

Impact Factor 8.471

Reference 4 Reference 2025 Peer-reviewed & Reference 4 Peer-reviewed & Reference 4 Peer-reviewed & Reference 5 Peer-rev

DOI: 10.17148/IJARCCE.2025.141023

Self Car Driving Using Neural Networks And AI

Khushali R. Mali¹, Megha S. Chauhan², Manoj V. Nikum*³

Student of MCA, SJRIT Dondaicha, KBC NMU Jalgaon, Maharashtra¹
Assistant Professor, MCA Department, SJRIT Dondaicha, Jalgaon, Maharashtra²
HOD, MCA Department, SJRIT Dondaicha, Jalgaon, Maharashtra*³

Abstract: Self-driving cars, also referred to as autonomous vehicles (AVs), represent one of the most promising technological advancements of the 21st century. They combine artificial intelligence, computer vision, machine learning, and sensor fusion to navigate and operate without direct human intervention. The purpose of this research is to design and implement a cost-effective self-driving car prototype that can perform lane detection, obstacle avoidance, and path navigation using open-source technologies. This paper discusses the theoretical background, development methodology, experimental evaluation, results, and implications for future mobility systems. The proposed system utilizes a Raspberry Pi, camera module, and ultrasonic sensors for perception and control. Experimental results indicate lane detection accuracy of 95% and obstacle avoidance success of 90% in controlled environments. The research concludes that while current limitations prevent full autonomy, low-cost self-driving prototypes play an essential role in advancing autonomous vehicle education and research.

I. INTRODUCTION

Transportation has always been a major driving force of human development. Over the past century, technological innovations have continuously reshaped mobility—from the invention of combustion engines to the rise of electric and connected vehicles. The latest evolution in this journey is the emergence of **self-driving cars**, capable of navigating roads without direct human control.

Autonomous vehicles promise to transform how people and goods move, offering the potential to significantly reduce traffic accidents, improve fuel efficiency, and provide mobility for people with disabilities or those unable to drive. According to the World Health Organization (2023), human error is responsible for more than 90% of global road accidents. By integrating sensors, artificial intelligence (AI), and decision-making algorithms, self-driving cars can eliminate many of these errors and make transportation safer and more efficient.

In this research project, a miniature self-driving car prototype was designed and implemented using **Raspberry Pi**, **Python**, **OpenCV**, and **TensorFlow**. The objective is to create a functional model capable of detecting lanes, avoiding obstacles, and navigating autonomously within a predefined environment.

The main objectives of this study are:

- 1. To design a self-driving car prototype using cost-effective hardware and open-source software.
- 2. To implement lane detection through computer vision.
- 3. To enable obstacle detection and avoidance using ultrasonic sensors.
- 4. To evaluate the system's performance under controlled testing conditions.
- 5. To analyze challenges and propose future improvements.

II. LITERATURE REVIEW

The concept of autonomous driving dates back to the 1980s, when researchers first experimented with vision-based vehicle control. Since then, the field has evolved tremendously due to advances in computing power, artificial intelligence, and sensor technologies.

2.1 Early Developments

The ALVINN (Autonomous Land Vehicle in a Neural Network) project at Carnegie Mellon University in 1989 marked a major milestone in autonomous driving research. The system used a neural network trained to map visual inputs to steering commands. Although limited by computational resources, ALVINN demonstrated the feasibility of learning-based vehicle control (Pomerleau, 1989).

Impact Factor 8.471

Reference | Peer-reviewed & Reference | Peer-reviewed |

DOI: 10.17148/IJARCCE.2025.141023

2.2 Modern Approaches

In the 2000s, advancements in machine learning and robotics led to DARPA's Grand Challenge, where fully autonomous vehicles competed in desert navigation tasks. The competition accelerated innovations in **path planning**, **sensor fusion**, and **real-time decision-making**. Later, companies like **Google (Waymo)**, **Tesla**, and **Uber** began developing commercial-level self-driving systems.

