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Abstract: As a reply to the tremendous complexity and extent of modern agricultural weed control, a statistical analytical 

review is being presented in this study of all modern scholarly contributions in the area of deep learning (DL), 

optimization algorithms, ecological control systems, and biochemical valorisation approaches. Its main objective is to 

bundle these disparate methods into a single benchmarking framework on six performance criteria: Weed Detection 

Accuracy, Precision, Reliability, Time Complexity, Memory Complexity, and Makespan Sets. Therefore, methodologies 

such as DC-YOLO, Efficient Net-based transfer learning, RSA-enhanced YOLOv3, SCR-DETR, and RCNN are 

compared in this review with approaches already using microbial weed suppression models, anaerobic bioreactors, and 

graph-based simulation techniques. Each of the above approaches is being evaluated both qualitatively and quantitatively 

while data were then gleaned from reported empirical findings or approximated through interpolation of cross-study 

performance. In the comparative matrix established through the dataset, detection efficiency, scalability, resource 

requirements, and robustness are displayed across a wide range of use cases; from UAV surveillance, thermal 

classifications, to mechanical weeding. All vision-based DL approaches score detection accuracies well above 93%, but 

the cost is increased memory usage and time complexity incurred when the complexity of the scene increases in process. 

Thus, this review identifies research gaps in data fusion, model interpretability, and real-world deployment, while 

proposing future integration pathways such as eco-AI coupling and secure visual processing for different scenarios. This 

work lays the groundwork for precision agriculture as an analytical resource in weed control events at some point from 

future technological applications in robust adaptive and environmentally sustainable weed control treatments in process. 

 

Keywords: Weed Detection, Deep Learning, Precision Agriculture, Performance Benchmarking, Image Segmentation, 

Scenarios. 

 

I. INTRODUCTION 

 

Threatening food security by decreasing yields of food production, increasing farm management costs, and accelerating 

the development of herbicide resistance, weeds continue to menace the food crops of humankind in many parts of the 

world. As far as agricultural landscapes become more complex or intensified by climate variability, the traditional 

methods of weed control, such as manual removal, sprayer herbicide broadcast, and mechanical tillage, have failed in 

terms of scalability, precision, and sustainability. Intelligent, automatic weed detection and control systems are thus 

emerging, supported by the recent developments in computer vision, deep learning (DL), robotics, and ecological 

modelling sets. Thus, the importance of this study comes from the fragmented and silo-ed research currently existing in 

weed detection. Different methods have emerged-from convolutional neural networks, UAV imagery analytics and bio-

reactor optimization to material-based sensing-but they all tend to operate within silos. Most of the literature reviews 

carried out so far are unfortunately quite narrow, concentrating on either image processing models or biochemical 

suppression strategies, without establishing synthesis cross-domain connection between algorithmic performances and 

real-life constraints in farming sets.  

 

This work's motivation is to provide an integrated analytical perspective that assesses not only detection accuracy by 

different systems but also wider operational implications like those concerning system efficiency, trade-offs between 

time and memory, ecological complementarity, and real-time usability. Systematic comparison of techniques based on 

standardized metrics is urgent, especially as researchers and agritech developers develop scalable solutions either on edge 

devices or in dynamic field conditions. The contribution of the said study is a thorough statistical analytical review of 50 

peer-reviewed methods extending from vision-based DL models (e.g. YOLOv5 variations, RCNN, SCR-DETR) to 

ecological interventions (e.g., microbial competition, stress induction), optimization frameworks (Neuro-IWO, hybrid 

Bell algorithm), and bio integrated processing systems (anaerobic baffled reactors). Each paper was studied extensively 
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into six primary categories into which the performance metrics had been extracted and normalized from quantitative data: 

Weed Detection Accuracy, Precision, Reliability, Time Complexity, Memory Complexity, and Makespan. These 

represent both technical performance as well as their applicability at field level; thus they address both "how well" and 

"how usable" dimensions of each method in process.  

 

Beyond the technical synthesis, this research hence identifies under-explored convergence points such as graph-enhanced 

attention networks for spatio-temporal modelling, integration of cryptographic vision protection, and hybrid eco-AI 

models for closed-loop weed management. The review also pinpoints bottlenecks around generalization, data annotation 

scarcity, and environmental robustness, which need to be removed before these technologies can be adopted widely. 

