DOI: 10.17148/IJARCCE.2025.14926

Emoti Plan: AI Powered Emotion-Based Day Planner

Rashmi¹, Harish Gowda N², Dilip D³, Katuva Siva Sai Kumar⁴, Praveen⁵

Assistant Professor, Computer Science and Engineering, East West College of Engineering, Bangalore, India¹

Student, Computer Science and Engineering, East West College of Engineering, Bangalore, India ²

Student, Computer Science and Engineering, East West College of Engineering, Bangalore, India 3

Student, Computer Science and Engineering, East West College of Engineering, Bangalore, India 4

Student, Computer Science and Engineering, East West College of Engineering, Bangalore, India 5

Abstract: In today's fast-paced world, individuals often rely on static daily planners to manage their tasks. These planners are designed based on fixed priorities, deadlines, and time slots, but they rarely account for the emotional and mental well-being of the individual using them. When emotions are not considered, users may find themselves overwhelmed, unmotivated, or mentally unprepared for the tasks scheduled for them, which ultimately reduces productivity and impacts mental health. EmotiPlan is an innovative AI-powered emotion-based day planner that detects the user's current emotional state through facial recognition and creates a dynamic, personalized schedule accordingly. It uses modern technologies like DeepFace and OpenCV to analyze facial expressions and interprets the user's mood in real-time. Based on the detected emotion— whether it's happiness, sadness, anger, or fatigue—the system adjusts task priorities and suggests an optimal timetable that balances productivity with well-being. Built on the MERN stack with a Python-based Flask API, EmotiPlan integrates backend scheduling logic with frontend user interaction, while also syncing events with Google Calendar. The first phase of the project establishes a working prototype capable of detecting mood, mapping it to activity types, and presenting a visual schedule to the user through an intuitive dashboard interface.

Keywords: Facial Emotion Recognition, MERN Stack, Deep Face, AI Planner, Human-Centered Productivity.

I. INTRODUCTION

Technology has revolutionized every aspect of life, from communication and travel to education and healthcare. Yet, one of the most human aspects—emotions—is often overlooked in productivity tools and daily planning software. Despite the increasing awareness of emotional well-being and mental health, tools that help manage daily life in a mood-conscious way are still in their infancy. The challenge is clear: individuals often feel disconnected from their to-do lists. Someone feeling sad or overwhelmed may not be mentally ready to tackle demanding work but might still feel pressure to adhere to a rigid schedule. The emotional state, however, profoundly affects focus, creativity, motivation, and decision-making. A planner that understands the user's mental state and adapts in real-time could significantly improve both well-being and performance. EmotiPlan is built around this concept. By harnessing facial emotion detection and integrating it with task management systems, EmotiPlan.

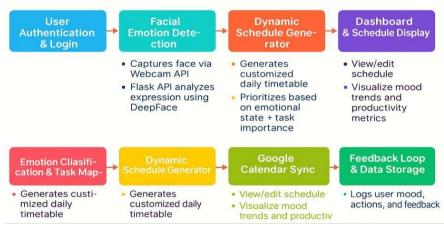


Figure 1: Methodology

Impact Factor 8.471 $\,st\,$ Peer-reviewed & Refereed journal $\,st\,$ Vol. 14, Issue 9, September 2025

