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Abstract: Cardiovascular diseases (CVDs) are the leading cause of global mortality, necessitating early and accurate
detection methods to improve patient outcomes. Traditional diagnostic approaches, such as ECGs and angiograms, are
often invasive, costly, or require specialized expertise, making non-invasive alternatives highly desirable. Recent
advancements in artificial intelligence (Al) and machine learning (ML) have enabled the analysis of retinal images for
heart disease prediction, leveraging the structural and functional similarities between retinal vasculature and coronary
arteries. Retinal imaging techniques, such as fundus photography and optical coherence tomography (OCT), allow for
non-invasive visualization of microvascular changes linked to cardiovascular conditions. ML models, including
convolutional neural networks (CNNs) and hybrid deep learning architectures, can effectively analyze these images to
detect abnormalities indicative of heart disease. This review explores various datasets, feature extraction methods, and
classification techniques used in retinal image analysis for cardiovascular risk assessment, comparing their effectiveness
in predictive modelling. Despite promising advancements, challenges such as data availability, model generalizability,
explainability, and clinical integration remain critical. Future research should focus on developing robust, interpretable
Al models, enhancing dataset quality, and addressing real-world implementation barriers to establish retinal imaging as
a reliable tool for early heart disease detection.

Keywords: Heart Disease, Retinal Imaging, Machine Learning, Deep Learning, Cardiovascular Disease, Medical Image
Processing.

L. INTRODUCTION

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, necessitating innovative diagnostic
approaches beyond conventional methods like ECG, echocardiography, and angiography, which are often invasive,
costly, and time-consuming. Recent research highlights retinal imaging as a promising non-invasive biomarker for
cardiovascular risk assessment, given its microvascular similarities to coronary arteries. Structural changes in retinal
blood vessels, such as arteriolar narrowing and vessel tortuosity, have been linked to heart disease. Machine learning
(ML) and deep learning (DL) techniques have emerged as powerful tools for analyzing retinal images, enabling
automated detection and risk stratification of CVDs. By leveraging Al-driven retinal analysis, researchers aim to enhance
diagnostic accuracy, improve accessibility, and facilitate early intervention, potentially transforming cardiovascular
healthcare. This review explores the integration of ML with retinal imaging for heart disease detection, focusing on recent
advancements, methodologies, datasets, and performance metrics.

1.1 Importance of Cardiovascular Disease Detection

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, responsible for an estimated 18 million deaths
annually, according to the World Health Organization (WHO). These diseases include conditions such as coronary artery
disease (CAD), hypertension, stroke, heart failure, and arrhythmias. The increasing burden of CVDs is driven by risk
factors such as unhealthy diets, sedentary lifestyles, smoking, obesity, diabetes, and genetic predisposition. Early
diagnosis and timely intervention are crucial to reducing mortality and improving patient outcomes.

Traditional diagnostic techniques, including electrocardiograms (ECG), echocardiography, and coronary angiography,
provide accurate assessments of cardiovascular health. However, these methods have several limitations:
» Invasiveness: Procedures like angiography require catheterization, which can cause discomfort and
complications.
» High Cost: Advanced imaging techniques are expensive and not widely available in low-resource settings.
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* Time-Consuming: Many diagnostic tests require hospital visits and specialist interpretation, delaying early
detection.
» Radiation Exposure: Certain diagnostic procedures, such as CT angiography, involve radiation risks.

1.2 The Role of Retinal Imaging in Cardiovascular Risk Assessment
In recent years, retinal imaging has gained significant attention as a non-invasive and reliable biomarker for
cardiovascular health assessment. The retina shares structural and physiological similarities with coronary arteries, as
both are microvascular networks affected by systemic conditions like hypertension, atherosclerosis, and diabetes.
Changes in retinal blood vessels often reflect early signs of cardiovascular disease, making fundus photography and
optical coherence tomography (OCT) valuable tools for detecting heart disease.

Key Retinal Biomarkers for Heart Disease Prediction:

1. Arteriolar Narrowing — A sign of hypertension affecting microvascular function.

2. Increased Vessel Tortuosity — Twisting or irregularity of retinal blood vessels, indicating vascular stress.

3. Arterio-Venous Ratio (AVR) — Changes in the ratio of artery-to-vein width associated with cardiovascular risk.
4. Microaneurysms & Hemorrhages — Indications of microvascular damage due to high blood pressure or diabetes.
5. Retinal Vessel Caliber — Alterations in vessel diameter linked to coronary artery disease.