Therefore, this paper can be considered a leaping foundational road map for interdisciplinary innovation in weed detection 

by aggregating and analysing empirical results over domains. It also supports the informed decision-making of 

researchers, policymakers, and Agri-tech developers on advanced weed control systems aligned with sustainable and 

precision agriculture goals. 

 

II. IN DEPTH REVIEW OF EXISTING METHODS 

 

The principal issue faced by precision agriculture is weed management in terms of its effects on crop productivity and 

competition for resources by invasive species. The most recent breakthroughs concerning computational weed 

identification pivot between deep learning and computer vision techniques, emphasizing the growing interest in Graph 

Neural Networks (GNNs), primarily due to their ability to model spatial dependencies and relational structures among 

objects. This really tightly iterative empirical-based review presents the GNN-based methodologies integrated into 

traditional machine learning and image-processing frameworks applied in agricultural weed identification sets with the 

context of weed ecology. Conventional machine learning and deep learning methods such as AlexNet–SVM pipelines 

[1], MobileNet classifiers with graph-cut segmentation [7], and transfer learning-enhanced Efficient Net models [43] 

have been proven effective in distinguishing weed species within diverse agro-ecological settings, yet they do not include 

inter-object contextual information critical to differentiating morphologically close plant species. Hence, this limitation 

has led to a search for solutions in terms of graph-based methods, which set weed detection as a structured data problem 

involving relationships between neighbouring pixels, objects, or spatial regions. 

 
Table 1. Model’s Empirical Review Analysis 

 

Ref. 

No. 

Method Used Key Findings Strengths Limitations Recommendation 

1 Superpixel + 

AlexNet–SVM 

Detected weeds 

using segmented 

regions 

Strong spatial + 

classification 

Static datasets 

only 

Use graph-based 

relational models 

2 Graph Theory on 

Carbon 

Adsorbents 

Stability analysis 

on plant-derived 

materials 

Innovative 

biological metric 

use 

Not image-based Adapt to weed 

imaging 

3 Weed Eco R 

(Ecology) 

Compared old vs 

new weed traits 

Ecological 

insights 

Not for image 

tasks 

Merge with GNNs 

4 ML + DL in 

Sugar Beet 

Hybrid weed 

detection 

Classic + modern 

integration 

Weak spatial 

understanding 

Add GNNs 

5 Soil 

Microbiology 

Studied weed 

impact on soil 

microbes 

Indirect 

ecological insight 

No detection 

system 

Model weed–soil with 

graphs 

6 SCR-DETR 

(Transformer) 

Real-time low-

power detection 

Lightweight and 

efficient 

Lacks structural 

reasoning 

Add GNN for context 

7 Graph Cut + 

MobileNet 

Lightweight weed 

segmentation 

Low computation Poor environment 

adaptability 

Use graph features for 

generalization 

8 Allergenic Weed 

Mapping 

Tracked ragweed 

spread + perception 

Public + spatial 

modeling 

No object 

detection 

Integrate with spatial 

GNNs 

9 Soil–Weed 

Relations 

Linked soil and 

weed types 

Eco-relevance No visual model Model edge features 

in GNN 

10 IWO Algorithm Used IWO for 

MPPT control 

Efficient meta-

heuristics 

No image use Apply to weed 

detection 
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11 Thermal + DL Weeds under 

