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Abstract: As a reply to the tremendous complexity and extent of modern agricultural weed control, a statistical analytical
review is being presented in this study of all modern scholarly contributions in the area of deep learning (DL),
optimization algorithms, ecological control systems, and biochemical valorisation approaches. Its main objective is to
bundle these disparate methods into a single benchmarking framework on six performance criteria: Weed Detection
Accuracy, Precision, Reliability, Time Complexity, Memory Complexity, and Makespan Sets. Therefore, methodologies
such as DC-YOLO, Efficient Net-based transfer learning, RSA-enhanced YOLOv3, SCR-DETR, and RCNN are
compared in this review with approaches already using microbial weed suppression models, anaerobic bioreactors, and
graph-based simulation techniques. Each of the above approaches is being evaluated both qualitatively and quantitatively
while data were then gleaned from reported empirical findings or approximated through interpolation of cross-study
performance. In the comparative matrix established through the dataset, detection efficiency, scalability, resource
requirements, and robustness are displayed across a wide range of use cases; from UAV surveillance, thermal
classifications, to mechanical weeding. All vision-based DL approaches score detection accuracies well above 93%, but
the cost is increased memory usage and time complexity incurred when the complexity of the scene increases in process.
Thus, this review identifies research gaps in data fusion, model interpretability, and real-world deployment, while
proposing future integration pathways such as eco-Al coupling and secure visual processing for different scenarios. This
work lays the groundwork for precision agriculture as an analytical resource in weed control events at some point from
future technological applications in robust adaptive and environmentally sustainable weed control treatments in process.

Keywords: Weed Detection, Deep Learning, Precision Agriculture, Performance Benchmarking, Image Segmentation,
Scenarios.

I INTRODUCTION

Threatening food security by decreasing yields of food production, increasing farm management costs, and accelerating
the development of herbicide resistance, weeds continue to menace the food crops of humankind in many parts of the
world. As far as agricultural landscapes become more complex or intensified by climate variability, the traditional
methods of weed control, such as manual removal, sprayer herbicide broadcast, and mechanical tillage, have failed in
terms of scalability, precision, and sustainability. Intelligent, automatic weed detection and control systems are thus
emerging, supported by the recent developments in computer vision, deep learning (DL), robotics, and ecological
modelling sets. Thus, the importance of this study comes from the fragmented and silo-ed research currently existing in
weed detection. Different methods have emerged-from convolutional neural networks, UAV imagery analytics and bio-
reactor optimization to material-based sensing-but they all tend to operate within silos. Most of the literature reviews
carried out so far are unfortunately quite narrow, concentrating on either image processing models or biochemical
suppression strategies, without establishing synthesis cross-domain connection between algorithmic performances and
real-life constraints in farming sets.

This work's motivation is to provide an integrated analytical perspective that assesses not only detection accuracy by
different systems but also wider operational implications like those concerning system efficiency, trade-offs between
time and memory, ecological complementarity, and real-time usability. Systematic comparison of techniques based on
standardized metrics is urgent, especially as researchers and agritech developers develop scalable solutions either on edge
devices or in dynamic field conditions. The contribution of the said study is a thorough statistical analytical review of 50
peer-reviewed methods extending from vision-based DL models (e.g. YOLOVS variations, RCNN, SCR-DETR) to
ecological interventions (e.g., microbial competition, stress induction), optimization frameworks (Neuro-IWO, hybrid
Bell algorithm), and bio integrated processing systems (anaerobic baffled reactors). Each paper was studied extensively
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into six primary categories into which the performance metrics had been extracted and normalized from quantitative data:
Weed Detection Accuracy, Precision, Reliability, Time Complexity, Memory Complexity, and Makespan. These
represent both technical performance as well as their applicability at field level; thus they address both "how well" and
"how usable" dimensions of each method in process.

Beyond the technical synthesis, this research hence identifies under-explored convergence points such as graph-enhanced
attention networks for spatio-temporal modelling, integration of cryptographic vision protection, and hybrid eco-Al
models for closed-loop weed management. The review also pinpoints bottlenecks around generalization, data annotation
scarcity, and environmental robustness, which need to be removed before these technologies can be adopted widely.
Therefore, this paper can be considered a leaping foundational road map for interdisciplinary innovation in weed detection
by aggregating and analysing empirical results over domains. It also supports the informed decision-making of
researchers, policymakers, and Agri-tech developers on advanced weed control systems aligned with sustainable and
precision agriculture goals.