Numerous large-scale studies, including those using data from the UK Biobank and Messidor datasets, have demonstrated
the predictive potential of retinal imaging for cardiovascular diseases. Research suggests that retinal vascular
abnormalities correlate strongly with hypertension, atherosclerosis, and stroke risk, making retinal analysis a promising
approach for early cardiovascular risk stratification.

1.3 The Role of Machine Learning and Deep Learning in Retinal Image Analysis
The integration of artificial intelligence (Al), particularly machine learning (ML) and deep learning (DL), has
revolutionized medical image analysis. These technologies enable automated, efficient, and accurate detection of disease-
related patterns in retinal images, reducing dependence on manual interpretation by clinicians.
How Machine Learning Enhances Retinal Imaging for Heart Disease Detection?
» Feature Extraction: ML algorithms analyze retinal images to extract meaningful features such as vessel width,
tortuosity, and AVR.
» Pattern Recognition: Deep learning models, particularly convolutional neural networks (CNNs), identify
complex patterns linked to heart disease.
* Risk Prediction: Al models classify patients into different cardiovascular risk groups based on retinal
biomarkers.
* Automation and Scalability: ML-powered retinal screening enables large-scale, cost-effective heart disease
detection in primary care settings.

1.4 Recent Advancements in AI-Driven Retinal Analysis
Several studies have successfully implemented Al for cardiovascular risk prediction using retinal images:
* Poplin et al. (2018) developed a deep learning model capable of predicting age, gender, smoking status, and
cardiovascular risk factors from fundus images.
* Zhang et al. (2021) applied transfer learning techniques to classify heart disease risk using retinal images with
high accuracy.
* DeepVesselNet and Retinal Vasculature Segmentation Models have been used to analyze microvascular
abnormalities associated with hypertension and atherosclerosis.

1.5 Scope of This Review
This review paper explores the integration of machine learning with retinal imaging for heart disease detection, covering:
* Recent advancements in Al-driven retinal analysis.
* Methodologies and algorithms used in feature extraction and classification.
» Publicly available datasets used for training Al models.
* Performance metrics to evaluate model accuracy.
* Challenges and future research directions in Al-based cardiovascular risk prediction.

To developments, this review highlights the potential of Al-powered retinal imaging as an efficient, non-invasive tool

for early cardiovascular disease detection, paving the way for more accessible and cost-effective heart disease screening
solutions.
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II. RELATED WORK

Several studies have demonstrated the feasibility of using retinal images for cardiovascular disease prediction. Early
research focused on manual feature extraction, utilizing handcrafted features such as vessel diameter, tortuosity, and
bifurcation points. With the advent of deep learning, convolutional neural networks (CNNs) have been widely adopted
for automatic feature extraction and classification. Studies have reported promising results using publicly available
datasets such as the UK Biobank and DRIVE. Despite these advancements, challenges such as data scarcity, model
interpretability, and generalizability remain open research problems. The integration of machine learning (ML) and deep
learning (DL) in retinal imaging for cardiovascular disease (CVD) detection has gained significant attention in recent
years. Several studies have demonstrated the potential of retinal biomarkers for predicting heart disease, hypertension,
and stroke. This section reviews existing research on retinal imaging, ML techniques, and Al-based cardiovascular risk
assessment.

The use of retinal imaging for cardiovascular disease prediction has been extensively studied in recent years. Early
research focused on retinal vessel analysis for disease risk assessment. Ning et al. (2014) provided a comprehensive
review of image-based retinal vessel analysis methods and their applications. Wong et al. (2006) and Liew et al. (2007)
explored the correlation between retinal microvascular abnormalities and increased cardiovascular risk in population-
based studies.

With advancements in machine learning, hybrid models have emerged for disease prediction. Zhang et al. (2015)
introduced a hybrid machine learning model for heart disease risk assessment from retinal images. Ni et al. (2018) further
enhanced prediction accuracy using Random Forest techniques. Rajalakshmi et al. (2019) and Roy et al. (2018) surveyed
deep learning applications for retinal image analysis, emphasizing automated diabetic retinopathy detection and
cardiovascular disease prediction.

Deep learning techniques have revolutionized retinal image-based diagnostics. Bai et al. (2020) utilized deep
convolutional networks to predict heart disease from retinal vascular changes, while Liu et al. (2020) demonstrated the
effectiveness of deep learning for cardiovascular risk prediction. Domain adaptation techniques for improving heart
disease detection through retinal imaging were explored by Sabe et al. (2020). Additionally, Qu et al. (2020) investigated
multimodal approaches integrating retinal images with clinical data for enhanced cardiovascular risk prediction.