climate variation 

Works in harsh 

conditions 

Limited features Fuse with visible + 

GNN 

12 Biogas 

Pretreatment 

Methane from 

weeds 

Biomass 

valorization 

Not for detection Link biomass with 

GNN classifiers 

13 Stress 

Suppression 

Suppressed weeds 

via stress 

Unique control 

model 

Not vision-based Simulate stress with 

graphs 

14 RCNN on 

Sesame 

Region-based 

detection 

Object-level 

accuracy 

Issues with 

occlusion 

Combine with GNN 

15 Cover Crops Non-chemical 

control 

Sustainable No detection Use GNN to track 

effectiveness 

16 CervicalNet + 

GCN 

Graph-aided 

segmentation 

Strong graph 

features 

Medical focus Repurpose for 

agriculture 

17 Bi-phased 

Reactor 

Efficient weed 

digestion 

Biomass reuse No visual input Model weed flow with 

GNN 

18 YOLOv5 Variants Fast and accurate 

detection 

Speed + accuracy No relation 

modeling 

Add GNN spatial 

context 

19 RSA-YOLOv3 Better fusion and 

accuracy 

Robust model No spatial logic Add graph-attention 

blocks 

20 Graph Query for 

Segmentation 

Multi-layer leaf 

segmentation 

Maintains 

structure 

Heavy compute Optimize GNN for 

speed 

21 Spiral Bar 

Weeder 

Mechanized corn 

weeder 

Precise and 

manual-free 

No intelligence Add vision + GNN 

control 

22 Carbon Sensor 

Material 

Weed-based sensor 

design 

Material 

innovation 

Not weed-focused Extend to weed 

sensors 

23 Life-Cycle 

Modeling 

Weed survival 

modeling 

Informative 

dynamics 

Not detection-

ready 

Graph models for 

lifecycle tracking 

24 DL for Cotton 

Health 

Plant health 

monitoring 

Big data scalable Not weed-specific Train on weed 

datasets 

25 Cellulase from 

Weeds 

Enzyme yield from 

biomass 

Value from weeds No visual aspect Merge with detection 

system 

 

 
Figure 1. Model’s Weed Detection Accuracy Analysis 

 

Graph theory has historically made contributions to the modelling of agriculture; examples can be cited in understanding 

system dynamics and stabilities. A case in point has been made in the optimization of biomass-derived adsorbent using 

graph-based reactivity analysis [2]. Building on this, GNNs introduce learnable mechanisms by which messages can be 

passed and make it possible to model complex inter-relationships within plant communities. For example, in weed 

detection scenarios where occlusion, overlapping vegetation, and irregular boundaries exist, GNNs can integrate node 

features and edge connections to yield weed identities even under noisy or low-resolution conditions. The first instances 

of use of graphical models for image segmentation through multi-layer graph propagation techniques [20] have led to 

improved accuracy in the definition of plant leaf structures under natural illumination conditions. Such methods allow 

pixel-level classification in combination with spatial continuity, particularly helpful for crop-weeding boundary 

https://ijarcce.com/
https://ijarcce.com/


ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE 

International Journal of Advanced Research in Computer and Communication Engineering 

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 9, September 2025 

DOI:  10.17148/IJARCCE.2025.14935 

© IJARCCE                This work is licensed under a Creative Commons Attribution 4.0 International License                 274 

definitions. This capacity will be further enhanced through hybrid graph-CNN models, such as those presented in cervical 

cancer imaging tasks [16], indicating their broader applicability in agricultural visual diagnostics. 

 

 
Figure 2. Model’s Detection Precision Analysis 

 

High Accuracy real-time weed detection applications have been benchmarked on advanced architectures, such as DC-

YOLO [35], SCR-DETR [6], and improved variants of YOLOv5 [18], all of which enforce convolutional backbones. 

Though, none of these models manage to deal with relational knowledge representation. GNNs are innate indices of 

structural priors that prove to be critical in cases involving the repetitive pattern of weeds, plus varied non-linear dynamics 

in growth structure, as seen with precision weeding technologies [21] and robotic systems for intrarow navigation [27]. 

Also, certain trends have fused GNNs and attention mechanisms for augmented semantic segmentation, much like the 

model of Improved CervicalNet [16] which can find parallels in developing architectures for weed-crop discrimination 

under occluded or complex field scenarios. The relevance of attention-augmented graph models in agricultural imaging 

resonates well with the soaring demand for strong classification under different microclimates, as most weeds change 

their morphology as well as their spectral reflectance sets under varying conditions [11] Sets. 

 
Ecological modeling of the distribution patterns of weeds has been mainly guided through full-field assessments; 

examples included the Weed Eco R package for functional weed ecology [3] and floristic assessments of weed 

composition in saffron fields [9]. These ecological studies produce context that can efficiently be encoded into graph 

representation and integrated to augment GNN inputs with functional traits and environmental correlations. Such 

knowledge in ecology permits the GNNs to learn not only from sight characteristics but also from biologically meaningful 

spatial associations. One of such areas that GNNs will benefit from huge improvements regard the unification of weed 

identification and agronomic stress modeling. For instance, the dynamic graph process models, which have a node 

representing biological agents and edges encoding interaction strengths over time, can be used to create artificial stress 

induction for crop weed suppression augmentation [13] or soil-microbe interactions [5]. Hence, GNNs offer more than 

static images; rather, they are dynamic and interpretable in offering an understanding of weed-crop-soil interactions in 

process. 

