 

𝐴𝐼𝑆 =
1

𝑛
∑ 𝑈𝑖 × 𝐸𝑖
𝑛
𝑖=1                                              (1) 

 

Where Ui represents usability ratings (e.g., SUS survey scores) and Ei denotes effectiveness (task accuracy, mobility 

gains, or learning outcomes). 
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Fig 2. Categorization of research focus areas in AI- driven assistive technologies. 

 

The Accessibility Impact Score (AIS) was adapted from established evaluation frameworks in assistive technology 

research [21][22]. It provides a simple, interpretable scale     (0–5) to compare accessibility features across technologies,  

where higher scores indicate broader inclusivity. 

Interpretation of AIS values: Scores of 0–1.5 indicate low accessibility impact (minimal usability and effectiveness), 

values between 1.6–3.0 represent moderate impact (effective but with no TABLE limitations), and scores of 3.1–5.0 

correspond to high impact (broad usability and strong real-world effectiveness). This classification enables consistent 

comparison of accessibility technologies across domains. This rigorous approach strengthens reproducibility and 

highlights novelty compared to earlier reviews [4] [6] [8]. 

 

 
Fig 3. PRISMA—style flow diagram of study selection 

 

III.       ARCHITECTURE FOR ACCESSIBILITY FRAMEWORK 

 
The workflow architecture for AI-Based Accessibility Framework shown in Fig. 4 demonstrates how multimodal user 

inputs are transformed into meaningful assistive outcomes for individuals with disabilities. The process begins with the 

Input Layer, where text entries, voice commands, visual inputs, and physiological sensor data such as EEG 

(Electroencephalography) or BCI (Brain Computer Interface) signals are captured [1][10][27]. These data streams are 

https://ijarcce.com/
https://ijarcce.com/


ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE 

International Journal of Advanced Research in Computer and Communication Engineering 

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 9, September 2025 

DOI:  10.17148/IJARCCE.2025.14919 

© IJARCCE                This work is licensed under a Creative Commons Attribution 4.0 International License                 155 

processed in the AI Processing Layer, leveraging techniques like NLP, LLM, ML, and CV to interpret, classify, and adapt 

responses to user-specific needs [13][28][29]. The interpreted data then flows into the Assistive Tools and Devices Layer, 

enabling applications such as STT (Speech-to-Text) converters, adaptive e-learning platforms, robotic wheelchairs, EXO 

(Exoskeletons), and SG (Smart Glasses) with scene recognition [6][9][20]. Finally, the Output Layer delivers enhanced 

accessibility outcomes, including improved mobility, independent navigation, personalized education. and enriched 

communication for users [25][28]. Beyond individual benefits, this framework promotes social inclusion by bridging gaps 

in communication, education, and mobility for people with disabilities. Its modular nature allows easy integration of new 

AI innovations, such as BCI (Brain Computer Interface) and MML (Multimodal Learning Systems), to expand real-world 

applications [8, 4]. Moreover, the workflow supports scalability for diverse environments, from urban smart cities to rural 

communities, enabling global adoption and ensuring Equitable access to technology. Collectively, this architecture 

represents a transformative pathway toward building an inclusive, AI-driven society where assistive technologies are 

proactive, intelligent, and context-aware.                                    

                                     

domains such as speech recognition, gesture detection, object tracking, and sign language interpretation. For instance, 

datasets like SL-MNIST (Sign Language Modified National domains such as speech recognition, gesture detection, object 

tracking, and sign language interpretation. For instance, datasets like SL-MNIST (Sign Language Modified National 

Institute of Standards and Technology Dataset) and RWTH- -domains such as speech recognition, gesture detection, 

object tracking, and sign language interpretation. For instance, datasets like SL-MNIST (Sign Language Modified 

National domains such as speech recognition, gesture detection, object tracking, and sign language interpretation. For 

instance, datasets like SL-MNIST (Sign Language Modified National Institute of Standards and Technology Dataset) 

and RWTH- - PHOENIX (Rheinisch-Westfa¨lische Technische Hochschule Phoenix Sign Language Corpus) empower 

Machine Learning models to translate sign gestures for the hearing impaired [30]-[32]. Open-SLR (Open Speech and 

Language Resources) and VGG-Sound enhance speech based assistive technologies like voice-controlled aids and reading 

tools for the visually impaired [33][34]. Datasets such as Gaze-capture and Ego-hands assist in building AI systems for 

mobility or hand gesture control [35][36], while Wheelchair Detection Dataset supports navigation and environment 

understanding for users with mobility impairments [37]. Together, these datasets form the backbone of AI-driven 

accessibility tools, enabling researchers and developers to build more personalized, inclusive, and effective assistive 

technologies for individuals with diverse disabilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4. Block diagram of AI-Based accessibility framework 