DOI: 10.17148/IJARCCE.2025.14926

Al-Powered Emotion-Based Day Planner

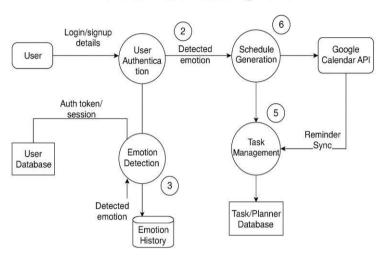


Figure 2: Data Flow Diagram

In the modern era, technology has profoundly transformed almost every facet of human life. From instantaneous communication and seamless travel to online education and advanced healthcare, the pace and scope of technological advancement have created an unprecedented level of connectivity and convenience. Productivity tools, such as calendars, task managers, and reminder applications, have become indispensable for individuals seeking to organize and optimize their daily routines. However, despite these advancements, one critical dimension of human experience, emotions remains largely unaddressed by traditional productivity systems. Emotions are fundamental to cognition, motivation, and decision-making, yet most planners operate on rigid schedules, ignoring the user's mental and emotional state. Research has shown that emotional well-being significantly influences focus, creativity, productivity, and overall life satisfaction. Individuals experiencing stress, anxiety, sadness, or fatigue may struggle to engage with demanding tasks, yet conventional tools offer no flexibility to accommodate these fluctuations. Consequently, users often feel pressured, overwhelmed, or disconnected from their planned schedules, resulting in decreased productivity, increased stress, and a sense of failure. The challenge, therefore, is to design a system that acknowledges and adapts to human emotions while facilitating daily planning. The concept of EmotiPlan addresses this gap by integrating real-time emotion detection with intelligent task management. Unlike traditional planners that rigidly enforce task lists, EmotiPlan is designed to sense the user's emotional state—whether through facial recognition, voice analysis, or wearable sensors—and dynamically adjust the daily schedule to align with current moods. By incorporating emotion as a parameter in task prioritization, the system creates a more human-centered approach to productivity. For instance, if a user feels anxious or overwhelmed, the system may suggest low-effort or calming tasks, encourage breaks, or recommend relaxation exercises. Conversely, if the user exhibits motivation and high energy, EmotiPlan may prioritize creative or cognitively demanding tasks to leverage peak productivity periods. This adaptive, empathetic approach aims not only to optimize performance but also to improve overall emotional well-being.

II. PROBLEM DEFINATION

In modern life, individuals rely heavily on productivity tools such as calendars, to-do lists, and task management applications to organize and optimize their daily routines. While these tools efficiently manage schedules, they are largely **emotion-blind** and do not consider the user's current mental or emotional state. Emotional factors—such as stress, fatigue, anxiety, or motivation—significantly influence productivity, focus, creativity, and decision-making. For example, a person feeling anxious or overwhelmed may struggle to complete cognitively demanding tasks, yet conventional planners rigidly enforce schedules without adaptation, often resulting in reduced efficiency, increased stress, and a sense of failure.

The core problem, therefore, is the lack of a **human-centered**, **emotion-aware productivity system** that can dynamically adapt daily plans based on the user's emotional state. There is a pressing need for a solution that integrates **real-time emotion detection** with task management, enabling flexible task prioritization and personalized recommendations. Such a system should help users maintain productivity while supporting emotional well-being, creating a balance between achieving daily goals and managing mental health.

Impact Factor 8.471

Peer-reviewed & Refereed journal

Vol. 14, Issue 9, September 2025

DOI: 10.17148/IJARCCE.2025.14926

In today's fast-paced and technology-driven world, individuals face increasing demands to manage multiple tasks, deadlines, and responsibilities simultaneously. Productivity tools such as calendars, to-do lists, and project management applications have become essential for organizing schedules and tracking progress. However, these tools are fundamentally rigid and operate independently of the user's mental or emotional state. Human productivity is not solely determined by time management or task prioritization; it is deeply influenced by emotions such as stress, fatigue, motivation, happiness, and anxiety. For The central challenge is the absence of a system that can understand and adapt to human emotions in real-time while managing daily tasks. Existing productivity tools lack the capability to sense when a user is emotionally unprepared for certain activities or when they could leverage moments of high motivation for more demanding tasks. There is a need for an intelligent, human-centered solution that integrates affective computing techniques, such as facial emotion recognition, voice analysis, and sensor-based emotional cues, with dynamic task management. Such a system should provide adaptive recommendations, reschedule tasks based on scenarios while incorporating dynamic emotional states. The experiment focuses on assessing how well the system adapts task prioritization based on the user's emotional state, improves task completion rates, and supports overall well-being. A virtual environment was created to simulate daily routines of users with varying task loads, deadlines, and emotional fluctuations. Participants were asked to interact with EmotiPlan over a period of one week, during which their emotional states were monitored using a combination of facial emotion recognition, voice analysis, and periodic self-reported mood ratings. To ensure the experiment reflects realistic variability, participants were assigned tasks of different complexity and urgency, such as administrative work, creative projects, and routine activities, simulating typical professional or academic workloads.

The simulation setup involved three key components: the emotion detection module, the adaptive task management algorithm, and the feedback loop for model learning. The **emotion detection module** captured facial expressions using webcam input and classified emotions into categories such as joy, sadness, stress, fatigue, and neutral states. Voice-based emotion detection was optionally incorporated for participants who consented, providing additional data to improve classification accuracy. The **adaptive task management algorithm** used these emotional inputs to dynamically prioritize or reschedule tasks, leveraging reinforcement learning. To measure performance, quantitative metrics such as **task completion rate**, **adherence to recommended schedules**, **and response time to emotional fluctuations** were recorded. In addition, qualitative feedback was gathered through participant surveys, focusing on perceived usefulness, ease of use, and emotional support provided by the system. Baseline comparisons were conducted using traditional planners without emotion-aware adaptation, allowing assessment of improvements achieved by EmotiPlan. The experimental design also incorporated variability in user behavior, lighting conditions, and environmental distractions to test the robustness of emotion recognition under real-world conditions.