Several studies have explored visualization techniques to improve interpretability in deep learning models. Selvaraju et
al. (2017) proposed Grad-CAM for visual explanations in neural networks, aiding in understanding retinal image-based
predictions. Hoover et al. (2000) introduced locally adaptive thresholding to improve retinal vessel segmentation
accuracy. Bai et al. (2018) built on this work by automating cardiovascular disease detection using retinal vessel
segmentation.

Artificial intelligence (AI) has been increasingly integrated into retinal image analysis for cardiovascular assessments.
Kavitha et al. (2019) and Liu et al. (2019) investigated convolutional neural networks (CNNs) for cardiovascular disease
detection. Al-Maskari et al. (2016) employed machine learning algorithms for cardiovascular risk assessment using
retinal images, while Zeeshan et al. (2017) leveraged deep learning for disease prediction.

Recent advancements in transfer learning and multimodal fusion have further refined cardiovascular disease prediction.
Inoue et al. (2021) applied transfer learning to retinal image-based cardiovascular assessments, while Zhang et al. (2020)
proposed a foundation model for generalizable disease detection. Zhang et al. (2020) and Lin et al. (2020) discussed Al-
based retinal vascular network analysis for cardiovascular risk assessment, emphasizing the role of oculomics in
predictive healthcare.

The role of Al in echocardiography and cardiovascular disease management has also been explored. Cheng et al. (2020)
and Zhang et al. (2021) examined Al-enhanced electrocardiography and echocardiography applications. In
ophthalmology, Ahmed et al. (2020) investigated Al-based radiomics for predicting anti-VEGF treatment durability in
retinal vascular disease.

Additionally, deep learning-based diabetic retinopathy detection has been a major research focus. Gupta et al. (2021) and
Mehmood et al. (2020) reviewed diabetic retinopathy classification methods, while Lee et al. (2020) conducted a meta-
analysis on deep learning applications in cardiovascular disease prediction from retinal images. Li et al. (2021)
emphasized systemic disease insights obtained through retinal imaging-based oculomics.
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The integration of Al and mobile technology in disease prediction has also gained traction. Patel et al. (2020) explored
smartphone-based retinal imaging for disease prediction. Mohamed et al. (2021) proposed DiaNet, a deep learning
architecture for diabetes diagnosis using retinal images. Dai et al. (2021) further investigated deep learning applications
in cardiology.

Zhang et al. (2020) and Zhang et al. (2021) highlighted the use of CNNs for cardiovascular disease prediction from retinal
images. Li et al. (2021) discussed the potential of fully convolutional networks for retinal vessel segmentation.
Additionally, Chen et al. (2021) proposed a cloud-based strategy for diabetic retinopathy detection using smartphone
apps and machine learning methods.

Machine learning and Al-driven cardiovascular disease prediction from retinal images continue to be an evolving field.
Thibault et al. (2019) demonstrated the use of artificial neural networks in coronary artery disease diagnosis, while Kaur
et al. (2020) reviewed Al applications in retinal analysis. Roth et al. (2020) provided a global perspective on the burden
of cardiovascular diseases and risk factors, emphasizing the importance of early detection through Al-driven retinal
imaging techniques.

I11. MATERIALS AND METHODS

In this section, we explore the various methods and techniques utilized in detecting heart disease through retinal images
using machine learning approaches. The discussion is organized into four key sub-sections: Dataset Collection, Image
Preprocessing, Machine Learning Models, and Performance Metrics. Each sub-section provides a detailed overview of
the processes involved, from gathering relevant datasets to preparing the images for analysis, applying machine learning
models for prediction, and evaluating the effectiveness of the models using appropriate performance metrics. Through
these stages, we aim to illustrate the comprehensive approach for integrating machine learning into heart disease detection
via retinal imaging.

3.1 Dataset Collection

The success of training machine learning models for medical image processing heavily relies on the availability of high-
quality, labeled datasets. In the context of heart disease detection using retinal images, a variety of publicly available
datasets are instrumental in both the development and evaluation of these machine learning models. These datasets
generally contain retinal fundus images accompanied by clinical labels or health parameters, particularly those related to
cardiovascular conditions, which provide critical insights for accurate heart disease prediction.

Prominent Retinal Image Datasets:

UK Biobank: The UK Biobank is a comprehensive health-related database that offers a wealth of high-resolution retinal
images paired with extensive health data. This includes information on cardiovascular diseases, hypertension, diabetes,
and other systemic conditions. The dataset is invaluable for training machine learning models aimed at predicting
cardiovascular risk by analyzing the vascular features within the retina, as changes in retinal blood vessels can be
indicative of heart disease as shown in tablel.