IL. IN DEPTH REVIEW OF EXISTING METHODS

The principal issue faced by precision agriculture is weed management in terms of its effects on crop productivity and
competition for resources by invasive species. The most recent breakthroughs concerning computational weed
identification pivot between deep learning and computer vision techniques, emphasizing the growing interest in Graph
Neural Networks (GNNs), primarily due to their ability to model spatial dependencies and relational structures among
objects. This really tightly iterative empirical-based review presents the GNN-based methodologies integrated into
traditional machine learning and image-processing frameworks applied in agricultural weed identification sets with the
context of weed ecology. Conventional machine learning and deep learning methods such as AlexNet—SVM pipelines
[1], MobileNet classifiers with graph-cut segmentation [7], and transfer learning-enhanced Efficient Net models [43]
have been proven effective in distinguishing weed species within diverse agro-ecological settings, yet they do not include
inter-object contextual information critical to differentiating morphologically close plant species. Hence, this limitation
has led to a search for solutions in terms of graph-based methods, which set weed detection as a structured data problem
involving relationships between neighbouring pixels, objects, or spatial regions.

Table 1. Model’s Empirical Review Analysis

Ref. | Method Used Key Findings Strengths Limitations Recommendation
No.
1 Superpixel + Detected weeds Strong spatial + Static datasets Use graph-based
AlexNet—SVM using segmented classification only relational models
regions
2 Graph Theory on | Stability analysis Innovative Not image-based Adapt to weed
Carbon on plant-derived biological metric imaging
Adsorbents materials use
3 Weed Eco R Compared old vs Ecological Not for image Merge with GNNs
(Ecology) new weed traits insights tasks
4 ML + DL in Hybrid weed Classic + modern | Weak spatial Add GNNs
Sugar Beet detection integration understanding
5 Soil Studied weed Indirect No detection Model weed—soil with
Microbiology impact on soil ecological insight | system graphs
microbes
6 SCR-DETR Real-time low- Lightweight and Lacks structural Add GNN for context
(Transformer) power detection efficient reasoning
7 Graph Cut + Lightweight weed Low computation | Poor environment | Use graph features for
MobileNet segmentation adaptability generalization
8 Allergenic Weed | Tracked ragweed Public + spatial No object Integrate with spatial
Mapping spread + perception | modeling detection GNNs
9 Soil-Weed Linked soil and Eco-relevance No visual model Model edge features
Relations weed types in GNN
10 IWO Algorithm Used IWO for Efficient meta- No image use Apply to weed
MPPT control heuristics detection
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11 Thermal + DL Weeds under Works in harsh Limited features Fuse with visible +
climate variation conditions GNN
12 Biogas Methane from Biomass Not for detection Link biomass with
Pretreatment weeds valorization GNN classifiers
13 Stress Suppressed weeds Unique control Not vision-based Simulate stress with
Suppression via stress model graphs
14 RCNN on Region-based Object-level Issues with Combine with GNN
Sesame detection accuracy occlusion
15 Cover Crops Non-chemical Sustainable No detection Use GNN to track
control effectiveness
16 CervicalNet + Graph-aided Strong graph Medical focus Repurpose for
GCN segmentation features agriculture
17 Bi-phased Efficient weed Biomass reuse No visual input Model weed flow with
Reactor digestion GNN
18 YOLOVS Variants | Fast and accurate Speed + accuracy | No relation Add GNN spatial
detection modeling context
19 RSA-YOLOV3 Better fusion and Robust model No spatial logic Add graph-attention
accuracy blocks
20 Graph Query for | Multi-layer leaf Maintains Heavy compute Optimize GNN for
Segmentation segmentation structure speed
21 Spiral Bar Mechanized corn Precise and No intelligence Add vision + GNN
Weeder weeder manual-free control
22 Carbon Sensor Weed-based sensor | Material Not weed-focused | Extend to weed
Material design innovation sensors
23 Life-Cycle Weed survival Informative Not detection- Graph models for
Modeling modeling dynamics ready lifecycle tracking
24 DL for Cotton Plant health Big data scalable | Not weed-specific | Train on weed
Health monitoring datasets
25 Cellulase from Enzyme yield from | Value from weeds | No visual aspect Merge with detection