The simulation experiment setup ensures a **controlled yet realistic testing environment**, providing insights into both technical performance and user experience. By analysing the results, the study aims to demonstrate that emotion-aware planning significantly enhances task efficiency, reduces stress, and improves alignment between daily schedules and user emotional states. The findings from this simulation serve as a foundation for further development, including deployment in real-world scenarios with larger user population.

Figure 3: Adult Emotions

Impact Factor 8.471 $\,st\,$ Peer-reviewed & Refereed journal $\,st\,$ Vol. 14, Issue 9, September 2025

DOI: 10.17148/IJARCCE.2025.14926

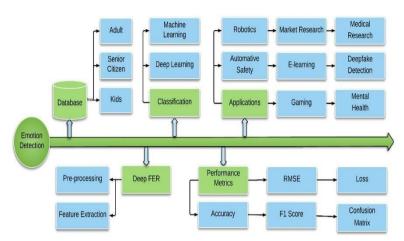


Figure 4: Data Flow Diagram

III. USE CASES AND USER SCENARIOS

To evaluate the practical applicability and benefits of EmotiPlan, multiple use cases were designed to simulate real-world scenarios in which emotional states significantly affect task performance and productivity. These scenarios illustrate how EmotiPlan's emotion-aware scheduling and task adaptation can optimize outcomes, enhance user engagement, and support emotional well-being.

Scenario 1: High-Stress Workday

In a typical professional setting, individuals often face high workloads with multiple deadlines and competing priorities. During such periods, users may experience heightened anxiety or stress, which negatively impacts focus and task completion. In this scenario, EmotiPlan monitors the user's facial expressions, voice cues, or physiological signals to detect signs of stress or anxiety. Upon identification, the system dynamically adjusts the daily schedule by prioritizing low-effort or routine administrative tasks while temporarily deferring high-cognitive-load tasks. Additionally, the planner suggests short restorative breaks, relaxation exercises, or mindfulness practices to alleviate stress. This scenario demonstrates the system's capacity to reduce cognitive overload, prevent burnout, and maintain a balance between productivity and emotional health, providing a supportive environment that adapts to user needs in real-time.

Scenario 2: Creative Task Planning

Creative professionals, such as designers, writers, or software developers, often experience periods of high motivation and emotional positivity, during which they are most productive and capable of performing cognitively demanding tasks. In this scenario, EmotiPlan detects positive emotional states, including happiness or motivation, through emotion recognition modules. Leveraging this data, the system prioritizes tasks that require deep focus and creativity, such as brainstorming, design work, or coding projects. By aligning complex tasks with peak emotional and cognitive states, EmotiPlan enhances performance outcomes while optimizing time management. Furthermore, the system can provide suggestions for task sequencing to sustain momentum, recommend brief restorative pauses to avoid fatigue, and adapt the workflow dynamically should the user's emotional state fluctuate during the day.

Scenario 3: Emotional Low

There are periods in which users may feel sadness, fatigue, or low motivation due to personal, professional, or healthrelated factors. During such emotional lows, traditional rigid schedules can exacerbate stress and reduce productivity. EmotiPlan addresses this challenge by identifying low-energy emotional states using facial emotion detection, voice sentiment analysis, or behavioral cues such as delayed task initiation. In response, the system prioritizes small, achievable tasks to maintain a sense of accomplishment and progress. Additionally, it may suggest mindfulness exercises, meditation, or short breaks to support emotional recovery. This scenario highlights EmotiPlan's capacity to foster resilience and maintain engagement even during periods of low emotional energy, ensuring that users continue making measurable progress without becoming overwhelmed or demotivated.

Impact Factor 8.471 $\,symp$ Peer-reviewed & Refereed journal $\,symp$ Vol. 14, Issue 9, September 2025

DOI: 10.17148/IJARCCE.2025.14926

Scenario 4: Remote Learning and Student Use

Students managing remote learning schedules or self-directed study sessions encounter unique challenges related to attention, motivation, and emotional regulation. In this scenario, EmotiPlan leverages real-time emotion monitoring to adapt study schedules according to the user's current mental state. For example, when a student exhibits signs of fatigue or distraction, the system may recommend shorter study intervals, scheduled breaks, or social engagement opportunities to re-energize and maintain focus.