Modern AVs combine data from multiple sensors:

- LiDAR (Light Detection and Ranging) for 3D mapping,
- Radar for velocity and distance detection,
- Cameras for vision-based perception,
- GPS for global positioning, and
- Inertial Measurement Units (IMU) for stability.

2.3 AI and Deep Learning

Deep learning techniques, particularly Convolutional Neural Networks (CNNs), have revolutionized computer vision and perception tasks. Nvidia's *PilotNet* (Bojarski et al., 2016) demonstrated an end-to-end deep learning model capable of steering a vehicle directly from raw camera images. These neural networks can recognize lanes, traffic signs, pedestrians, and vehicles in real time.

2.4 Ethical and Legal Considerations

The rise of autonomous vehicles also raises ethical, legal, and safety concerns. Questions regarding accident liability, privacy, and data security remain unresolved. Furthermore, ensuring reliability in unpredictable environments—such as rain, fog, or construction zones—remains a major technical challenge.

This literature review provides the foundation for the development of a scaled-down prototype, focusing on essential components of autonomous navigation: perception, decision-making, and control.

III. SYSTEM DESIGN AND ARCHITECTURE

3.1 Overview

The proposed system follows a modular design comprising three major subsystems:

- 1. **Perception System** responsible for capturing environmental data using sensors and cameras.
- 2. **Decision-Making System** processes sensor inputs using AI models to make driving decisions.
- 3. Control System actuates motors to control steering and speed based on the decision output.

3.2 Hardware Components

Component	Description
Raspberry Pi 4	Central processing unit for computation
Pi Camera Module	Captures real-time video for lane detection
Ultrasonic Sensor (HC-SR04)	Detects obstacles within a 30 cm range
L298N Motor Driver	Controls speed and direction of DC motors
DC Motors	Provide motion for the wheels
Power Supply (12V Battery)	Powers the entire system
Chassis	Base structure holding all components

3.3 Software Components

- **Python 3:** Main programming language.
- OpenCV: Used for image processing and lane detection.
- TensorFlow/Keras: For implementing deep learning models.
- NumPy & Matplotlib: For data manipulation and visualization.
- Robot Operating System (ROS): For modular communication between software components.

3.4 System Workflow

- 1. Camera captures continuous video frames.
- 2. Frames are processed through a CNN-based lane detection algorithm.
- 3. Ultrasonic sensors measure distances to obstacles.
- 4. Data from both modules is fused to make navigation decisions.
- 5. The control algorithm adjusts motor speed and direction accordingly.

Impact Factor 8.471

Reference | Peer-reviewed & Reference | Peer-reviewed |

DOI: 10.17148/IJARCCE.2025.141023

IV. METHODOLOGY

4.1 Lane Detection Process

- 1. Preprocessing: Each frame is converted to grayscale and passed through a Gaussian filter to remove noise.
- 2. **Edge Detection:** The Canny Edge Detector highlights lane boundaries.
- 3. **Region of Interest:** The algorithm isolates the road section relevant for navigation.
- 4. **Hough Line Transform:** Detects lines and estimates lane curvature.
- 5. **Steering Control:** A PID controller adjusts wheel angles to maintain lane center.

4.2 Obstacle Detection

Ultrasonic sensors measure distances using sound wave reflection. The formula is:

 $D=v\times t2D = \frac{v \times t2D}{2}D=2v\times t$

where DDD = distance to obstacle, vvv = speed of sound (343 m/s), and ttt = echo return time.

If an obstacle is detected within a critical threshold, the vehicle halts or changes direction.

4.3 Navigation Algorithm

The navigation system integrates lane detection and obstacle avoidance. The main decision-making steps are:

- If lane detected → continue forward.
- If lane lost \rightarrow adjust steering using previous frame reference.
- If obstacle detected → stop, turn, or reroute.

4.4 Control Algorithm

A PID (Proportional-Integral-Derivative) controller was used for smooth steering control. It minimizes error between desired and actual lane position.

V. EXPERIMENTAL SETUP AND EVALUATION

5.1 Testing Environment

The prototype was tested on a miniature road track with defined white lane boundaries and cardboard obstacles. Lighting conditions were varied to test algorithm robustness.