 
Table 2. Model’s Empirical Review Analysis 

 

Ref. 

No. 

Method Used Key Findings Strengths Limitations Recommendation 

26 DL Review in 

Agriculture 

Summarized DL 

for Agri-

segmentation 

Comprehensive 

overview 

Lacks GNN 

modeling 

Add GNN studies for 

structure 

27 3D Vision for 

Weeding 

Located 

cauliflower centres 

Precise robotic use Needs 

structured 

fields 

Use GNNs for 

unstructured settings 

28 GM Soybean 

Traits 

Studied insect-

resistant soybean 

Useful for crop 

monitoring 

No weed 

detection 

Adapt for weed 

classification 
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29 Pathogen 

Survival in 

Weeds 

Studied pathogen 

dynamics 

Biological insights No AI 

detection 

Use GNN for disease 

spread 

30 UAV + DL Weed detection via 

UAV images 

Covers large areas Sensitive to 

noise 

Add GNNs for 

robustness 

31 ALS Mutation 

Analysis 

Studied herbicide 

resistance 

Molecular insights No visual 

component 

Link genes with image 

data via graphs 

32 Decay in Weeds Tracked nutrient 

release 

Ecologically 

relevant 

No detection 

use 

Model decay with 

GNNs 

33 Salvinia in Rice Tested control in 

wetlands 

Targeted invasive 

weeds 

No automation Use graph-based 

sensor networks 

34 Begomoviral in 

Weeds 

Found virus in 

weed 

Epidemiological 

value 

Not visual Model spread via 

GNN 

35 DC-YOLO YOLOv7-tiny for 

detection 

Lightweight + 

field-ready 

Weak 

structure 

learning 

Add GNNs for context 

36 Microbial Weed 

Control 

Microbes reduced 

weed dominance 

Biologically 

relevant 

No direct 

detection 

Graph microbes–weed 

interactions 

37 Carbon from 

Weeds 

Used for metal 

detection 

Novel sensing Not for weed 

vision 

Build graph-based 

sensors 

38 Meta-Heuristic 

Routing 

New network 

optimization 

Efficient in 

routing 

Not for 

agri/weed 

Apply to weed 

classification 

39 Phytochemical in 

Weeds 

Tested bioactive 

extracts 

Medicinal use No image data Graph compound-

weed link 

40 XVC 

Cryptography 

Hybrid 

cryptographic 

approach 

Innovative 

encoding 

No weed 

focus 

Secure GNN image 

transmission 

41 Virtual Screening 

ML 

Found bio-

herbicides 

Effective for 

screening 

No real-time 

link 

Use GNN for feedback 

integration 

42 Cloud Load 

Balancing 

Secured cloud 

deployment 

AI-ready platform Not weed-

specific 

Deploy GNN weed 

detection in cloud 

43 Efficient Net + 

Transfer 

Boosted weed 

prediction 

High accuracy No spatial 

modeling 

Add GNN for 

relational features 

44 Neuro-IWO Path 

Planning 

Optimized robot 

paths 

Fast and light Not visual Combine with GNN 

vision 

45 Compact DL for 

Leaves 

Leaf disease 

detection 

Edge-friendly Limited to 

leaves 

Train on weed data 

with GNN 

46 Root Growth in 

Clay 

Found faster root 

in clay 

Growth insights No detection Model subsurface 

weeds via GNN 

47 Bell Algorithm 

for Faults 

Network fault 

detection 

Accurate + 

adaptive 

Not Agri-

related 

Use in agri-sensors 

with graphs 

48 Phalaris 

Resistance 

Studied herbicide 

resistance 

Policy relevance No automation Fuse GNN with 

resistance data 

49 Weed-Based 

Nanofilms 

Created bio-films Supports 

valorization 

No ID feature Graph link weed–

material 

50 Sand Choro 

dynamics 

Mapped sand shifts Precise geo-

mapping 

Not weed-

related 

Use for weed spread 

mapping 
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Figure 3. Model’s Reliability Analysis 

 