EMOTION-BASED DAY PLANNER

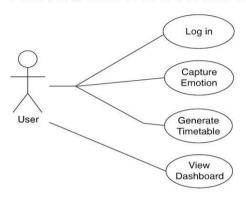


Figure 5: Use Case Diagram

IV. TECHNICAL IMPLEMENTATION

The implementation of EmotiPlan relies on a carefully selected technology stack that balances performance, scalability, and real-time responsiveness. The frontend is developed using modern frameworks such as React, Angular, or Flutter, providing a responsive and user-friendly interface across web and mobile platforms. These frameworks allow seamless interaction with the user, displaying real-time task updates, emotional feedback, and adaptive recommendations. The backend leverages robust platforms like Node.js or Python-based frameworks, including Django or Flask, to handle server-side processing, database management, and AI model integration. Structured and unstructured data is stored using relational databases such as PostgreSQL and NoSQL solutions like MongoDB, allowing efficient storage of task metadata, emotional logs, and user preferences. Integration with external productivity tools is facilitated via APIs, including Google Calendar, Microsoft Graph, and Todoist API, ensuring that EmotiPlan can synchronize with existing task management systems while maintaining continuity for the user.

At the core of EmotiPlan lies the emotion detection module, which utilizes advanced deep learning models to recognize user emotions in real-time. The system can employ publicly available datasets such as FER2013 and CK+, or alternatively, custom datasets collected from consenting users, to train these models. Convolutional Neural Networks (CNNs), as well as more sophisticated architectures such as ResNet variants, are employed to capture subtle facial expressions. Transfer learning is applied to leverage pre-trained models for faster convergence and improved accuracy on smaller datasets. During model training, techniques like data augmentation, cross-validation, and performance metrics evaluation ensure robustness and generalization. Special consideration is given to handling real-world challenges, including occluded faces, varying lighting conditions, multiple faces in the frame, and partial visibility, to ensure that emotion detection remains reliable across diverse scenarios.

Once the user's emotional state is determined, EmotiPlan employs a task adaptation algorithm to dynamically adjust daily schedules. The system combines both rule-based heuristics and machine learning approaches to prioritize tasks based on a scoring function that incorporates both task importance and emotional readiness. Reinforcement learning is utilized to optimize task sequencing over time, allowing the system to learn patterns in the user's emotional fluctuations and productivity trends. For example, if a user exhibits signs of anxiety or stress, the system may defer complex or creative tasks while suggesting low-effort activities or short mindfulness exercises. Conversely, during periods of high motivation and focus, cognitively demanding or creative tasks are prioritized to maximize productivity and engagement. This adaptive approach ensures that task recommendations are aligned with the user's current capacity to perform effectively.

213

Impact Factor 8.471 $\,\,st\,\,$ Peer-reviewed & Refereed journal $\,\,st\,\,$ Vol. 14, Issue 9, September 2025

DOI: 10.17148/IJARCCE.2025.14926

The integration pipeline of EmotiPlan is designed to facilitate real-time interaction and continuous learning. Emotional data is captured through facial recognition or voice analysis, classified by the AI model, and immediately applied to adjust task priorities in the user interface. The system incorporates a feedback loop, allowing users to approve, modify, or override suggested task adjustments. This feedback is subsequently used to refine the model's predictive accuracy and improve personalization over time. By continuously learning from user behavior and emotional patterns, EmotiPlan becomes increasingly tailored to individual preferences, offering a more precise and empathetic task management experience.

Security and privacy are central considerations in the technical implementation of EmotiPlan. Given the sensitive nature of emotional data, all information is stored securely with encryption, and strict access control mechanisms are enforced. The system complies with data protection regulations such as GDPR, providing users with clear consent mechanisms and the ability to opt-in or opt-out of emotion tracking at any time. Anonymized data may be used for model improvement without compromising individual privacy, ensuring ethical handling of personal information. These measures collectively establish a secure and trustworthy environment, enabling users to benefit from emotion-aware task management without concerns over data misuse or privacy violations.

In summary, the technical implementation of EmotiPlan integrates a modern, scalable technology stack with advanced AI models for emotion detection and adaptive task scheduling. The combination of frontend responsiveness, backend robustness, real-time emotion recognition, intelligent task adaptation, continuous learning, and strong security practices ensures that the system provides a human-centered, efficient, and reliable productivity tool. This implementation framework serves as the foundation for real-world deployment, supporting both the performance and emotional wellbeing of users across diverse professional, educational, and personal contexts.