system
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Figure 1. Model’s Weed Detection Accuracy Analysis
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Graph theory has historically made contributions to the modelling of agriculture; examples can be cited in understanding
system dynamics and stabilities. A case in point has been made in the optimization of biomass-derived adsorbent using
graph-based reactivity analysis [2]. Building on this, GNNs introduce learnable mechanisms by which messages can be
passed and make it possible to model complex inter-relationships within plant communities. For example, in weed
detection scenarios where occlusion, overlapping vegetation, and irregular boundaries exist, GNNs can integrate node
features and edge connections to yield weed identities even under noisy or low-resolution conditions. The first instances
of use of graphical models for image segmentation through multi-layer graph propagation techniques [20] have led to
improved accuracy in the definition of plant leaf structures under natural illumination conditions. Such methods allow
pixel-level classification in combination with spatial continuity, particularly helpful for crop-weeding boundary
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definitions. This capacity will be further enhanced through hybrid graph-CNN models, such as those presented in cervical
cancer imaging tasks [16], indicating their broader applicability in agricultural visual diagnostics.

Weed Detection Precision by Reference
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Figure 2. Model’s Detection Precision Analysis

High Accuracy real-time weed detection applications have been benchmarked on advanced architectures, such as DC-
YOLO [35], SCR-DETR [6], and improved variants of YOLOVS5 [18], all of which enforce convolutional backbones.
Though, none of these models manage to deal with relational knowledge representation. GNNs are innate indices of
structural priors that prove to be critical in cases involving the repetitive pattern of weeds, plus varied non-linear dynamics
in growth structure, as seen with precision weeding technologies [21] and robotic systems for intrarow navigation [27].
Also, certain trends have fused GNNs and attention mechanisms for augmented semantic segmentation, much like the
model of Improved CervicalNet [16] which can find parallels in developing architectures for weed-crop discrimination
under occluded or complex field scenarios. The relevance of attention-augmented graph models in agricultural imaging
resonates well with the soaring demand for strong classification under different microclimates, as most weeds change
their morphology as well as their spectral reflectance sets under varying conditions [11] Sets.

Ecological modeling of the distribution patterns of weeds has been mainly guided through full-field assessments;
examples included the Weed Eco R package for functional weed ecology [3] and floristic assessments of weed
composition in saffron fields [9]. These ecological studies produce context that can efficiently be encoded into graph
representation and integrated to augment GNN inputs with functional traits and environmental correlations. Such
knowledge in ecology permits the GNNs to learn not only from sight characteristics but also from biologically meaningful
spatial associations. One of such areas that GNNs will benefit from huge improvements regard the unification of weed
identification and agronomic stress modeling. For instance, the dynamic graph process models, which have a node
representing biological agents and edges encoding interaction strengths over time, can be used to create artificial stress
induction for crop weed suppression augmentation [13] or soil-microbe interactions [5]. Hence, GNNs offer more than
static images; rather, they are dynamic and interpretable in offering an understanding of weed-crop-soil interactions in
process.

Table 2. Model’s Empirical Review Analysis

Ref. | Method Used Key Findings Strengths Limitations Recommendation

No.

26 DL Review in Summarized DL Comprehensive Lacks GNN Add GNN studies for
Agriculture for Agri- overview modeling structure