 

To support the development of inclusive and intelligent assistive systems (see Appendix A for detailed dataset 

descriptions), numerous open datasets have emerged across 3.1 Highlights of Paper Using MultiModal Dataset: 

Rashmi and Mohanty [1] demonstrated that wearable AI vision systems trained on multimodal camera datasets 

enhanced real-time obstacle detection and improved navigation safety. Padilla and Kumar [21] showed that speech-to-

text datasets with noise augmentation significantly improved transcription accuracy for deaf and hard-of-hearing users. 

Sarker et al. [20] integrated sensor fusion and movement datasets to develop adaptive rehabilitation exoskeletons for motor-

impaired individuals. Yang and Taele [14] utilized adaptive audio learning datasets to increase engagement and 

comprehension for students with cognitive disabilities. The key studies and their technical contributions are summarized 

in Table I. 
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3.1 Highlights of Papers Using Device-Captured Data: 

Refer Table I for an overview of key contributions from device-captured datasets in assistive AI research. 

These studies highlight how real-world data from wearables, sensors, and brain computer interfaces enable 

advancements in mobility, communication, and independent living. Brilli et al. [6] achieved high accuracy in 

scene description and text recognition using Artificial Intelligence-powered wearable assistive device (Airis) datasets. 

Padmanabha et al. [25] leveraged Large Language Modules-Glasses recordings to generate context-aware navigation 

instructions for visually impaired users. EEG/BCI (Electroencephalography/Brain–Computer Interface) datasets 

[8][ 27] enabled hands-free control and communication for users with severe motor impairments. Combined device-

captured datasets support contextual AI decision-making, bridging gaps in mobility, communication, and independent 

living. 

 

3.2 Feature Selection Techniques in AI Accessibility:  

Feature selection plays a pivotal role in the development of AI-powered accessibility tools for individuals with 

disabilities. By identifying and prioritizing the most informative features from visual data, auditory signals, movement 

sensors, and brain computer inter- face (BCI) recordings, researchers can enhance model accuracy while reducing 

computational overhead. Refer Appendix A, Table 3, for a summary of key feature selection techniques, algorithms, and 

their applications in assistive AI. Optimized feature selection ensures that AI models focus on critical accessibility cues, 

such as obstacle edges for vision impaired navigation, phonemes for hearing-impaire communication, models to translate 

sign gestures for the hearing impaired [30]-[32]. Open-SLR (Open Speech and Language Resources) and VGG-Sound 

enhance speech based assistive technologies like voice-controlled aids and reading tools for the visually impaired 

[33][34]. Datasets such as Gaze-capture and Ego-hands assist in building AI systems for mobility or hand gesture control 

[35][36], while Wheelchair Detection Dataset supports navigation and environment understanding for users with mobility 

impairments [37]. Together, these datasets form the backbone of AI-driven accessibility tools, enabling researchers and 

developers to build more personalized, inclusive, and effective assistive technologies for individuals with diverse 

disabilities. 

 

3.3 Highlights of Papers Using Multimodal Datasets: 

Rashmi and Mohanty [1] demonstrated that wearable AI vision systems trained on multimodal camera datasets 

enhanced real-time obstacle detection and improved navigation safety. Padilla and Kumar [21] showed that speech-to-

text datasets with noise augmentation significantly improved transcription accuracy for deaf and hard-of-hearing users. 

Sarker et al. [20] integrated sensor fusion and movement To support the development of inclusive and intelligent assistive 

systems (see Appendix A for detailed dataset descriptions), numerous open datasets have emerged across  and motor 

signal patterns for adaptive robotic assistance [6][8][14][20]. 

 

3.4 Highlights of Papers Using Feature Selection Techniques: 

Brilli et al. [6] utilized embedded deep learning feature extraction to identify essential visual cues for real-time navigation 

in wearable AI devices. Sarker et al. [20] applied Principal Component Analysis (PCA) to eliminate redundant sensor 

data, enhancing adaptive control in robotic exoskeletons. EEG/BCI (Electroencephalography/Brain–Computer Interface) 

studies [8][27] implemented Mutual Information (MI) and advanced signal filtering to select the most informative 

brainwave features for hands-free communication Integrated approaches combining Recursive Feature Elimination 

(RFE) and tree-based selection optimized both motor and visual accessibility models in edge-computing scenarios. As 

summarized in Appendix A,Table III, these studies demonstrate how diverse feature selection methods can reduce 

computational overhead while improving the responsiveness and reliability of AI-based assistive technologies. 