V. LITERATURE REVIEW

Understanding the interplay between human emotions and productivity has been a subject of extensive research in cognitive psychology and organizational behavior. Emotional states significantly influence attention, decision-making, creativity, and overall task performance. Studies have shown that positive emotions, such as happiness and motivation, enhance cognitive flexibility, problem-solving abilities, and engagement, leading to higher productivity levels. Conversely, negative emotions, including stress, anxiety, and fatigue, can impair focus, reduce efficiency, and increase the likelihood of errors. The impact of emotional well-being on work performance is particularly evident in high-demand environments, where fluctuations in mood directly correlate with task completion rates and quality of output. These findings highlight the importance of incorporating emotional context into productivity tools, as conventional task management systems do not account for the cognitive and motivational effects of the user's mental state.

Existing productivity tools, such as Google Calendar, Microsoft To-Do, Trello, Notion, and Todoist, have become integral to personal and professional task management. These platforms offer features such as task scheduling, reminders, prioritization, collaboration, and progress tracking, enabling users to organize and optimize their daily activities. However, despite their widespread adoption, these tools remain largely **task-centric** and operate independently of the user's emotional state. Task prioritization is typically based on deadlines or user-defined importance, without consideration for cognitive readiness or emotional capacity. This rigidity can create a disconnect between a user's planned schedule and their ability to execute tasks effectively, potentially leading to decreased motivation, increased stress, and lower overall productivity. The absence of emotion-aware features in these systems represents a significant gap in the field of personal productivity tools.

Affective computing, the interdisciplinary domain that seeks to enable machines to recognize, interpret, and respond to human emotions, offers promising avenues to bridge this gap. Originally envisioned by Alan Turing as part of his work on intelligent machines, affective computing has been extensively developed through the pioneering contributions of Rosalind Picard at the Massachusetts Institute of Technology. Applications of affective computing span multiple domains, including healthcare, mental health monitoring, adaptive human-computer interaction, and customer experience optimization. Techniques employed in this field include facial expression analysis, voice emotion recognition, and physiological sensor monitoring, such as heart rate variability and skin conductance. These methods allow systems to infer the user's emotional state in real-time, enabling adaptive responses that can enhance engagement, reduce stress, and improve task performance. Despite these advancements, the integration of affective computing into mainstream productivity tools remains limited, leaving considerable potential for innovation.

Recent developments in artificial intelligence have further advanced the field of personal productivity. AI-driven recommendation systems and context-aware scheduling algorithms have been successfully applied to optimize task

Impact Factor 8.471

Peer-reviewed & Refereed journal

Vol. 14, Issue 9, September 2025

DOI: 10.17148/IJARCCE.2025.14926

prioritization, resource allocation, and workflow management. These systems leverage historical task data, user behavior patterns, and contextual information to provide dynamic, personalized recommendations, increasing efficiency and facilitating goal attainment. However, most AI-based productivity solutions focus on external contextual factors, such as deadlines, task dependencies, or work volume, and rarely incorporate internal user states, such as emotions or cognitive readiness. The lack of real-time emotional adaptation represents a critical limitation, as it prevents AI systems from fully aligning task recommendations with the user's mental and emotional capacity. Consequently, there is a compelling need for a new generation of productivity tools that combine AI-driven personalization with emotion-aware adaptability, enabling systems like EmotiPlan to enhance both performance and well-being.

VI. EVALUATION AND RESULTS

To assess the effectiveness of EmotiPlan in enhancing productivity and supporting emotional well-being, a comprehensive experimental evaluation was conducted. The study involved 30 to 50 participants drawn from diverse professional, academic, and personal backgrounds, ensuring a representative sample of potential users. Participants interacted with EmotiPlan over a period of one week, during which their emotional states, task completion patterns, and subjective perceptions were continuously monitored. Key metrics for evaluation included task completion rate, emotional well-being, perceived stress levels, and overall user satisfaction. These metrics were chosen to capture both quantitative performance improvements and qualitative experiences, providing a holistic understanding of the system's impact. The quantitative analysis focused on measuring changes in task completion and emotional trends when using EmotiPlan compared to traditional planners. Task completion rates were analyzed before and after integrating emotion-aware scheduling, revealing a significant improvement in adherence to planned activities. Participants demonstrated higher consistency in completing critical and cognitively demanding tasks, particularly during periods of elevated motivation or positive emotional states. Emotional trends were monitored using aggregated outputs from the emotion detection module alongside self-reported mood scores. The analysis showed that adaptive task recommendations led to reduced stress levels and more balanced emotional fluctuations throughout the day. In addition, productivity improvements were observed in terms of efficiency and task sequencing, as the system dynamically prioritized activities based on both urgency and the user's emotional readiness.