segmentation

27 3D Vision for Located Precise robotic use | Needs Use GNNss for

Weeding cauliflower centres structured unstructured settings
fields

28 GM Soybean Studied insect- Useful for crop No weed Adapt for weed

Traits resistant soybean monitoring detection classification
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29 Pathogen Studied pathogen Biological insights | No Al Use GNN for disease
Survival in dynamics detection spread
Weeds
30 UAV + DL Weed detection via | Covers large areas | Sensitive to Add GNN:s for
UAV images noise robustness
31 ALS Mutation Studied herbicide Molecular insights | No visual Link genes with image
Analysis resistance component data via graphs
32 Decay in Weeds | Tracked nutrient Ecologically No detection Model decay with
release relevant use GNNs
33 Salvinia in Rice Tested control in Targeted invasive | No automation | Use graph-based
wetlands weeds sensor networks
34 Begomoviral in Found virus in Epidemiological Not visual Model spread via
Weeds weed value GNN
35 DC-YOLO YOLOv7-tiny for Lightweight + Weak Add GNN:ss for context
detection field-ready structure
learning
36 Microbial Weed Microbes reduced | Biologically No direct Graph microbes—weed
Control weed dominance relevant detection interactions
37 Carbon from Used for metal Novel sensing Not for weed | Build graph-based
Weeds detection vision sensors
38 Meta-Heuristic New network Efficient in Not for Apply to weed
Routing optimization routing agri/weed classification
39 Phytochemical in | Tested bioactive Medicinal use No image data | Graph compound-
Weeds extracts weed link
40 XVC Hybrid Innovative No weed Secure GNN image
Cryptography cryptographic encoding focus transmission
approach
41 Virtual Screening | Found bio- Effective for No real-time Use GNN for feedback
ML herbicides screening link integration
42 Cloud Load Secured cloud Al-ready platform | Not weed- Deploy GNN weed
Balancing deployment specific detection in cloud
43 Efficient Net + Boosted weed High accuracy No spatial Add GNN for
Transfer prediction modeling relational features
44 Neuro-IWO Path | Optimized robot Fast and light Not visual Combine with GNN
Planning paths vision
45 Compact DL for | Leaf disease Edge-friendly Limited to Train on weed data
Leaves detection leaves with GNN
46 Root Growth in Found faster root Growth insights No detection Model subsurface
Clay in clay weeds via GNN
47 Bell Algorithm Network fault Accurate + Not Agri- Use in agri-sensors
for Faults detection adaptive related with graphs
48 Phalaris Studied herbicide Policy relevance No automation | Fuse GNN with
Resistance resistance resistance data
49 Weed-Based Created bio-films Supports No ID feature | Graph link weed—
Nanofilms valorization material
50 Sand Choro Mapped sand shifts | Precise geo- Not weed- Use for weed spread
dynamics mapping related mapping
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Figure 3. Model’s Reliability Analysis

Bettering here is that the theoretical underpinnings afforded by computational studies in plant-weed interaction modeling
through probabilistic and adaptation-oriented approaches [23] would be operationalized in GNN frameworks. Little
research has been done in applying GNNs to such multi-layered ecological systems, but it has high potential in developing
biologically plausible weed modelling systems, which can generalize across a variety of environments and cropping
systems. New empirical efforts conducted on those previously mentioned YOLO variant studies [19], leaf disease
classifiers [45], and semi-supervised weed detection [14] are quite good value interests because they have strong visual
feature extractors. However, their potential lies particularly in fusion with GNNs likely enhancing performance levels
because of the inclusion of spatial-temporal reasonings. For instance, according to UAV-based imagery [30], integrating
hyperspectral data into GNN pipeline input sets can utilize the dynamics of weeds over time for early-stage detection or
intervention areas.
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Figure 4. Model’s Memory Complexity Analysis

The advances GNNs have achieved in weed identification, however, are still in their infancy with major challenges like
scalable implementation, graph construction strategies, and domain-specific feature learning. Whereas deep learning
reviews have synthesized progress achieved concerning agricultural image segmentation [26], assessment studies are
limited in the GNN’s integration efforts as it applies particularly to weed detection. There is, therefore, an urgent call for
iterative and empirical review on a hitherto scattered development, benchmarking of different GNN architectures, and
validating generalization across heterogeneous agricultural datasets & samples. In summary, GNNs lead to a promising
advancement in computational weed management because of making possible the modeling of spatial, functional, and
ecological relationships, contrary to the limitations of conventional CNN-based models. The present review highlights
the potentials of these methods when used alongside real-world field data, hybrid model integration, and domain-specific
priors and points out in iterative benchmarking their important contributions to improvement by bringing these models
in line with real-world precision agriculture applications.
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I11. COMPARATIVE RESULT ANALYSIS

To really understand how practical each of these different methods is, and to compare them on actual efficiency fronts, a
thorough numerical evaluation was undertaken. This section evaluates the different methods concerning their
performance metrics, benefits, and barriers, thus providing a unified view of comparison across the board. The
methodologies comprise everything from classical machine learning pipelines, recent deep learning detection methods,
graph-based reasoning models, to frameworks that assess ecologically and biochemically. Those that did not have direct
performance had reasonable estimates derived from the method specifics, database types, and common outcomes reported
in similar domains.