DRIVE (Digital Retinal Images for Vessel Extraction): The DRIVE dataset consists of 40 high-quality color retinal
images, each meticulously annotated for vessel segmentation. Though its primary focus is on vessel segmentation tasks,
the images are also highly relevant for heart disease research, given that retinal vascular changes—such as narrowing,
thickening, or other abnormalities—can signify underlying cardiovascular issues. This dataset, therefore, contributes to
the development of models that assess cardiovascular risk based on retinal vascular patterns.

STARE (Structured Analysis of the Retina): The STARE dataset comprises 400 color fundus images, with detailed,
manually segmented vessel annotations. It has been widely adopted in various studies exploring the correlation between
retinal features and heart disease. The annotated images provide researchers with a comprehensive resource to examine
retinal characteristics that may serve as predictive markers for cardiovascular health, furthering the development of heart
disease detection models as shown in figl.

AVA (Artery-Vein Classification Dataset): The AVA dataset is specifically designed for the classification of retinal
arteries and veins, a task essential for evaluating cardiovascular health. By distinguishing between the arterial and venous
components in retinal images, this dataset aids in understanding the physiological changes that occur in the retinal
vasculature due to cardiovascular conditions. As such, it plays a key role in the assessment of heart disease through the
analysis of retinal vessels.
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OCT (Optical Coherence Tomography): Optical Coherence Tomography (OCT) provides high-resolution, cross-sectional
images of the retina. While OCT is primarily used for diagnosing eye-related conditions, it has proven useful in assessing
changes to the retinal vasculature, which may be associated with cardiovascular diseases. By enabling detailed
visualization of retinal structure and blood flow, OCT scans offer critical insights that can assist in detecting
cardiovascular abnormalities linked to heart disease.

These datasets represent a foundational resource for advancing the application of machine learning in the detection of
heart disease through retinal imaging. By providing high-quality, annotated data, they support the development of
sophisticated models capable of recognizing subtle, early indicators of cardiovascular issues, potentially leading to earlier
detection and better outcomes for patients.

Tablel: UK Biobank retinal image Dataset

Gene Samples TCGA UK BioBank cBioPortal
Total Samples 713 950 647
All cancers 713 (100%) 48 (100%) 647 (100%)
Female cancers * 145 (20.33%) 7 (14.58%) 208 (32.14%)
GBP5 All cancers 145 (20.33%) 3 (6.25%) 150 (23.18%)
Female cancers 27 (3.78%) 1 (2.08%) 54 (8.34%)
IRS2 All cancers 114 (15.98%) 8 (16.66%) 82 (12.67%)
Female cancers 30 (4.20%) - 18 (2.78%)
KRT4 All cancers 154 (21.59%) 7 (14.58%) 158 (24.42%)
Female cancers 22 (3.08%) 2 (4.16%) 50 (7.72%)
All cancers - 24 (50%) -
BRI Female cancers - 2 (4.16%) -
All cancers 35 (4.90%) 1 (2.08%) 24 (3.70%)
MRPLS5 Femalecancers  “10{(1.40%) 1(2.08%) 9 (1.39%)
All cancers 57 (7.99%) o7, 38 (5.87%)
RRSL Female cancers 16 (2.24%) 1(2.08%) 11 (1.70%)
SLC4A11 All cancers 208 (29.17%) 4 (8.33%) 195 (30.13%)
Female cancers 40 (5.61%) 1 (2.08%) 67 (10.35%)
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3.2 Image Preprocessing

Preprocessing is a critical step in retinal image analysis to enhance the quality of images before they are used in machine
learning (ML) and deep learning (DL) models for disease detection. Retinal images are often affected by noise, uneven
illumination, variations in contrast, and artifacts that can reduce the accuracy of automated algorithms. Proper
preprocessing ensures that important retinal structures, such as blood vessels, the optic disc, and pathological regions,
are clearly visible and suitable for feature extraction.

This section provides a detailed explanation of key preprocessing techniques, including noise reduction, contrast
enhancement, vessel segmentation, normalization, and data augmentation, which improve the robustness and accuracy
of ML models for heart disease detection from retinal images.

Key Preprocessing Techniques:

Preprocessing is an essential step in improving the quality and consistency of retinal images before applying machine
learning algorithms. Since retinal images can suffer from noise, uneven lighting, and other artifacts, effective
preprocessing ensures that the data fed into the models is clean and suitable for analysis.

Key Preprocessing Techniques:

Noise Reduction: Retinal images may contain noise due to poor imaging conditions, motion artifacts, or digital noise.
Techniques like Gaussian filtering and median filtering are commonly applied to smooth the images and remove
unwanted noise while preserving important structural features like blood vessels.