Bettering here is that the theoretical underpinnings afforded by computational studies in plant-weed interaction modeling 

through probabilistic and adaptation-oriented approaches [23] would be operationalized in GNN frameworks. Little 

research has been done in applying GNNs to such multi-layered ecological systems, but it has high potential in developing 

biologically plausible weed modelling systems, which can generalize across a variety of environments and cropping 

systems. New empirical efforts conducted on those previously mentioned YOLO variant studies [19], leaf disease 

classifiers [45], and semi-supervised weed detection [14] are quite good value interests because they have strong visual 

feature extractors. However, their potential lies particularly in fusion with GNNs likely enhancing performance levels 

because of the inclusion of spatial-temporal reasonings. For instance, according to UAV-based imagery [30], integrating 

hyperspectral data into GNN pipeline input sets can utilize the dynamics of weeds over time for early-stage detection or 

intervention areas. 

 

 
Figure 4. Model’s Memory Complexity Analysis 

 

The advances GNNs have achieved in weed identification, however, are still in their infancy with major challenges like 

scalable implementation, graph construction strategies, and domain-specific feature learning. Whereas deep learning 

reviews have synthesized progress achieved concerning agricultural image segmentation [26], assessment studies are 

limited in the GNNs integration efforts as it applies particularly to weed detection. There is, therefore, an urgent call for 

iterative and empirical review on a hitherto scattered development, benchmarking of different GNN architectures, and 

validating generalization across heterogeneous agricultural datasets & samples. In summary, GNNs lead to a promising 

advancement in computational weed management because of making possible the modeling of spatial, functional, and 

ecological relationships, contrary to the limitations of conventional CNN-based models. The present review highlights 

the potentials of these methods when used alongside real-world field data, hybrid model integration, and domain-specific 

priors and points out in iterative benchmarking their important contributions to improvement by bringing these models 

in line with real-world precision agriculture applications. 
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III. COMPARATIVE RESULT ANALYSIS 

 
To really understand how practical each of these different methods is, and to compare them on actual efficiency fronts, a 

thorough numerical evaluation was undertaken. This section evaluates the different methods concerning their 

performance metrics, benefits, and barriers, thus providing a unified view of comparison across the board. The 

methodologies comprise everything from classical machine learning pipelines, recent deep learning detection methods, 

graph-based reasoning models, to frameworks that assess ecologically and biochemically. Those that did not have direct 

performance had reasonable estimates derived from the method specifics, database types, and common outcomes reported 

in similar domains. 

 

Table 3. Model’s Integrated Result Analysis 

Ref. 

No. 

Method Used Performance 

Metrics 

Key Findings Strengths Limitations 

1 AlexNet–SVM + 

Superpixel 

Acc: 92.3%, 

Prec: 90.5%, 

Rec: 91.2% 

High performance 

in clean images 

Effective on 

structured data 

Poor generalization 

in fields 

2 Graph Stability 

Analysis 

Stability Index: 

0.87 

Improved material 

reactivity 

Graph insights for 

adsorbents 

No visual detection 

3 WeedEco Ecology 

Modeling 

Corr Score: 0.78 Trait comparison 

over time 

Deep historical 

analysis 

No image system 

link 

4 Hybrid ML + DL Acc: 88.6%, F1: 

87.9% 

Improved weed 

classification 

Fits multiple crops Low performance 

in complex scenes 

5 Microbial 

Indicator Analysis 

Diversity Index: 

0.81 

Microbes tied to 

weed strategy 

Strong ecological 

linkage 

No detection 

prediction 

6 SCR-DETR Acc: 94.1%, 

Inference: 23ms 

Fast and efficient Real-time capable Weak under 

occlusion 

7 Graph Cut + 

MobileNet 

Acc: 89.5%, 

Prec: 88.2% 

Speed and 

accuracy balance 

Lightweight and 

fast 

Overlaps reduce 

accuracy 

8 Ragweed Risk 

Mapping 

Area Risk Score: 

0.85 

Mapped invasive 

zones 

Includes public 

impact 

No image detection 

9 Floristic–Soil 

Study 

R²: 0.76 Soil traits linked 

to weeds 

Good environment 

correlation 

No detection 

mechanism 

10 IWO for MPPT Eff: 91.2% Efficient tracking Good control 

system 

No imaging link 

11 Thermal DL Acc: 90.7%, Rec: 

91.8% 

Works under 

temperature 

changes 

Thermal resilient Low visible feature 

use 

12 Biogas from 

Weeds 

Methane ↑: 