Collectively, these feature selection strategies enable high accuracy, low latency, and efficient processing, making AI-

driven assistive tools reliable, responsive, and effective across visual, auditory, and motor impairment applications. 

 

IV.     RESULTS AND ANALYSIS 

 
For clarity, we condensed the tabular results to high- light only the most essential datasets and performance metrics. 

Supplementary TABLEs are provided in the appendix.This study synthesizes insights from the 40 selected research 

papers, translating their findings into a comparative analysis of AI-driven accessibility solutions[1][3]-[47]. evaluation 

focuses on how various AI subfields computer vision, natural language processing, reinforcement learning, and large 

language models enhance independence, mobility, communication, and learning for individuals with disabilities 

[1][4][12][21][38][39]. The results are presented across four primary domains: visual, auditory, motor, and cognitive 

accessibility, high- lighting the practical impact of state-of-the-art AI tools and frameworks as reported in the reviewed 

literature [2][3][5]. 
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TABLE I. HIGHLIGHTS OF MULTIMODAL AI STUDIE 

 

 

 

 

 

 

 

 

 

 

Author 
Feature 

Method 
Selection Algorithm Used Key Contribution 

Brilli et al. [6] 

CNN (Convolutional 

Neural Network) feature 

extraction + PCA 

(Principal Component 

Analysis) 

CNN (Convolutional 

Neural Network) 

Developed Artificial Intelligence powered 

wearable assistive device (AIris wearable 

device) for real-time scene description and 

text recognition for navigation [12]. 

Smithson et 

al. [8] 
 

MI (Mutual Information) 

+ SVM-RFE (Support 

Vector Machine 

Recursive Feature 

Elimination) 

SVM (Support 

Vector Machine) 

Enabled hands-free communication and 

device control using EEG 

(Electroencephalography) / EOG 

(Electrooculography) signals captured in 

realtime [18]. 

Tokmurziyev 

et al. [13] 
 

Multimodal 

embedding 

 

+ Attention 

Transformer-based 

LLM (Large 

Language Model) 

Generated context-aware navigation 

instructions using device-captured visual and 

textual data [4]. 

Yang et al. [14] 

MFCC (Mel-Frequency 

Cepstral Coefficients) + 

Temporal Feature Ex- 

traction 

Adaptive Deep 

Learning 

Enhanced personalized audio-learning 

experiences for cognitive accessibility using 

device logs [15]. 

Sarker et al. [20] 

RFE (Recursive Feature 

Elimination) + Tree 

based selection 

RL(Reinforcement 

Learning) 

Optimized motor signal features for adaptive 

robotic exoskeletons for rehabilitation [9]. 

Naayini et al. [21] 
Embedded Feature Ex- 

traction 

CV (Computer 

Vision) + RL 

(Reinforcement 

Learning) 

Improved smart wheelchair navigation using 

reinforcement learning with visual inputs. 

Accessibility 

Scout [23] 

Edge detection + Spatial 

feature selection 

YOLOv5 (You Only 

Look Once, version 

5) + CNN 

(Convolutional 

Neural Net- work) 

Improved urban accessibility by mapping 

realworld paths from device-captured 

environment scans [26]. 

Ahmed Baig 

et al. [24] 
 

RFE (Recursive Feature 

Elimination) 

ViT (Vision 

Transformer) 

Enhanced outdoor obstacle detection using 

hat-mounted device-captured video streams 

[17]. 

Pilot 

“VideoA11y” [24] 

Frame-level feature ex- 

traction + PCA 

(Principal Component 

Analysis) 

CNN (Convolutional 

Neural Network) 

+ RNN (Recurrent 

Neural Network) 

Hybrid 

Provided real time device-captured video 

captioning for hearing-impaired users [11]. 