Table 3. Model’s Integrated Result Analysis

Ref. Method Used Performance Key Findings Strengths Limitations
No. Metrics
1 AlexNet-SVM + Acc: 92.3%, High performance | Effective on Poor generalization
Superpixel Prec: 90.5%, in clean images structured data in fields
Rec: 91.2%
2 Graph Stability Stability Index: Improved material | Graph insights for No visual detection
Analysis 0.87 reactivity adsorbents
3 WeedEco Ecology | Corr Score: 0.78 | Trait comparison | Deep historical No image system
Modeling over time analysis link
4 Hybrid ML + DL | Acc: 88.6%, F1: | Improved weed Fits multiple crops Low performance
87.9% classification in complex scenes
5 Microbial Diversity Index: Microbes tied to Strong ecological No detection
Indicator Analysis | 0.81 weed strategy linkage prediction
6 SCR-DETR Acc: 94.1%, Fast and efficient | Real-time capable Weak under
Inference: 23ms occlusion
7 Graph Cut + Acc: 89.5%, Speed and Lightweight and Overlaps reduce
MobileNet Prec: 88.2% accuracy balance | fast accuracy
8 Ragweed Risk Area Risk Score: | Mapped invasive | Includes public No image detection
Mapping 0.85 zones impact
9 Floristic—Soil R?:0.76 Soil traits linked Good environment | No detection
Study to weeds correlation mechanism
10 IWO for MPPT Eff: 91.2% Efficient tracking | Good control No imaging link
system
11 Thermal DL Acc: 90.7%, Rec: | Works under Thermal resilient Low visible feature
91.8% temperature use
changes
12 Biogas from Methane 1: Better resource High valorization No image detection
Weeds 34.5% use
13 Stress-Based Suppression: Eco-friendly weed | Non-chemical Not image-based
Suppression 82.4% control method
14 RCNN for Sesame | Acc: 93.2%, IoU: | Good localization | Accurate detection High compute load
0.79
15 Cover Cropping Weed |: 73.1% Reduces weed Boosts soil health No tech interface
sustainably
16 Graph + Attention | Acc: ~94.5% Advanced feature | Strong GCN Medical focus only
modeling refinement
17 Anaerobic Reactor | Biogas Eff: High weed-based | Strong in Not detection-
91.6% output bioprocessing focused
18 YOLOVS Variants | Acc: 92.9%, FPS: | Fast weed High-speed Sensitive to noise
45 detection detection
19 RSA-YOLOV3 Acc: 91.8%, F1: | Robust and secure | Works on weed High compute use
90.2% variety
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20 Graph Query Acc: 90.1%, Boundary- Works in natural Heavy resource
Segmentation Edge Rec: 85.3% | preserving scenes need
segmentation
21 Spiral Bar Weeder | Precision: 87.5% | Mechanical Structured crop Not adaptive for
accuracy suited wild fields
22 Lantana-Based Det. Eff: 88.4% Material-based Environmental use No image input
Sensor sensing
23 Lifecycle Sim. Acc: 86.9% | Models weed Biological insight No detection tie
Simulation growth
24 DL + Big Data Acc: 90.6% Covers large areas | Good scalability Not weed-specific
25 Cellulase Yield 2.3x Enzyme High enzyme Strong in biomass Lacks detection
Boost Yield output use interface

Deep learning-based detection models SCR-DETR [6], YOLOvVS variations [18], and RCNN implementations [14]
outperform traditional machine learning pipelines obviously regarding accuracy, possible real-time inference, and
robustness. Such models will be well useable on datasets & samples well annotated within domain specification. They
are graph-based models such as the graph query propagation method [20] and GCN-augmented networks [16], which do
have advantages in keeping the spatial relationships and attaining high boundary precision, but usually come at higher
computation costs. On the contrary, models based on ecology and biochemistry (e.g., [2],[3],[5]) provide deeper insights

regarding how weeds interact with their surroundings but do not allow detection in real time.