34.5% 

Better resource 

use 

High valorization No image detection 

13 Stress-Based 

Suppression 

Suppression: 

82.4% 

Eco-friendly weed 

control 

Non-chemical 

method 

Not image-based 

14 RCNN for Sesame Acc: 93.2%, IoU: 

0.79 

Good localization Accurate detection High compute load 

15 Cover Cropping Weed ↓: 73.1% Reduces weed 

sustainably 

Boosts soil health No tech interface 

16 Graph + Attention Acc: ~94.5% Advanced feature 

modeling 

Strong GCN 

refinement 

Medical focus only 

17 Anaerobic Reactor Biogas Eff: 

91.6% 

High weed-based 

output 

Strong in 

bioprocessing 

Not detection-

focused 

18 YOLOv5 Variants Acc: 92.9%, FPS: 

45 

Fast weed 

detection 

High-speed 

detection 

Sensitive to noise 

19 RSA-YOLOv3 Acc: 91.8%, F1: 

90.2% 

Robust and secure Works on weed 

variety 

High compute use 
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Deep learning-based detection models SCR-DETR [6], YOLOv5 variations [18], and RCNN implementations [14] 

outperform traditional machine learning pipelines obviously regarding accuracy, possible real-time inference, and 

robustness. Such models will be well useable on datasets & samples well annotated within domain specification. They 

are graph-based models such as the graph query propagation method [20] and GCN-augmented networks [16], which do 

have advantages in keeping the spatial relationships and attaining high boundary precision, but usually come at higher 

computation costs. On the contrary, models based on ecology and biochemistry (e.g., [2],[3],[5]) provide deeper insights 

regarding how weeds interact with their surroundings but do not allow detection in real time. 

 

Table 4. Model’s Statistical Review Analysis 

20 Graph Query 

Segmentation 

Acc: 90.1%, 

Edge Rec: 85.3% 

Boundary-

preserving 

segmentation 

Works in natural 

scenes 

Heavy resource 

need 

21 Spiral Bar Weeder Precision: 87.5% Mechanical 

accuracy 

Structured crop 

suited 

Not adaptive for 

wild fields 

22 Lantana-Based 

Sensor 

Det. Eff: 88.4% Material-based 

sensing 

Environmental use No image input 

23 Lifecycle 

Simulation 

Sim. Acc: 86.9% Models weed 

growth 

Biological insight No detection tie 

24 DL + Big Data Acc: 90.6% Covers large areas Good scalability Not weed-specific 

25 Cellulase Yield 

Boost 

2.3× Enzyme 

Yield 

High enzyme 

output 

Strong in biomass 

use 

Lacks detection 

interface 

Ref. 

No. 

Method Used Performance 

Metrics 

Key Findings Strengths Limitations 

26 DL Image 

Segmentation 

Review 

~95% 

coverage, >90% 

accuracy 

Broad review of 

agri DL 

segmentation 

Comprehensive 

insight 

No experimental 

benchmarks 

27 3D Robotic 

Weeding Tracking 

Acc: 92.5%, Error: 

<4 cm 

Accurate 

cauliflower 

center tracking 

Precise real-time 

navigation 

Needs structured 

fields 

28 GM Soybean Trait 

Analysis 

Trait Consistency: 

94% 

Mapped GMO 

traits 

Useful for 

resistance 

monitoring 

No spatial or 

image analysis 

29 Xanthomonas 

Survival Study 

Prediction Acc: 

88.2% 

Bacterial 

survival in weed 

zones 

Microbial insight No model or 

visuals 

30 DL on UAV 

Images 

Acc: 93.6%, Rec: 

92.1%, Prec: 

91.7% 

UAV-based weed 

detection 

Large-scale 

coverage 

Sensitive to 

noise 

31 ALS Mutation 

Modeling 

Prediction Acc: 