5.2 Performance Metrics

- Lane Detection Accuracy (%)
- Obstacle Avoidance Success (%)
- Average Processing Latency (ms/frame)
- Power Efficiency (W)

5.3 Results

Metric Value Comments

Lane Detection Accuracy 95% Stable under good lighting
Obstacle Avoidance Rate 90% Minor delay in detection

Processing Latency 120 ms Real-time performance achieved Power Consumption 8.5 W Efficient for small-scale operation

The system was able to follow lanes and avoid obstacles successfully in over 9 out of 10 test runs.

VI. DISCUSSION

The experimental results show that the proposed self-driving car prototype performs well in a controlled setting. The integration of camera and ultrasonic sensors provides reliable navigation and object avoidance. However, several limitations were identified:

- 1. **Lighting Sensitivity:** Lane detection accuracy decreased in low light.
- 2. **Sensor Range:** Ultrasonic sensors have limited detection range (< 40 cm).
- 3. Computational Power: Real-time processing taxed the Raspberry Pi's CPU.
- 4. **Environmental Variability:** The system struggles with complex outdoor conditions such as shadows or reflective surfaces.

Impact Factor 8.471

Refered & Refered journal

Vol. 14, Issue 10, October 2025

DOI: 10.17148/IJARCCE.2025.141023

Despite these challenges, the project demonstrates the feasibility of autonomous driving at a small scale. It provides a valuable educational tool for learning about perception, AI, and robotics.

VIII. APPLICATIONS

Self-driving technology has vast applications across industries:

- Transportation and Logistics: Automated delivery vehicles and trucks.
- Public Transit: Autonomous shuttles and buses for urban areas.
- Agriculture: Driverless tractors for precision farming.
- **Defense:** Unmanned ground vehicles (UGVs) for reconnaissance.
- Healthcare: Autonomous ambulances for rapid response.
- Education: Teaching robotics, AI, and control systems in academic projects.

VIII. FUTURE WORK

Future developments may include:

- 1. Integration of LiDAR and GPS for enhanced localization.
- 2. Implementation of **Deep Reinforcement Learning** for adaptive decision-making.
- 3. Use of **Edge Computing** for faster processing.
- 4. Testing in **dynamic and outdoor** environments.
- 5. Development of Vehicle-to-Vehicle (V2V) communication for coordinated traffic systems.
- 6. Enhancing the ethical and legal frameworks surrounding AV deployment.

IX. CONCLUSION

This research demonstrates the successful design and implementation of a self-driving car prototype capable of lane detection, obstacle avoidance, and autonomous navigation using open-source tools. The project validates the practicality of low-cost autonomous systems for research and education. Although the system is limited to controlled environments, it represents a foundational step toward scalable, intelligent transportation systems. Future advancements in sensors, computation, and AI will enable higher levels of autonomy, safety, and efficiency in real-world driving.

REFERENCES

- [1]. Bojarski, M. et al. (2016). End-to-End Learning for Self-Driving Cars. Nvidia Research.
- [2]. Thrun, S. (2010). Toward Robotic Cars. Communications of the ACM, 53(4), 99–106.
- [3]. Pomerleau, D. (1989). ALVINN: An Autonomous Land Vehicle in a Neural Network. CMU Robotics Institute.
- [4]. Chen, C., Seff, A., Kornhauser, A., & Xiao, J. (2015). DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving. IEEE ICCV.
- [5]. Kuutti, S. et al. (2020). A Survey of Deep Learning Applications to Autonomous Vehicle Control. IEEE Transactions on Intelligent Transportation Systems.
- [6]. OpenCV Documentation (2024). Computer Vision and Lane Detection Techniques.
- [7]. World Health Organization (2023). *Global Status Report on Road Safety*.
- [8]. SAE International (2022). Taxonomy and Definitions for Terms Related to Driving Automation Systems.
- [9]. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
- [10]. Bimbraw, K. (2015). Autonomous Cars: Past, Present and Future. IEEE Proceedings.