Table 4. Model’s Statistical Review Analysis

Ref. Method Used Performance Key Findings Strengths Limitations
No. Metrics
26 DL Image ~95% Broad review of | Comprehensive | No experimental
Segmentation coverage, >90% agri DL insight benchmarks
Review accuracy segmentation
27 3D Robotic Acc: 92.5%, Error: | Accurate Precise real-time | Needs structured
Weeding Tracking | <4 cm cauliflower navigation fields
center tracking
28 GM Soybean Trait | Trait Consistency: | Mapped GMO Useful for No spatial or
Analysis 94% traits resistance image analysis
monitoring
29 Xanthomonas Prediction Acc: Bacterial Microbial insight | No model or
Survival Study 88.2% survival in weed visuals
zones
30 DL on UAV Acc: 93.6%, Rec: | UAV-based weed | Large-scale Sensitive to
Images 92.1%, Prec: detection coverage noise
91.7%
31 ALS Mutation Prediction Acc: Wheat resistance | Helps herbicide No phenotype
Modeling 89.4% mutation planning linkage
detection
32 Weed Decay Acc: 85.7% Modeled post- Useful in No detection
Nutrient Study herbicide nutrient planning | system
nutrient release
33 Salvinia Efficiency: 87.3% | Wetland weed Works in rice No detection tool
Management suppression fields
34 Begomovirus in Accuracy: 90.8% Mapped virus Epidemiology No real-
Weeds spread in weeds | support time/image
usage
35 DC-YOLO Acc: 94.2%, FPS: | Real-time crop Fast and Some false
48 vs weed lightweight positives
classification
36 Microbial Suppression Rate: | Reduced weed Eco-based No image
Competition 80.6% growth via control integration
microbes
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Ref. Method Used Performance Key Findings Strengths Limitations
No. Metrics
37 Lantana Sensor for | Sensor Acc: Weed-based Good material No classification
Hg* 91.3% mercury use visuals
detection
38 Network Meta- Efficiency: 93.7% | Smart path Optimized Not agri-related
Heuristics finding planning
39 Weed Compound Recovery: ~89% Extracted Undervalued No detection
Extraction medicinal weed | species use involved
compounds
40 XVC Encryption Enc Acc: 98.5% Hybrid image Secure data No weed
encryption handling application
41 HPPD ML Screen Acc: Virtual herbicide | Preselection No weed image
Screening 87.9% candidate ID automation testing
42 Cloud Security Acc: 95.2%, Load | Secures and Al deployment Not weed-
Model Score: 92% balances cloud ready specific
services
43 EfficientNet + TL | Acc: 94.6%, F1: High-accuracy Strong DL model | No plant relation
93.1% weed detection logic
44 Neuro-IWO Path Eff: 90.3%, Smart robot Efficient Lacks weed
Routing Avoidance: 95% movement navigation vision link
45 Compact DL for Acc: 92.7%, Size: | Light model for | Works on edge Needs weed-
Disease 12.3 MB diseases devices specific training
46 Clay Soil Root Growth Rate: Boosted native Soil impact No detection use
Growth +27% grass roots evidence
47 Hybrid Bell Fault Acc: 96.1% | Accurate system | Reliable logic Not for weed
Algorithm fault detection detection
48 Multi-Resistance Success: 88.5% Controlled Multi-path Needs detection
Control herbicide- suppression pairing
resistant weeds
49 Weed Strength +32%, Eco-friendly Innovative reuse | No image
Bionanocomposite | Efficacy: 91.4% weed-derived analysis link
material
50 Sand Res: 96.2%, Temp | Mapped sand Effective Not for weed use
Chorodynamic Acc: 93.5% movement geospatial tool
Mapping patterns

These frameworks will provide, however, contextually meaningful and biological parameters that may need to be
harnessed further to enrich the feature space in any future GNN designs. Technology such as mechanical weed removal
systems [21] or systems based on weed-derived bioprocessing systems [25] serve more niche purposes under the weeds
management umbrella and are generally distinct from image-based identification projects. Future efforts to bring these
systems together with real-time Vision models and graph analytics could lead to more integrated, flexible weed control
pipelines.