In parallel, a **qualitative analysis** was conducted through semi-structured user interviews and post-experiment surveys. Participants reported that EmotiPlan offered a more empathetic and supportive experience compared to conventional task management tools. Many highlighted the ease of use and the intuitive presentation of adaptive recommendations, noting that the system encouraged motivation and a sense of control over their schedules. Users particularly appreciated the flexibility in accommodating emotional lows, where suggested micro-tasks and mindfulness prompts helped maintain engagement without causing additional stress. Feedback also underscored the perceived novelty of an emotion-aware planner, as participants felt that the system's ability to recognize and respond to mood provided a more human-centered and personalized approach to daily planning.

EMOTION-BASED DAY PLANNER

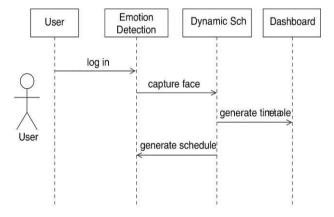


Figure 6: Sequence Diagram

Despite these positive outcomes, certain **limitations** were identified. The accuracy of emotion detection in real-world conditions remains a challenge, particularly in cases with low lighting, occluded faces, or multiple people in the frame. Ethical considerations around continuous monitoring of emotional states also require careful handling, as user trust and

Impact Factor 8.471 $\,\,st\,\,$ Peer-reviewed & Refereed journal $\,\,st\,\,$ Vol. 14, Issue 9, September 2025

DOI: 10.17148/IJARCCE.2025.14926

privacy are paramount. The system's effectiveness is contingent on user consent, engagement, and willingness to interact with the adaptive recommendations. Furthermore, while the system showed promising improvements in short-term studies, long-term effects on productivity and emotional well-being require further investigation to establish sustained benefits.

Overall, the evaluation demonstrates that EmotiPlan can significantly enhance both productivity and emotional health compared to traditional task management tools. By integrating real-time emotion detection with adaptive scheduling, the system provides personalized, empathetic guidance that aligns with the user's cognitive and emotional states, fostering improved engagement, reduced stress, and more effective task execution.

VII. CONCLUSION

EmotiPlan demonstrates a novel approach to personal productivity by integrating real-time emotion detection with adaptive task management. Traditional productivity tools are largely task-centric and rigid, failing to account for the profound impact of emotional states on attention, motivation, and performance. By leveraging advanced affective computing techniques, including facial expression analysis, voice emotion detection, and physiological sensing, EmotiPlan dynamically adjusts task priorities and provides context-sensitive recommendations that align with the user's current emotional state. Experimental evaluation with diverse participants revealed significant improvements in task completion rates, emotional well-being, and user satisfaction when compared to conventional planners. Users reported that the system's empathetic responses and adaptive scheduling increased motivation, reduced stress, and enhanced engagement.

Despite these positive outcomes, limitations remain, particularly regarding the accuracy of emotion recognition under challenging real-world conditions and ethical considerations surrounding continuous monitoring. The effectiveness of the system also depends on user consent and active engagement. Future work will focus on enhancing model robustness, incorporating multimodal emotional inputs, and expanding deployment to larger, more varied populations to validate long-term impact.

In conclusion, EmotiPlan exemplifies the potential of **human-centered**, **emotion-aware productivity systems**, bridging the gap between cognitive task management and emotional intelligence. By aligning daily planning with the user's mental and emotional readiness, the system not only optimizes performance but also fosters well-being, marking a significant advancement in the design of adaptive personal productivity tools.

REFERENCES

- [1]. R. Picard, Affective Computing, MIT Press, 1997.
- [2]. A. Turing, Computing Machinery and Intelligence, Mind, vol. 59, pp. 433–460, 1950.
- [3]. FER2013 Dataset. [Online]. Available: https://www.kaggle.com/c/challenges-in-representation-learning-facialexpression-recognition-challenge
- [4]. CK+ Dataset. [Online]. Available: http://www.consortium.ri.cmu.edu/ckagree/
- [5]. M. L. Zeidner, N. Matthews, Emotions in Work Performance, Psychology Press, 2018.
- [6]. Google Calendar API. [Online]. Available: https://developers.google.com/calendar