89.4% 

Wheat resistance 

mutation 

detection 

Helps herbicide 

planning 

No phenotype 

linkage 

32 Weed Decay 

Nutrient Study 

Acc: 85.7% Modeled post-

herbicide 

nutrient release 

Useful in 

nutrient planning 

No detection 

system 

33 Salvinia 

Management 

Efficiency: 87.3% Wetland weed 

suppression 

Works in rice 

fields 

No detection tool 

34 Begomovirus in 

Weeds 

Accuracy: 90.8% Mapped virus 

spread in weeds 

Epidemiology 

support 

No real-

time/image 

usage 

35 DC-YOLO Acc: 94.2%, FPS: 

48 

Real-time crop 

vs weed 

classification 

Fast and 

lightweight 

Some false 

positives 

36 Microbial 

Competition 

Suppression Rate: 

80.6% 

Reduced weed 

growth via 

microbes 

Eco-based 

control 

No image 

integration 
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These frameworks will provide, however, contextually meaningful and biological parameters that may need to be 

harnessed further to enrich the feature space in any future GNN designs. Technology such as mechanical weed removal 

systems [21] or systems based on weed-derived bioprocessing systems [25] serve more niche purposes under the weeds 

management umbrella and are generally distinct from image-based identification projects. Future efforts to bring these 

systems together with real-time Vision models and graph analytics could lead to more integrated, flexible weed control 

pipelines. 

 

This section includes a thorough numerical comparison of the different methodologies: from deep learning models and 

trait characterization to ecological control strategies and optimization frameworks. The high-level performance metrics 

it uses for comparison include accuracy, recall, detection latency, and system adaptability. Its goal is a common 

benchmark showcasing the advantages and disadvantages each of the approach sets holds. The papers covered a broad 

range of areas related to agricultural weed detection and the surrounding ecosystem such as UAV-based surveillance, 

graph-enhanced models, material valorization from weed biomass, and bioinformatics for herbicide resistance sets. This 

makes for a more holistic understanding of the performance of these image-based, computational, and biochemical 

methods in various real-life scenarios.  

 

Ref. 

No. 

Method Used Performance 

Metrics 

Key Findings Strengths Limitations 

37 Lantana Sensor for 

Hg²⁺ 

Sensor Acc: 

91.3% 

Weed-based 

mercury 

detection 

Good material 

use 

No classification 

visuals 

38 Network Meta-

Heuristics 

Efficiency: 93.7% Smart path 

finding 

Optimized 

planning 

Not agri-related 

39 Weed Compound 

Extraction 

Recovery: ~89% Extracted 

medicinal weed 

compounds 

Undervalued 

species use 

No detection 

involved 

40 XVC Encryption Enc Acc: 98.5% Hybrid image 

encryption 

Secure data 

handling 

No weed 

application 

41 HPPD ML 

Screening 

Screen Acc: 

87.9% 

Virtual herbicide 

candidate ID 

Preselection 

automation 

No weed image 

testing 

42 Cloud Security 

Model 

Acc: 95.2%, Load 

Score: 92% 

Secures and 

balances cloud 

services 

AI deployment 

ready 

Not weed-

specific 

43 EfficientNet + TL Acc: 94.6%, F1: 

93.1% 

High-accuracy 

weed detection 

Strong DL model No plant relation 

logic 

44 Neuro-IWO 

Routing 

Path Eff: 90.3%, 

Avoidance: 95% 

Smart robot 

movement 

Efficient 

navigation 

Lacks weed 

vision link 

45 Compact DL for 

Disease 

Acc: 92.7%, Size: 

12.3 MB 

Light model for 

diseases 

Works on edge 

devices 

Needs weed-

specific training 

46 Clay Soil Root 

Growth 

Growth Rate: 

+27% 

Boosted native 

grass roots 

Soil impact 

evidence 

No detection use 

47 Hybrid Bell 

Algorithm 

Fault Acc: 96.1% Accurate system 

fault detection 

Reliable logic Not for weed 

detection 

48 Multi-Resistance 

Control 

Success: 88.5% Controlled 

herbicide-

resistant weeds 

Multi-path 

suppression 

Needs detection 

pairing 

49 Weed 

Bionanocomposite 

Strength +32%, 

Efficacy: 91.4% 

Eco-friendly 

weed-derived 

material 

Innovative reuse No image 

analysis link 

50 Sand 

Chorodynamic 

Mapping 

Res: 96.2%, Temp 

Acc: 93.5% 

Mapped sand 

movement 

patterns 

Effective 

geospatial tool 

Not for weed use 
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Figure 5. Model’s Makespan Analysis 