MATE (Multi- 

modal Adaptive 

Technology 

For Education 

/ Assistive 

Environments) 

System [25] 

RFE (Recursive Feature 

Elimination) 

MDL (Multimodal 

Deep Learning) 

Enabled adaptive cross-modal interactions 

from logs of device-captured multimodal 

inputs [10]. 
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Fig. 5. AI technologies used by each disability type [12] 

 

Fig. 5, illustrates the variety of AI tools designed for visual accessibility, highlighting the growing shift from passive 

assistive devices to proactive, intelligent systems. These solutions do more than just recognize objects they actively 

interpret and contextualize environments for the user. For instance, wearable AI glasses can provide detailed scene 

descriptions, alert users to moving obstacles, and even identify the emotional expressions of people nearby, enabling 

richer social interactions. Smartphone-based applications with integrated YOLO based detection and LLM driven 

reasoning can guide users through crowded streets, assist in locating specific items in stores, or read textual content on 

signboards and documents in real time. Furthermore, the combination of multimodal feedback including haptic 

vibrations for immediate hazard alerts and voice- based narration for contextual understanding ensures that users receive 

comprehensive environmental awareness. Such advancements not only support safer navigation but also empower 

visually impaired individuals to engage more independently in education, employment, and social  activities, effectively 

bridging long- standing accessibility gaps. The growing ecosystem of AI-powered visual tools demonstrates how 

intelligent systems are transforming visual impairment sup- port from basic assistance into an experience of active, 

context-aware, and inclusive mobility. 

 

4.2 AI for Auditory Impairments 

AI-driven speech recognition and real-time transcription tools, such as Audio Sight, play a transformative role in enabling 

communication for people who are deaf or hard of hearing (refer Fig. 6) [13][14]. These systems utilize automatic speech 

recognition (ASR), noise suppression algorithms, and NLP to generate accurate captions in real-time, even in noisy 

environments [11][29]. These applications allow users to fully participate in social and professional interactions. 

 

 
Fig. 6. AI tool distribution by disability type 

 

Advanced auditory AI tools can also translate speech into sign language animations or generate context aware visual 

notifications on smart devices. As Fig. 6, highlights, auditory AI solutions are a significant presence in the accessibility 

ecosystem, providing instant captioning and live subtitles for various events. These systems also support environmental 

awareness by detecting critical sounds like alarms, doorbells, or approaching vehicles. Advanced tools are integrated 

with multimodal feedback mechanisms, enabling alerts through visual notifications or subtle haptic vibrations. The ability 

to operate in low-bandwidth or offline scenarios has further enhanced their usability. Overall, the growth of auditory AI 
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demonstrates a shift from isolated assistive tools to intelligent, interconnected ecosystems that redefine accessibility for 

the deaf and hard-of- hearing community. 

 

4.3 AI for Motor Impairments 

AI enabled smart wheelchairs, robotic prosthetics, and exoskeleton systems enhance independence and mobility for 

individuals with motor impairments (as shown in Fig. 7.) [9][20][40]. These technologies integrate sensor fusion, 

computer vision, and reinforcement learning to interpret  environmental data and user intent, providing smooth navigation 

and adaptive motion assistance. 

 
Fig. 7. Comparison of AI technology usage by disability type [20] 

 

Fig. 7. compares the adoption of AI technologies across different disability types, drawing attention to the increasing 

prominence of motor-assistive AI. These solutions play a critical role in supporting individuals with spinal cord injuries, 

neuromuscular disorders, or post-stroke mobility limitations, enabling them to regain functional independence. Motor 

focused AI systems encompass a wide range of applications, including robotic exoskeletons, AI-driven prosthetic limbs, 

adaptive wheelchairs, and rehabilitation robotics that assist in performing precise movements or repetitive exercises 

tailored to a user’s condition. Through the integration of machine learning and sensor fusion technologies, these systems 

can monitor gait patterns, predict motion intent, and adapt in real time to the user’s physical capabilities, thereby enhancing 

both safety and effectiveness. Additionally, emerging brain computer interface (BCI) solutions are transforming mobility 

support by allowing users to control wheelchairs, robotic arms, or home automation systems through neural signals, 

further reducing dependency on caregivers. By promoting personal mobility, rehabilitation efficiency, and autonomous 

interaction with the environment, motor assistive AI not only improves the quality of life for users but also fosters long-

term social participation and inclusion in work, education, and public life. 

 

4.4 AI for Cognitive Impairments and Education 

Advanced AI systems, including Large Language Models (LLMs), reinforcement learning, and adaptive educational 

platforms, provide personalized support for learners with cognitive challenges (illustrated in Fig. 8.) [2][10][15][21]. 

These tools can dynamically adjust learning content, pace, and modality based on user performance and engagement. 

Cognitive AI applications include memory aids, AI-powered tutors, gamified therapy tools, and reading comprehension 

assistants. LLM-based dialogue systems further support neuro divergent learners by providing context-aware prompts, 

reminders, and emotional support.  

