
ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE 

International Journal of Advanced Research in Computer and Communication Engineering 

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 9, September 2025 

DOI:  10.17148/IJARCCE.2025.14940 

© IJARCCE                This work is licensed under a Creative Commons Attribution 4.0 International License                 321 

Bridging the Decades: A Comparative Analysis 

of Reinforcement Learning in Retro and  

Modern Control Tasks 
 

Priyanka Mohan1, Sanju Stephen 2, Parvez B3 

Assistant Professor, Department of MCA, Surana College Kengeri, Bengaluru, India1 

Student, Department of MCA, Surana College Kengeri, Bengaluru, India2 

Student, Department of MCA, Surana College Kengeri, Bengaluru, India3 

 

Abstract: In the modern era, Reinforcement Learning (RL) has evolved from foundational experiments in classic control 

tasks to sophisticated systems facing contemporary challenges. While early tasks featured discrete action spaces and 

observable states, modern problems often involve continuous control and complex dynamics. This progression has 

created a significant algorithmic gap, requiring different approaches for optimal performance. This paper presents a 

comparative analysis to characterize this gap by benchmarking two influential algorithms on representative tasks: the 

value-based Deep Q-Networks (DQN) on a discrete control problem, and the policy-gradient Proximal Policy 

Optimization (PPO) on a continuous control problem. The analysis reveals the specialized strengths of each method, 

demonstrating that DQN achieves high performance in its intended domain, while PPO's architecture is well-suited to the 

stability requirements of more complex, continuous environments. These findings provide an empirical basis for 

understanding the distinct capabilities of these algorithmic classes, clarifying their respective domains of application and 

highlighting the importance of matching algorithmic design to problem complexity. 
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I.      INTRODUCTION 

 

The pursuit of creating intelligent agents capable of autonomous decision-making has long been a central goal of Artificial 

Intelligence, with Reinforcement Learning (RL) emerging as a powerful paradigm for this endeavor [1]. Using simulated 

environments as crucial testing grounds, early RL research flourished in constrained, rule-based settings, where 

foundational algorithms like Deep Q-Networks (DQN) demonstrated remarkable success on discrete tasks [2]. However, 

the continuous evolution of these environments towards more complex, physics-based dynamics introduced challenges 

that older methods were not designed to handle. This shift necessitated the development of more robust algorithms, 

including Proximal Policy Optimization (PPO), capable of managing instability and nuanced control [3]. The divergence 

between the capabilities of foundational and modern algorithms has created a distinct "algorithmic gap." This paper 

provides a direct comparative analysis to quantify this gap. By benchmarking a classic value-based algorithm against a 

modern policy-gradient counterpart on representative control tasks, the analysis provides definitive proof of the 

architectural and key intellectual developments that have shaped the evolution of RL. 

 

II.     PROBLEM STATEMENT 

 

The rapid evolution of simulated environments from simple, discrete tasks to complex, continuous control problems has 

created a significant divergence in the applicability of Reinforcement Learning (RL) algorithms. Foundational methods, 

such as Deep Q-Networks (DQN), were designed for and demonstrated remarkable success in the former category. 

However, their architectural and theoretical underpinnings are not directly suited for the challenges presented by modern 

environments, which often involve intricate physics and continuous action spaces. This has led to the development of a 

new class of algorithms, such as Proximal Policy Optimization (PPO), designed for greater stability in these complex 

domains. 

 

While the evolution of these algorithms is well-documented, there is a need for a clear, direct, and quantitative analysis 

that explicitly characterizes the performance gap between these two classes of algorithms on representative tasks. 

Therefore, the central problem this paper addresses is the formal characterization and quantification of this "algorithmic 
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gap." This research aims to provide empirical evidence that clarifies the specific strengths and limitations of 

foundational versus modern RL algorithms, thereby establishing a clear basis for why the evolution in algorithmic 

design was not just beneficial, but necessary 

 

III.    BACKGROUND AND RELATED WORK 

 

The implementation of RL to control problems reflects the broader historical progression of AI [4]. A significant 

transformation occurred with the integration of neural networks into RL algorithms. While neural networks provided 

generalization across vast state spaces, their use initially introduced training instabilities. Methodological innovations 

such as experience replay [5] and fixed target networks were developed to balance the training, leading to the creation of 

Deep Q-Networks (DQN). The positive outcomes of DQN were famously  

 

demonstrated on a suite of Atari games within the Arcade Learning Environment (ALE) [6], establishing a strong baseline 

for value-based deep RL [2]. 

 

Following this success, research shifted towards improving scalability and training dynamics. The development of policy-

gradient methods [7] enabled agents to learn parameterized policies directly. This led to refined actor-critic variants such 

as Asynchronous Advantage Actor-Critic (A3C) [8]. A key challenge in these methods was managing policy updates to 

avoid catastrophic performance drops, which prompted the development of methods like Trust Region Policy 

Optimization (TRPO) [9]. Proximal Policy Optimization (PPO) simplified this method with a clipped surrogate objective 

function to ensure more stable and reliable policy updates [3]. 

 

Uniform performance metrics have been fundamental to progress in the field. Environments like CartPole [10] served as 

initial testbeds, while modern libraries like Gymnasium [11] provide a wide range of tasks for reproducible research. 

Furthermore, open-source libraries such as Stable-Baselines3 [12] offer high-quality implementations of key algorithms, 

enabling fair and robust comparative analyses. 

 

IV.      METHODOLOGY 

 

To quantitatively analyse the algorithmic gap between foundational and modern RL approaches, a comparative 

experiment was designed. Our methodology focuses on a direct comparison between a value-based and a policy-gradient 

algorithm, using one canonical environment to represent each era of control challenges.  