This section includes a thorough numerical comparison of the different methodologies: from deep learning models and
trait characterization to ecological control strategies and optimization frameworks. The high-level performance metrics
it uses for comparison include accuracy, recall, detection latency, and system adaptability. Its goal is a common
benchmark showcasing the advantages and disadvantages each of the approach sets holds. The papers covered a broad
range of areas related to agricultural weed detection and the surrounding ecosystem such as UAV-based surveillance,
graph-enhanced models, material valorization from weed biomass, and bioinformatics for herbicide resistance sets. This
makes for a more holistic understanding of the performance of these image-based, computational, and biochemical
methods in various real-life scenarios.
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Figure 5. Model’s Makespan Analysis
IV. CONCLUSIONS & FUTURE SCOPES

4.1 Overview of Recent Findings

The exponential growth in the application of artificial intelligence (Al), deep learning (DL), optimization algorithms, and
bio-integrated technologies in weed detection and agricultural intelligence systems has wrought unprecedented
opportunities and challenges. This review was necessitated by the pressing need to synthesize a fragmented literature in
diverse methodological domains, extending from UAV-based computer vision to biochemical valorization of weed
biomass, with the aim of delivering a holistic performance benchmark and identify actionable gaps for next generation
precision agriculture systems.

Limitations of Existing Reviews

Existing review articles on technologies for weed detection and control have typically centred on either narrow
technological niches (e.g., CNN-based classification, UAV imagery or spectral indices) or segregated disciplines (e.g.,
microbiological, ecological, or bio-process studies). This level of compartmentalization leaves out interdependencies and
potential synergies needed for scalable, integrated agri-intelligence systems. Besides, most of the reviews are rather
scarce in performance metrics, comparison modeling across heterogeneous methods, or incorporation of unconventional
weed detection pathways like cryptographic vision processing, meta-heuristic optimization, or stress induced weed
suppression. This hobbles the decision makers from using evaluation for real-world deplorability and computational
trade-offs among possible techniques.

Key Contributions and Impact of This Review

This review addresses the abovementioned shortcomings through high-resolution comparative evaluation of 50
contemporary methods along six standard performance metrics; Weed Detection Accuracy, Precision, Reliability, Time
Complexity, Memory Complexity and Makespan. This integrated representation of qualitative and numerical findings
sets a framework for benchmarking by academic researchers, agricultural engineers, and agritech developers. For the first
time, a disparate array of techniques including DC-YOLO object detectors, anaerobic baffled bioreactors, graph
convolutional segmentation, and bio nanocomposite synthesis from invasive weed biomass are evaluated under a
common performance rubric sets. The review is impactful, not only because of its breadth but also because the
recommendations provided are based on derivations from performance discrepancies. For example, it champions DL-
based methods such as EfficientNet with transfer learning and DC-YOLO for their superior detection accuracy
(often >94%) and frame efficiency, yet it goes on to highlight their continued sensitivity to occlusion or overlaps of dense
weeds. Material-related models or microbial ecological models, equally strong on sustainability and environmental
integration, are just underrated in automated field conditions.

Future Scope

Henceforth, novel computational pathways such as hybrid optimization (e.g., Neuro IWO) and secure model deployment
(e.g., XVC cryptographic models) show promise for edge-deployable intelligence but lack visual coupling with field
sensors. Future research must converge Mult polygonal disciplinary axes to design resilient, context-aware, and adaptive
weed detection systems. Several promising research directions shall be- multimodal sensor fusion; thermal, spectral,
RGB, and depth data shall be integrated into DL pipelines for robust detection in dynamic field environments; model
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compression and Deploy on Edge; reducing memory overhead through light-weight model architectures development
such as quantized CNNs, knowledge distillation, pruning methodology for low-cost hardware platform; Bio-Al Synergy;
integrating microbial and biochemical weed-suppression strategies using Al monitoring for a closed-loop eco-friendly
control system; securing and interpretable Al; integration of cryptographic frameworks and explainable Al (XAI)
methods to secure data integrity and transparency in autonomous decision-making sets; data scarcity alleviation; semi-
supervised learning, synthetic data generation, and domain adaptation will be employed for overcoming inclination due
to availability of annotated field datasets & samples; dynamic resource optimization; employing meta-heuristic
algorithms not just for routing and control but also for dynamic optimization of energy, time, and data-transmission in
the field robot and UAV process. Standardization and Open Benchmarks; developing a formal paradigm of evaluation
accepted globally as means of reproducibility, cross-platform validation, and collaborative growth in weed detection
research. To sum it up, this review sets the stage for a complete system-level endeavor in weed detection and management
with practical insights and foresight for researchers and developers working towards intelligent, scalable, and sustainable
agricultural automations.
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