Contrast Enhancement: Retinal images often suffer from low contrast, especially in the presence of pathologies such as
diabetic retinopathy. Techniques like histogram equalization or adaptive histogram equalization are used to improve the
visibility of vessel structures and other fine details, making it easier for machine learning models to extract relevant
features.

Vessel Segmentation: Accurate vessel segmentation is crucial for extracting features related to cardiovascular health,
such as vessel diameter, tortuosity, and branching patterns. Various segmentation techniques, such as U-Net (a deep
learning-based architecture), active contours, or thresholding methods, are employed to separate the vascular network
from the rest of the retinal image.

Normalization and Standardization: To ensure consistency in the data and improve the learning process, preprocessing
often includes techniques like image normalization, where pixel values are rescaled to a fixed range, and z-score
standardization to adjust for variations in image quality and brightness.

Augmentation: In some cases, data augmentation techniques like rotation, flipping, and zooming are used to artificially
increase the size of the training dataset. This helps in training more robust models by exposing them to different
perspectives and conditions of retinal images.

3.3 Machine Learning Models
The core of heart disease prediction from retinal images is the machine learning models employed. These models can be
broadly divided into traditional machine learning models and deep learning models.

3.3.1 Traditional Machine Learning Models

Support Vector Machines (SVM), Random Forests (RF), and k-Nearest Neighbors (k-NN) have been widely used for

classification tasks in medical image processing. These models typically rely on handcrafted features, which are manually

extracted from the retinal images (e.g., vessel diameter, tortuosity, bifurcation points, etc.).

1. Support Vector Machines (SVM): SVMs are supervised learning models that can be used for binary or multi-class
classification. They aim to find the hyperplane that best separates the different classes (e.g., heart disease vs. no heart
disease) in a high-dimensional feature space.

2. Random Forest (RF): This is an ensemble learning method that uses a collection of decision trees to classify data. It
is particularly useful when there is a need to handle complex, high-dimensional datasets. Random Forest can provide
feature importance scores, which help in identifying the most relevant retinal features for heart disease prediction.

3. k-Nearest Neighbors (k-NN): k-NN is a simple but effective classification algorithm where new instances are
classified based on the majority class of their nearest neighbors in the feature space. It is particularly useful for
applications with limited labeled data.

3.3.2 Deep Learning Models

Deep learning techniques, especially Convolutional Neural Networks (CNNs), have revolutionized image-based

prediction tasks by automatically learning feature representations from raw image data.

1. Convolutional Neural Networks (CNNs): CNNs are the go-to model for image analysis tasks. CNNs automatically
learn hierarchical features from raw images, such as edges, shapes, and textures, making them ideal for analyzing
retinal images. CNNs have been shown to achieve high accuracy in detecting cardiovascular diseases from retinal
images.
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2. ResNet (Residual Networks): ResNet is an advanced CNN architecture that includes residual blocks, allowing the
model to train very deep networks without encountering the vanishing gradient problem. ResNet-based models have
demonstrated superior performance in image classification tasks, including CVD detection from retinal images.

3. Vision Transformers (ViTs): ViTs are a more recent deep learning architecture that has shown promise in image
classification tasks. ViTs treat images as sequences of patches, making them capable of modeling long-range
dependencies in the data. ViTs have shown competitive performance when compared to CNN-based models in some
image classification benchmarks.

4. Recurrent Neural Networks (RNNs): In certain cases, especially when modeling temporal or sequential information,
RNNSs can be used to analyze sequences of retinal images (e.g., time-series data from eye scans).

5. U-Net: U-Net is a deep learning model originally developed for biomedical image segmentation. Its encoder-decoder
architecture is ideal for extracting fine-grained features from retinal images, particularly for vessel segmentation and
detection of pathological features linked to cardiovascular diseases.

3.3.3 Multimodal Models
Some approaches integrate multimodal data (e.g., retinal images combined with clinical data such as blood pressure or
cholesterol levels) to enhance predictive accuracy. These models combine information from different sources to build a

more holistic view of a patient's cardiovascular health as shown in table2.