 

Fig. 8. illustrates the integration of AI tools in inclusive education, demonstrating how technology is reshaping learning 

environments for students with diverse cognitive and learning needs. AI-powered educational systems provide 

personalized learning paths, real-time speech-to-text note-taking, and adaptive quizzes, which are particularly effective 

for learners with dyslexia, ADHD, autism spectrum disorders, or memory impairments. By analyzing individual 

performance and engagement patterns, these systems dynamically adjust lesson difficulty, suggest targeted exercises, 

and highlight areas requiring additional support. Advanced tools also incorporate multimodal content delivery, offering 

visual, auditory, and interactive feedback to ensure that students can absorb information in the way that best suits their 

cognitive style. Moreover, features such as automatic summarization, AI-driven tutoring, and predictive learning 

assistance foster both confidence and self-paced learning, reducing reliance on human intervention. The broader impact 

of these AI-driven educational solutions extends beyond academic performance, promoting independence, long-term 

retention, and inclusive participation in both virtual and physical classrooms. 
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Fig. 8. AI Technologies in Inclusive Education [21] 

 

4.5 Overall AI Impact 

AI technologies collectively enhance independence, communication, and participation across all major categories of 

disabilities (depicted in Fig. 9) [1][3][5]. By combining computer vision, natural language processing, multimodal 

learning, and reinforcement learning, AI transforms traditional assistive devices into intelligent, proactive support 

systems [6][9][20]. Applications like LLM-Glasses, smart canes, Audio Sight transcription tools, and adaptive 

exoskeletons exemplify how AI bridges accessibility gaps in real-world environments [7][40][46]. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Overall Distribution of AI Accessibility Tools 

 

Fig. 9. presents the overall distribution of AI accessibility tools across multiple disability categories, offering a 

comprehensive overview of how assistive technologies are evolving. Visual and motor-focused AI applications currently 

dominates, largely due to advancements in computer vision, wearable navigation systems, robotic exoskeletons, and 

smart mobility aids that directly address the daily mobility and safety challenges faced by users with visual or motor 

impairments. These tools have achieved widespread adoption in real- world scenarios, including indoor navigation, 

obstacle detection, autonomous wheelchairs, and rehabilitation robotics, highlighting their tangible impact on 

independence and quality of life. Meanwhile, cognitive and auditory AI tools are experiencing steady growth, fueled by 

innovations in natural language processing, real-time transcription, adaptive learning systems, and context- aware 

notifications. This trend reflects the increasing importance of multimodal and cross sensory AI solutions, where visual, 

auditory, and haptic feedback are combined to create inclusive and high impact accessibility experiences. Overall, the 

distribution pattern underscores a global movement toward AI-powered inclusivity, with future developments expected to 
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close the adoption gap for cognitive and auditory assistive technologies while further strengthening mobility and 

environmental awareness solutions. 

 

4.6 Formula Used for Impact Measurement 

AIS values were computed (see Section 2.1 for definition and interpretation), providing a comparative measure of 

usability and effectiveness across different AI- based assistive technologies. 

 
Fig. 10. Accessibility Impact Score (AIS) Across Different AI Tools [28] 

 

As shown in Fig. 10, wearable devices such as the Artificial Intelligence-powered wearable assistive device (AIris) 

and LLM-Glasses achieved the highest AIS scores, reflecting their strong real-time responsiveness and high user 

satisfaction. In contrast, tools designed for cognitive and auditory support exhibited slightly lower scores due to usability 

challenges and higher learning curves. Overall, multimodal AI systems that integrate computer vision, NLP, and 

reinforcement learning consistently demonstrated the greatest accessibility impact, offering valuable guidance for 

prioritizing future research and development. 

 

V.    FUTURE SCOPE 

 
The domain of Artificial Intelligence in accessibility is poised for transformative change, offering unprecedented potential 

to enhance independence, inclusion, and quality of life for people with disabilities. Current assistive technologies are 

evolving from passive tools to intelligent, context sensitive systems that can autonomously adapt to a user’s 

surroundings, habits, and needs [1][21][38][39]. This aligns with the broader goal of creating a fully inclusive digital 

society, where technology bridges rather than widens accessibility gaps [4][12]. 

 

Emerging technologies such as brain computer interfaces and electrooculography-based control systems are expected to 

revolutionize motor and communication accessibility. These tools can enable individuals with severe motor impairments 

to interact with devices, man- age smart environments, and operate hands free, offering a new level of autonomy [2][5]. 