 

4.1 Environments 

Two distinct, widely-recognized benchmark environments from the Gymnasium library were selected [11]: 

 

4.1.1 Retro Environment: CartPole-v1 

This classic control task was chosen as a canonical retro problem [10]. Its low-dimensional state space and discrete action 

space are emblematic of the challenges that foundational RL algorithms were designed to solve. 

 

4.1.2 Modern Environment: Acrobot-v1  

This task, originally described by Sutton [13], was selected as a proxy for modern control challenges. It requires an agent 

to manage continuous state variables within a more complex, underactuated physics simulation. 

 

4.2 Algorithms 

Two representative agents were implemented using Stable-Baselines3 [12]: 

 

4.2.1 Deep Q-Network (DQN):  

DQN was selected as it is the foundational deep RL algorithm for discrete action spaces [2]. This implementation utilizes 

a Multi-Layer Perceptron (MLP) policy for the CartPole.  
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Fig. 1: DQN Architecture 

 

PPO was chosen as a state-of-the-art, policy-gradient algorithm recognised for its  stable nature[3]. This implementation 

uses an actor-critic architecture with separate MLP networks for the policy (actor) and value function (critic). 

 

 
Fig. 2: PPO Architecture 

 

4.3 Experimental Setup and Evaluation 

 

The DQN agent was trained for 50,000 timesteps, and the PPO agent was trained for 30,000 timesteps. The efficiency of 

each trained agent was evaluated by running it for 100 episodes in its respective environment with learning disabled. The 

key indicator for the analysis is the mean reward achieved across these 100 evaluation episodes, with the standard 

deviation reported to assess performance consistency. 

 

V.    RESULTS 

 

This section presents the empirical outcomes of comparative experiments. The outcomes for the Deep Q-Network (DQN) 

agent on the retro CartPole task and the Proximal Policy Optimization (PPO) agent on the modern Acrobot task are 

detailed below. 

 

5.1 Final Performance Metrics 

After training, each agent was evaluated for 100 episodes. The mean and standard deviation of the episodic rewards are 

highlighted in Table 1. 
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Table 1: Final performance scores for each agent for 100 episodes. 

 

Environment Algorithm Mean Reward Standard Deviation 

CartPole-v1 DQN 171.04 22.84 

Acrobot-v1 PPO -88.08 11.28 

 

 
Fig. 3: A comparative bar chart visualizing the final mean episodic reward for each agent over 100 evaluation runs. 

Error bars represent the standard deviation, illustrating the consistency of each 

agent. 

 

5.2 Performance Visualization 

 

To visualize the training progress, the mean episodic reward was logged throughout the training process for both agents. 

Figure 1 shows the learning curve for the DQN agent on the CartPole-v1 task, and Figure 2 shows the learning curve for 

the PPO agent on the Acrobot-v1 task. 

 

 
Fig. 4: Learning curve for the DQN agent on CartPole-v1 over 50,000 timesteps. The y-axis represents the mean 

episodic reward, smoothed for clarity. 
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Fig. 5: Learning curve for the PPO agent on Acrobot-v1 over 30,000 timesteps. The y-axis represents the mean episodic 

reward, smoothed for clarity. 

 

VI.     DISCUSSION 

 

The experimental results provide a clear, quantitative illustration of the algorithmic gap between foundational and modern 

reinforcement learning techniques. 

 

6.1 Interpretation of Results 

The exceptional performance of the DQN agent on CartPole-v1 (mean reward: 171.04) confirms the effectiveness of 

value-based methods in environments with low-dimensional state spaces and discrete actions. The agent quickly learned 

a stable policy, demonstrating the suitability of DQN's architecture for such well-defined problems. 

Conversely, the PPO agent successfully tackled the more complex Acrobot-v1 environment (mean reward: -88.08), a 

task where DQN would be fundamentally ill-suited. In this environment, where rewards are negative, a score closer to 

zero indicates superior performance. This result demonstrates PPO's ability to handle more challenging, continuous 

dynamics, which is a hallmark of modern RL tasks. The tight standard deviation (11.28) further highlights the stability 

that PPO is designed for. 

 

6.2 Analysis of the Algorithmic Gap 

These results from two canonical tasks concretely define the "algorithmic gap." Foundational algorithms like DQN are 

specialized for a class of problems with clear, discrete choices. Modern algorithms like PPO, however, are designed with 

stability mechanisms that grant them greater applicability to a wide spectrum of physically complex and continuous 

control tasks. While the chosen control tasks serve as effective proxies, they do not encompass all complexities of modern 

applications, such as high-dimensional visual inputs or multi-agent coordination. Subsequent research could build on this 

analysis to more diverse environments to further probe the nuances of this performance divide.  

 

6.3 Limitations and Future Work 

These classic control tasks serve as proxies and do not encompass all the complexities of modern applications, such as 

high-dimensional pixel inputs or multi-agent coordination. Further development on this research could open opportunities 

for this analysis to more complex environments to investigate if this performance gap widens. 

 

VII.      CONCLUSION 

 

This paper presented a quantitative analysis of the algorithmic gap between foundational and modern reinforcement 

learning techniques. By benchmarking a value-based algorithm (DQN) on a classic retro task (CartPole-v1) against a 

policy-gradient algorithm (PPO) on a more complex modern task (Acrobot-v1), sconcrete evidence of this divide was 

provided. The results demonstrated that while DQN performs exceptionally on simpler, discrete tasks, its design is less 

suited for the complex dynamics that characterize modern environments. Conversely, PPO's stability and design proved 
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effective for these more difficult tasks. Ultimately, this work confirms that the evolution from retro to modern RL 

challenges was driven by a fundamental shift in algorithmic design, moving from specialized methods to more robust 

and generalizable agents. 
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