Table2: Comparison of Machine Learning Models for Heart Disease Prediction from Retinal Images

Model Type Algorithm Feature Key Limitations Common
Extraction Advantages Applications
Traditional | Support Handcrafted Effective for Requires feature | Classification of
ML Vector features small datasets, | selection, less CVD risk based
Machine handles high- effective for on vessel
(SVM) dimensional complex images features
data
Random Handcrafted Robust to Computationally | Predicting
Forest (RF) features overfitting, expensive for cardiovascular
provides large datasets risk factors
feature
importance
scores
k-Nearest Handcrafted Simple and Slow for large Basic
Neighbors (k- features easy to datasets, sensitive | classification
NN) implement to feature scaling | tasks with small
datasets
Deep Convolutional | Automatically | High accuracy, | Requires large Fundus image
Learning Neural learned from learns datasets, classification,
Networks images hierarchical computationally feature
(CNNs) features expensive extraction
ResNet Automatically | Effective for Requires High-resolution
(Residual learned from deep networks, | significant retinal image
Networks) images reduces computational classification
vanishing power
gradient
problem
Vision Automatically | Captures global | Requires massive | Fundus image
Transformers learned from dependencies, datasets, high classification,
(ViTs) images competitive computational multimodal
with CNNs cost learning
Recurrent Sequential data | Useful for Less effective for | Longitudinal
Neural processing time-series static images tracking of
Networks analysis vascular changes
(RNNs)
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U-Net Automatically | Excellent for Less suitable for Retinal vessel
learned from biomedical classification segmentation,
images segmentation, tasks pathology
works with detection
limited data
. Requires Combining
Multimodal | CNN + Clinical Image & HOh.StIC integration of fundus images
clinical data cardiovascular . . .
Models Data . . .. multiple data with patient
fusion risk prediction
sources metadata
Image & Works with Compqtatlonally Multi-source
Transformer- L expensive, .
clinical data both text and . disease
Based Models . . requires large oy
fusion images prediction
datasets
Multi-Input Image & Leverages Difficult to Comprehensive
Neural clinical data multiple data implement in heart disease
Networks fusion sources clinical settings diagnosis

3.4 Performance Metrics

Evaluating machine learning (ML) models is crucial to assess their effectiveness in predicting heart disease from retinal
images. Several performance metrics help measure how well a model distinguishes between healthy and diseased
individuals.

Accuracy: This is the proportion of correct predictions made by the model. While commonly used, accuracy can be
misleading in cases of imbalanced datasets, where one class (e.g., healthy individuals) dominates the dataset.

Accuracy=TP + TN / TP+TN+ FP + FN
Precision and Recall: These metrics are particularly useful in imbalanced classification tasks. Precision measures the
proportion of true positives among all the instances classified as positive, while recall measures the proportion of true
positives among all actual positive instances.
Precision= TP / TP+FP
Recall=TP / TP+FN

F1-Score: The F1-score is the harmonic mean of precision and recall, providing a balance between the two. It is a useful
metric when the classes are imbalanced.

F1-score=2x(Precision+Recall)/9PrecisionxRecall)
Area Under the Receiver Operating Characteristic Curve (AUC-ROC): The AUC-ROC curve plots the true positive rate
(recall) against the false positive rate. The area under this curve provides a summary of the model's ability to discriminate

between positive and negative classes.

Confusion Matrix: A confusion matrix displays the counts of true positives, false positives, true negatives, and false
negatives, helping to identify how well the model is performing across different classes as shown in table3.

© 1JARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 290


https://ijarcce.com/
https://ijarcce.com/

IJARCCE ISSN (O) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :: Peer-reviewed & Refereed journal :< Vol. 14, Issue 9, September 2025
DOI: 10.17148/IJARCCE.2025.14936

Table3: Comparison of Evaluation Metrics for Heart Disease Prediction from Retinal Images.

Metric Formula Best For Limitations

TP TN

Accuracy Balanced datasets Misleading for imbalanced

TP-IN+FP-FN
datasets
Precision % Minimizing false positives Ignores false negatives
Recall % Detecting all disease cases Ignores false positives
(Sensitivity)
Fl-score 2% g'_"f“i‘ n fRecall Imbalanced datasats Hard ta interpret alone
reclsion-Recall
AUC-ROC Plot of TPR vs. FPR Selecting classification Requires probabilistic
threshold outputs
Confusion TP, TN, FP, FN Understanding classification Does nat give a single score
Matrix breakdown errors

IV. RESULTS AND DISCUSSION

4.1 Overview of Recent Findings
Recent research highlights that deep learning models, particularly Convolutional Neural Networks (CNNs), exhibit
superior accuracy and robustness in detecting cardiovascular diseases (CVDs) from retinal images compared to traditional
machine learning (ML) approaches. Various studies have benchmarked different models on publicly available datasets
such as:

» UK Biobank Dataset (large-scale dataset of retinal images linked to cardiovascular risk factors).

* STARE, DRIVE, CHASE-DBI1, and ARIA (commonly used for retinal vessel segmentation and disease

classification).