Integrating brain–computer interfaces with robotic exoskeletons, smart wheelchairs, and adaptive prosthetics promises 

fully personalized mobility solutions that respond to neural or muscle signals in real time. Multimodal Artificial 

Intelligence systems, which combine visual perception, speech analysis, haptic feedback, and physiological signal 

monitoring, will allow seamless and adaptive human–machine  interaction [3][20][25]. These systems are critical for 

cognitive and sensory accessibility, enabling AI to respond intelligently to context for instance, providing route guidance 

through voice and touch feedback for visually impaired users or generating real-time captions and sign language 

translations for hearing-impaired individuals [13][14]. 

 

Deployment of low-power edge Artificial Intelligence devices will expand accessibility to rural and resource 

constrained areas where cloud connectivity is limited. By processing data locally, these devices reduce latency, improve 

reliability, and preserve user privacy, making AI tools practical for daily life [6][8]. This is especially significant in 

countries such as India, where many individuals with disabilities reside in rural regions with limited access to high speed 

internet [26][44]. The next generation of AI accessibility solutions will also target mental health, emotional support, and 

social inclusion. Artificial Intelligence driven emotion recognition, conversational agents, and therapeutic virtual reality 

environments can alleviate psycho logical challenges, fostering social and digital inclusion [16][42]. Personalized adaptive 
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learning platforms using reinforcement learning and large language models will continue to transform special education 

and cognitive rehabilitation for neuro divergent users [9][30]. 

 

Emerging trends suggest that AI in accessibility will evolve from supportive aids into empathetic, context sensitive 

ecosystems. Key directions include: 

• Brain–Computer Interface Integration: Combining brain computer interfaces with robotic exoskeletons and 

smart wheelchairs for seamless mobility support [31]. 

• Multimodal Artificial Intelligence: Integrating visual, auditory, tactile, and cognitive signals for real-time, 

adaptive accessibility across domains [27][32]. 

• Edge Artificial Intelligence Deployment: Low power devices performing real-time accessibility functions in 

rural or low-connectivity regions [34][43]. 

• Inclusive Design: Participatory development in- volving people with disabilities to reduce algorithmic bias and 

ensure ethical AI adoption [35][36][37]. 

This forward-looking approach positions AI not only as a compensatory tool but as a transformative driver of independence, 

social inclusion, and equitable access. Possible future research directions include: 

• Developing brain–computer interface-integrated smart assistive devices for hands free interaction and adaptive 

mobility. 

• Designing multimodal artificial intelligence systems that integrate visual, auditory, tactile, and cognitive support 

in a unified framework. 

• Deploying edge artificial intelligence and energy- efficient models for real-time accessibility in low- 

connectivity regions. 

• Creating mental wellness and emotional support tools to enhance social inclusion and user wellbeing. 

• Ensuring privacy preserving and ethically driven AI development through participatory design with disability 

communities. 

• Advancing cross-border interoperability and inclusive AI development through global standardization. 

These developments collectively point toward an AI-driven accessibility future where technology does not merely fill 

gaps but enhances human capabilities. Through integrated multimodal systems, ethical innovation, and user centered 

design, AI will foster a culture where technology is inclusive by default, enabling independence, equity, and universal 

participation. 

Overall, the distribution pattern underscores a global movement toward AI-powered inclusivity, with future developments 

expected to close the adoption gap for cognitive and auditory assistive technologies while further strengthening mobility 

and environmental awareness solutions. 

 

VI.    ETHICAL CONSIDERATIONS 
 

AI-driven assistive technologies bring tremendous potential to improve accessibility, but they also raise important ethical 

concerns. First, the collection of sensitive data such as speech recordings, mobility patterns, and brain computer interface 

(BCI) signals requires strong safeguards for privacy and informed consent [18]. Second, fairness and inclusivity must be 

ensured, since biased datasets may disadvantage individuals from underrepresented linguistic, cultural, or disability 

groups [26]. Transparency and explainability are also critical, as users and caregivers must be able to trust and 

understand AI-generated outputs that affect mobility, communication, and healthcare decisions. Finally, long term 

deployment of assistive systems should consider accessibility across socioeconomic contexts, avoiding solutions that only 

benefit users in high resource settings. Addressing these ethical challenges is essential for building responsible and 

Equitable AI systems that truly advance accessibility. 