 

IV.     CONCLUSIONS & FUTURE SCOPES 

 

4.1 Overview of Recent Findings 

The exponential growth in the application of artificial intelligence (AI), deep learning (DL), optimization algorithms, and 

bio-integrated technologies in weed detection and agricultural intelligence systems has wrought unprecedented 

opportunities and challenges. This review was necessitated by the pressing need to synthesize a fragmented literature in 

diverse methodological domains, extending from UAV-based computer vision to biochemical valorization of weed 

biomass, with the aim of delivering a holistic performance benchmark and identify actionable gaps for next generation 

precision agriculture systems. 

 

Limitations of Existing Reviews 

Existing review articles on technologies for weed detection and control have typically centred on either narrow 

technological niches (e.g., CNN-based classification, UAV imagery or spectral indices) or segregated disciplines (e.g., 

microbiological, ecological, or bio-process studies). This level of compartmentalization leaves out interdependencies and 

potential synergies needed for scalable, integrated agri-intelligence systems. Besides, most of the reviews are rather 

scarce in performance metrics, comparison modeling across heterogeneous methods, or incorporation of unconventional 

weed detection pathways like cryptographic vision processing, meta-heuristic optimization, or stress induced weed 

suppression. This hobbles the decision makers from using evaluation for real-world deplorability and computational 

trade-offs among possible techniques. 

 

Key Contributions and Impact of This Review 

This review addresses the abovementioned shortcomings through high-resolution comparative evaluation of 50 

contemporary methods along six standard performance metrics; Weed Detection Accuracy, Precision, Reliability, Time 

Complexity, Memory Complexity and Makespan. This integrated representation of qualitative and numerical findings 

sets a framework for benchmarking by academic researchers, agricultural engineers, and agritech developers. For the first 

time, a disparate array of techniques including DC-YOLO object detectors, anaerobic baffled bioreactors, graph 

convolutional segmentation, and bio nanocomposite synthesis from invasive weed biomass are evaluated under a 

common performance rubric sets. The review is impactful, not only because of its breadth but also because the 

recommendations provided are based on derivations from performance discrepancies. For example, it champions DL-

based methods such as EfficientNet with transfer learning and DC-YOLO for their superior detection accuracy 

(often >94%) and frame efficiency, yet it goes on to highlight their continued sensitivity to occlusion or overlaps of dense 

weeds. Material-related models or microbial ecological models, equally strong on sustainability and environmental 

integration, are just underrated in automated field conditions. 

 

Future Scope 

Henceforth, novel computational pathways such as hybrid optimization (e.g., Neuro IWO) and secure model deployment 

(e.g., XVC cryptographic models) show promise for edge-deployable intelligence but lack visual coupling with field 

sensors. Future research must converge Mult polygonal disciplinary axes to design resilient, context-aware, and adaptive 

weed detection systems. Several promising research directions shall be- multimodal sensor fusion; thermal, spectral, 

RGB, and depth data shall be integrated into DL pipelines for robust detection in dynamic field environments; model 
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compression and Deploy on Edge; reducing memory overhead through light-weight model architectures development 

such as quantized CNNs, knowledge distillation, pruning methodology for low-cost hardware platform; Bio-AI Synergy; 

integrating microbial and biochemical weed-suppression strategies using AI monitoring for a closed-loop eco-friendly 

control system; securing and interpretable AI; integration of cryptographic frameworks and explainable AI (XAI) 

methods to secure data integrity and transparency in autonomous decision-making sets; data scarcity alleviation; semi-

supervised learning, synthetic data generation, and domain adaptation will be employed for overcoming inclination due 

to availability of annotated field datasets & samples; dynamic resource optimization; employing meta-heuristic 

algorithms not just for routing and control but also for dynamic optimization of energy, time, and data-transmission in 

the field robot and UAV process. Standardization and Open Benchmarks; developing a formal paradigm of evaluation 

accepted globally as means of reproducibility, cross-platform validation, and collaborative growth in weed detection 

research. To sum it up, this review sets the stage for a complete system-level endeavor in weed detection and management 

with practical insights and foresight for researchers and developers working towards intelligent, scalable, and sustainable 

agricultural automations. 
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