Findings show that CNNss, particularly ResNet, VGG16, U-Net, and Vision Transformers (ViTs), outperform traditional
machine learning techniques such as Support Vector Machines (SVM), Random Forest (RF), and k-Nearest Neighbors
(k-NN).

4.2 Comparative Performance of Machine Learning Models

A comparison of different models for heart disease prediction from retinal images is shown in Table 4. The evaluation
metrics used include accuracy, precision, recall, F1-score, and AUC-ROC. The table presents a comparison of various
models for heart disease detection based on several performance metrics. The Support Vector Machine (SVM) shows an
accuracy of 78.5%, with precision, recall, and F1-score values of 74.2%, 76.8%, and 75.4%, respectively, along with an
AUC-ROC of 0.8. Random Forest (RF) performs better with an accuracy of 82.3%, and precision, recall, F1-score values
of 79.5%, 80.2%, and 79.8%, respectively, and an AUC-ROC of 0.85. k-NN demonstrates relatively lower performance
with 75.1% accuracy, precision of 72.8%, recall of 74%, F1-score of 73.4%, and AUC-ROC of 0.78. The CNN (VGG16)
model achieves an accuracy of 89.2%, precision of 87.5%, recall of 88%, F1-score of 87.7%, and an AUC-ROC of 0.92.
ResNet-50 shows the highest performance with an accuracy of 92.5%, precision of 91.3%, recall of 92%, F1-score of
91.6%, and an AUC-ROC of 0.95. U-Net, focused on segmentation, performs well with 90.8% accuracy, 89.7% precision,
90% recall, and 89.9% F1-score, with an AUC-ROC of 0.93. Finally, the Vision Transformer (ViT) has an accuracy of
91.7%, precision of 90.5%, recall of 91%, F1-score of 90.7%, and AUC-ROC of 0.94, performing similarly to ResNet-
50 in most metrics is shown in fig2, fig3, fig4, fig5, fig6.

Table 4: Performance Comparison of Machine Learning and Deep Learning Models

Model Accuracy (%) | Precision (%) | Recall (%) | T IE,,S/:;’“ AUC-ROC
SVM 78.5 74.2 76.8 75.4 0.8
Random Forest (RF) 82.3 79.5 80.2 79.8 0.85
k-NN 75.1 72.8 74 73.4 0.78
CNN (VGG16) 89.2 87.5 88 87.7 0.92
ResNet-50 92.5 91.3 92 91.6 0.95
U-Net (for segmentation) 90.8 89.7 90 89.9 0.93
Vision Transformer
(ViT) 91.7 90.5 91 90.7 0.94

© 1JARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 291


https://ijarcce.com/
https://ijarcce.com/

IJARCCE ISSN (0) 2278-1021, ISSN (P) 2319-5940

H International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :: Peer-reviewed & Refereed journal :< Vol. 14, Issue 9, September 2025
DOI: 10.17148/IJARCCE.2025.14936

100

B SVM
M Random Forest (RF)
m k-NN
CNN (VGG16)
M ResNet-50
0

Accuracy (%)

8

o

6

o

4

o

2

o

Fig2.Accuracy of the models

100
HSVM

80 M Random Forest (RF)
6 m k-NN
4 CNN (VGG16)
2 M ResNet-50
0 H U-Net (for

segmentation)

o

o

o

Precision (%)

Fig3.Precision of the models

100
80
HSVM
B Random Forest (RF)
60
o k-NN
CNN (VGG16)
40 ® ResNet-50
M U-Net (for segmentation)
20 M Vision Transformer (ViT)
0
Recall (%)
Fig4 Recall of the model

© 1JARCCE This work is licensed under a Creative Commons Attribution 4.0 International License

292


https://ijarcce.com/
https://ijarcce.com/

IJARCCE ISSN (0) 2278-1021, ISSN (P) 2319-5940

m International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :: Peer-reviewed & Refereed journal :< Vol. 14, Issue 9, September 2025
DOI: 10.17148/IJARCCE.2025.14936

100
B SVM
80
B Random Forest (RF)
60
= k-NN
40
CNN (VGG16)
20 W ResNet-50
0 . m U-Net (for
F1-Score (%) segmentation)
Fig5.F1-Score of the model
1
0.8
0.6
0.4
0.2
0

AlLIC-ROC

Fig6.AUC-ROC of the model

Deep learning models, particularly CNN-based architectures and Vision Transformers (ViTs), consistently outperform
traditional machine learning models across all performance metrics. Among them, ResNet-50 achieves the highest
accuracy at 92.5%, making it the most effective model for cardiovascular disease (CVD) detection. In contrast, traditional
machine learning models such as Support Vector Machines (SVM) and Random Forest (RF) demonstrate moderate
performance but require manual feature extraction, which can be a limitation. The k-Nearest Neighbors (k-NN) algorithm
exhibits the lowest accuracy at 75.1%, highlighting its shortcomings in handling complex retinal image analysis.
Additionally, U-Net proves to be highly effective in vessel segmentation, a critical step for extracting cardiovascular risk
factors.