 

VII.    SUMMARY OF RESEARCH PAPER 
 

This systematic review synthesized findings from 40 peer-reviewed studies, selected from an initial pool of 52 works 

published between 2023 and 2025, to examine how Artificial Intelligence (AI) is advancing accessibility for individuals 

with disabilities. While 40 studies were included in the final analysis, the complete reference list of this paper contains 

47 entries, as it also includes datasets, frameworks, and supporting resources. Earlier assistive approaches relied on 

traditional tools such as screen readers and mechanical devices, but recent trends show a decisive shift toward intelligent, 

AI-driven systems. Innovations such as wearable vision aids, real-time transcription services, adaptive learning 

platforms, robotic exoskeletons, and brain computer interface devices demonstrate how AI can empower users with 

greater autonomy and inclusion in daily life. Globally, over one billion people live with some form of disability, with India 

alone accounting for tens of millions facing barriers to education, healthcare, and employment. AI-based accessibility 

solutions have the potential to close these gaps by offering adaptive, context aware support that can scale across diverse 

environments. 
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The studies reviewed span four main domains visual, auditory, motor, and cognitive accessibility highlighting the 

role of computer vision for image and video analysis, natural language processing for speech and text understanding, 

reinforcement learning for adaptive decision-making, and large language models for contextual reasoning. The proposed 

workflow architecture integrates multimodal inputs such as speech, visual data, tactile feedback, and neural signals into 

processing layers powered by ma- chine learning, natural language processing, and large language models, producing 

outputs like navigation assistance, adaptive e-learning, and speech-to-text conversion. Feature selection techniques, 

including Principal Component Analysis and Recursive Feature Elimination, were found to improve accuracy, reduce 

latency, and optimize AI performance in real-time assistive contexts. 
 

Applications illustrate the breadth of AI’s contribution: wearable vision systems such as AI-powered glasses deliver 

real-time scene understanding for visually impaired users; auditory accessibility is supported by advanced transcription 

and speech-to-text tools; motor impairments benefit from adaptive exoskeletons and AI-driven prosthetics; and cognitive 

accessibility is enhanced through AI tutors, memory aids, and personalized e-learning platforms. To evaluate impact, 

this re- view introduced the Accessibility Impact Score, a composite metric combining usability and effectiveness. 

Multimodal AI systems that integrate computer vision, natural language processing, and reinforcement learning 

consistently achieved the highest scores, showing measurable improvements in independence, safety, and quality of life. 

In summary, the review positions AI as a transformative force in accessibility, elevating assistive devices from basic 

compensatory aids into intelligent, proactive, and context sensitive companions. At the same time, persistent challenges 

such as algorithmic bias, privacy risks, and high implementation costs remain. Ethical considerations including data 

privacy, fairness across disability groups, inclusivity in design, and accessibility in low-resource settings are essential for 

responsible adoption. Looking ahead, emerging directions such as brain computer interface integration, multimodal 

learning, and low power edge AI devices are poised to deliver universally accessible and Equitable technologies for 

diverse disability communities world- wide. 

 

VIII.     CONCLUSION 
 

This review demonstrates how Artificial Intelligence (AI) is reshaping accessibility by transforming assistive 

technologies from compensatory tools into proactive, intelligent, and context aware systems. From an initial pool of 52 

works (2023–2025), 40 peer-reviewed studies were systematically analyzed, with a final reference list of 47 entries 

incorporating both applied research and supporting datasets. This ensures a comprehensive and reproducible evaluation 

of the field. The findings indicate that AI-powered applications enhance independence, communication, learning, and 

mobility across multiple disability domains. For visual impairments, computer vision, wearable navigation aids, and AI-

driven object recognition systems show strong maturity and real-world deployment, though future work should prioritize 

low-power edge AI to expand bene- fits into rural and low-connectivity areas. In the motor domain, robotic exoskeletons, 

prosthetics, and adaptive wheelchairs demonstrate high effectiveness, with future research needed on brain computer 

interface (BCI) integration and cost reduction to improve large-scale adoption. 

 

For auditory impairments, transcription systems, adaptive speech recognition, and multimodal captioning tools expand 

communication opportunities but still face challenges in noisy and multilingual environments; here, robust ASR and AI-

driven sign language translation represent important future directions. Cognitive impairments benefit from AI-driven 

tutors, memory aids, and adaptive e-learning platforms, though these remain underexplored in large-scale trials, calling for 

reinforcement learning–driven personalized rehabilitation and greater attention to neuro diverse learners. The proposed 

Accessibility Impact Score (AIS) underscores that technical accuracy alone is insufficient, as usability, adaptability, and 

real-world effectiveness are equally critical. AIS analysis further shows that multi- modal systems integrating vision, 

speech, haptics, and brain computer interface signals consistently achieve the highest impact. Looking ahead, progress 

in AI- driven accessibility will depend on ethical data practices, participatory design with disability communities, and 

culturally inclusive frameworks to reduce bias. By addressing domain-specific gaps while fostering multi- modal, edge 

enabled, and user centered innovations, AI can evolve from supportive aids into inclusive ecosystems that ensure 

Equitable participation, independence, and dignity for people with disabilities worldwide. 
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APPENDIX A 

 

Supplementary Dataset and Feature Selection Table 

TABLE II. PUBLICLY AVAILABLE MULTIMODAL AND ASSISTIVE DATASETS 

 

Dataset 

(Abbreviation) 
Source Total Samples Access Link 

How2sign 

(How2sign) [30] 

Carnegie Mellon 

University 

80 Hours Sign 

Videos+16,000 

Gloss 

Annotations 

https://how2sign.github. io/ 

Casia Gait (Casia-

Gait) [20] 

Chinese Academy of 

Sciences (Casia) 

124 Subjects, 

20,000 + Gait 

Sequences 

http://www.cbsr.ia.ac.cn/english/Gait%20Databas

es. asp 

Sign Language 

Mnist (Sl- Mnist) 

[32] 

Kaggle 27,455 Images 
https://www.kaggle. com/datamunge/ 

sign-language-mnist 

Rwth-Phoenix 

[31] 

Rwth Aachen 

University 

8,000 + Sign 

Language Videos 

https://www-i6.informatik.rwth-aachen. 

de/˜koller/RWTH-PHOENIX/ 

Open-SLR [33] 
Open Speech and 

Language Resources 

50 + 

Speech/Language 

Datasets 

https://www.openslr.org/ 

Embci [27] 

Physionet / 

Massachusetts General 

Hospital 

1,600 Eeg Trials https://physionet.org/ content/eegmmidb/1.0.0/ 

Ego-Hands (Ego- 

Hands) [36] 

Georgia Tech / 

Indiana University 
4,800 Frames http://vision.soic. indiana.edu/projects/ egohands/ 

Gaze-Capture [35] 
MIT (Massachusetts 

Institute of Technology) 

∼2.5 million 

Eye- Tracking 

Frames 

http://gazecapture.csail. mit.edu/ 

Urbansound8k 

(US8K) [43] 
New York University 8,732 Audio Clips 

https://urbansounddataset. 

weebly.com/urbansound8k. html 

Wheelchair 

Detection 

(Wheelchair- 

Dataset) [37] 

Georgia Institute of 

Technology 

∼22,000 

Annotated Images 

https://universe.roboflow. com/roboflow-100/ 

wheelchair-detection 

VGG-Sound 

(Visual Geometry 

Group- Sound) 

[34] 

University Of Oxford 
200,000 Video- 

Sound Pairs 
https://www.robots.ox.ac. uk/˜vgg/data/vggsound/ 
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TABLE III. FEATURE SELECTION TECHNIQUES IN AI ACCESSIBILITY 

 

 

 

 

 

  

Author 
Feature Selection 

Method 
Algorithm Used Key Contribution 

Brilli Et Al. [6] 

CNN Feature 

Extraction 

+ PCA (Principal 

Com- Ponent 

Analysis) 

CNN 

(Convolutional 

Neural Network) 

Developed Artificial Intelligence-Powered 

Wearable Assistive Device (Airis) For Real-Time 

Scene Description and Text Recognition. 

Sarker Et Al. 

[20] 

RFE (Recursive 

Feature Elimination) 

+ Tree Based 

Selection 

RL (Reinforcement 

Learning) 

Optimized Motor Signal Features for Adaptive 

Robotic Exoskeletons. 

Tokmurziyev

 

Et Al. [13] 

Multimodal 

Embedding 

+ Attention 

Transformer-

Based Large 

Language Module 

Generated Context-Aware Navigation Instructions 

Using Device-Captured Data. 

Smithson

 

Et Al. [8] 

MI (Mutual 

Information) 

+ SVM-RFE 

(Support Vector 

Machine – Recursive 

Feature Elimination) 

SVM (Support 

Vector Machine) 

Enabled Hands-Free Communication and Control 

Using EEG (Electroencephalography)/ EOG 

(Electrooculography) Signals. 

Yang Et Al. 

[14] 

MFCC (Mel 

Frequency Cepstral 

Coefficients) + 

Temporal Extraction 

Adaptive

 De

ep Learning 

Enhanced Personalized Audio-Learning for 

Cognitive Accessibility. 

Garcia Et Al. 

[23] 

LDA (Linear 

Discriminant 

Analysis) + PCA 

(Principal 

Component 

Analysis) 

CNN 

(Convolutional 

Neural Network) 

Enhanced Emotion and Cognitive State Recognition 

for Cognitive Support Tools. 
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