4.3 Impact of Dataset Size and Annotation Quality

Models trained on large datasets, such as the UK Biobank, achieve higher accuracy due to the availability of diverse
patient samples and well-annotated images. In contrast, smaller datasets like STARE and DRIVE often lead to overfitting
in deep learning models. To address this issue, data augmentation techniques, including flipping, rotation, and zooming,
are commonly applied. The quality of annotations also plays a crucial role in model training. While manual annotations
of vessel structures and disease markers enhance model performance, automated annotation methods, though efficient,
may introduce errors that affect generalization.

Challenges in Model Interpretability and Adaptability

One of the major challenges in deep learning is the lack of explainability. CNNs and Vision Transformers (ViTs) function
as black-box models, making it difficult to understand the reasoning behind specific predictions. Techniques such as
Gradient-weighted Class Activation Mapping (Grad-CAM) and Shapley Additive Explanations (SHAP) help visualize
key regions in retinal images that contribute to decision-making. Another critical issue is domain adaptation, as models
trained on one population dataset may not generalize well to different ethnic groups. Transfer learning, using pre-trained
models on large datasets, improves adaptability, while synthetic data generation through Generative Adversarial
Networks (GANs) helps increase dataset diversity.
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Integrating Multimodal Data for Enhanced Predictions

Recent research highlights the benefits of combining retinal images with additional clinical data, such as blood pressure
and cholesterol levels, to improve model accuracy. This multimodal approach has demonstrated superior predictive
performance compared to single-modal models, as summarized in Table 2, which compares their effectiveness in clinical
applications is shown in Table 5

Table5: Comparison of Single-Modal vs. Multi-Modal Models

Model Type Accuracy AUC- Comments

(%) ROC
Single-Modal (Retinal Images | 89.2 0.91 CNN-based models perform well but miss
Only) additional risk factors
Multi-Modal ~ (Retinal ~ + | 94.8 0.97 Higher accuracy due to enriched data features
Clinical Data)

Multi-modal models improve accuracy by 5-6%, indicating that integrating clinical parameters with retinal imaging
provides a more holistic cardiovascular risk assessment.

V. CONCLUSION AND FUTURE SCOPE

The integration of retinal imaging with machine learning has emerged as a promising non-invasive approach for heart
disease detection, leveraging the anatomical and physiological similarities between retinal and coronary blood vessels to
assess cardiovascular health. Deep learning models, including CNNs, ResNet, and Vision Transformers, have shown
superior accuracy in detecting cardiovascular diseases (CVDs) from retinal images compared to traditional machine
learning models, which require handcrafted feature extraction and thus have scalability limitations. Multimodal models
that combine retinal images with clinical data such as blood pressure, cholesterol levels, and genetic predisposition
significantly improve predictive accuracy. However, challenges remain in dataset availability, model generalization, and
interpretability. The limited availability of large, high-quality retinal datasets with cardiovascular risk labels hinders
effective training, while small datasets like STARE and DRIVE, primarily focused on retinal vessel segmentation, restrict
the scope for heart disease detection. Data imbalance and fewer diseased samples contribute to model bias, which can be
addressed with data augmentation techniques and synthetic data generation using GANs. Additionally, models trained
on a single population dataset may not generalize well across diverse ethnic groups due to variations in retinal vascular
structures, but domain adaptation techniques such as transfer learning can improve model generalization. The black-box
nature of deep learning models also poses challenges in clinical adoption, but techniques like Grad-CAM and SHAP can
improve interpretability. Future research should focus on developing more robust, generalizable models by integrating
self-supervised learning, meta-learning, and few-shot learning techniques, as well as incorporating multimodal data for
more comprehensive cardiovascular risk assessment. Enhancing model explainability through Explainable Al (XAI) and
validating models in real-world clinical settings will be essential for their integration into routine cardiovascular
screening. As Al-powered retinal imaging advances, it holds the potential to revolutionize heart disease detection, making
it a cost-effective, non-invasive, and accessible tool for cardiovascular risk assessment, ultimately reducing heart disease-
related morbidity and mortality worldwide.
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