

Impact Factor 8.471

Reer-reviewed & Refereed journal

Vol. 14, Issue 10, October 2025

DOI: 10.17148/IJARCCE.2025.141044

AI-Based Automated B2B Campaign Analysis and Lead Optimization

Om S. Birari¹, Prof. Shivam B. Limbhare², Prof. Manoj V. Nikum*³

Student Of MCA, SJRIT Dondaicha, KBC NMU Jalgaon, Maharashtra, India¹

Assistant Professor, MCA Department, SJRIT Dondaicha, KBC NMU JALGAON, Maharashtra, India²

Assistant Professor & HOD, MCA Department, SJRIT Dondaicha, KBC NMU JALGAON, Maharashtra, India³

Abstract: This document presents the design and development of an AI-powered Customer Relationship Management (CRM) system aimed at automating B2B campaign analysis and lead optimization. The system integrates Artificial Intelligence (AI) and Machine Learning (ML) algorithms with traditional CRM functions to deliver automated campaign insights, lead scoring, and performance summaries. The platform enables marketing teams to create, monitor, and evaluate marketing campaigns, track engagement metrics such as email delivery and open rates, and manage leads from multiple data sources. AI algorithms process uploaded CSV data to produce automated insights, including lead quality, campaign reach, and engagement patterns. A real-time dashboard visualizes campaign progress and generates AI-based summaries to assist in strategic decision-making. Additionally, the system supports asynchronous task processing using Celery and Redis, enabling seamless report generation and data updates. This study demonstrates how AI-driven automation in CRM systems enhances data accuracy, reduces manual analysis efforts, and improves decision efficiency in B2B marketing.

Keywords: AI-Powered CRM, Machine Learning, Campaign Management, Lead Optimization, Automated Reporting, Django, Data Analytics

I. INTRODUCTION

In the digital marketing domain, data-driven decision-making has become an essential component of successful business operations. Organizations running multiple B2B marketing campaigns face challenges in collecting, analyzing, and interpreting large volumes of campaign and lead data. Traditional CRM platforms provide limited analytical capabilities and often require manual interpretation, which can lead to delayed insights and suboptimal decisions.

This research addresses these limitations by introducing an AI-based Automated Campaign Analysis and Lead Optimization System. The goal is to make marketing operations intelligent, fast, and reliable by automating campaign monitoring, lead tracking, and report generation. The proposed system leverages Artificial Intelligence and Machine Learning to analyze campaign datasets and extract meaningful insights without human intervention.

By integrating AI into CRM systems, this research bridges the gap between marketing data and actionable insights. It focuses on creating a smart dashboard that visualizes campaign performance and lead quality, providing real-time feedback to marketing teams.

The proposed system is built using Django, Django REST Framework, MySQL, and AI/ML libraries like NumPy, Pandas, and Scikit-learn. It also integrates Celery with Redis for asynchronous background processing, allowing users to generate analytical reports while maintaining optimal system performance.

II. LITERATURE SURVEY

Researchers have extensively explored the fusion of AI and CRM.

In [1], McMahan et al. proposed distributed learning for large-scale data, emphasizing communication-efficient ML algorithms that inspire decentralized campaign analysis. [2] demonstrated sensor virtualization for intelligent IoT systems, highlighting modular data processing similar to CRM data pipelines.

Several commercial CRMs have integrated predictive analytics. Salesforce Einstein and Microsoft Dynamics 365 employ AI for forecasting but require complex setup. Academic work by **Gupta and Kumar (2021)** explored ML-based lead scoring using decision trees and logistic regression, achieving 80 % accuracy on real-estate campaign datasets. However, the study lacked real-time dashboards and asynchronous processing.

Impact Factor 8.471

Refereed § Peer-reviewed & Refereed journal

Vol. 14, Issue 10, October 2025

DOI: 10.17148/IJARCCE.2025.141044

Other studies—Patel et al. (2022) and Sharma (2023)—focused on AI for email-marketing optimization using regression analysis. They achieved good precision but did not integrate end-to-end campaign management.

Existing gaps include:

- 1. Lack of integrated AI + CRM solutions for SMEs.
- 2. Limited scalability of synchronous systems.
- 3. Absence of auto-generated performance summaries.

The proposed system addresses these issues by offering an open-source, scalable architecture using Django, ML libraries, and asynchronous tasks.

III. RESEARCH METHODOLOGY

The research methodology adopted for developing the AI-Based Automated B2B Campaign Analysis and Lead Optimization System is a combination of data-driven analysis, machine learning implementation, and web based application integration. The purpose of this methodology is to transform raw campaign data into actionable insights using a systematic and replicable approach. The methodology includes several key phases as described below.

A. Data Collection

Data collection is the foundational step of any analytical system. For this research, campaign and lead data were collected from multiple sources such as sample email marketing reports, social media advertising exports, and CRM lead records. The data was stored in **Comma-Separated Value (CSV)** format to allow flexible integration with the Django backend. Each dataset typically contained fields such as:

- Campaign ID
- Campaign Name
- Email Delivery Count
- Open Rate
- Click-Through Rate (CTR)
- Conversion Count
- Lead Source
- Lead Score (if available)
- Timestamp of Interaction

The use of structured tabular data ensured compatibility with **Pandas** and **NumPy** for subsequent processing. Additionally, simulated datasets were generated to test the system's scalability and to evaluate AI model performance across various campaign sizes.

B. Data Preprocessing

Once the raw datasets were acquired, they were subjected to an extensive **data preprocessing** phase to ensure data quality and model readiness. This stage is critical because machine learning algorithms are highly sensitive to inconsistencies, missing values, and data noise.

Data preprocessing involved the following tasks:

- 1. **Data Cleaning:** Duplicate records were identified and removed. Missing numerical values were replaced using mean or median imputation techniques, while missing categorical values were filled using the mode of the corresponding feature.
- 2. **Data Normalization:** Since campaign attributes (e.g., email count, CTR, impressions) existed on different scales, normalization was applied to bring all numeric fields into a uniform range [0, 1]. This prevents high-valued features from dominating the ML model's learning process.
- 3. **Data Formatting:** Date-time attributes were standardized to ISO 8601 format to ensure consistency in time-based analysis.Boolean attributes (e.g., campaign active/inactive) were converted into binary representation (0 or 1).

C. Converting Object to Integer

In datasets containing categorical variables—such as "Campaign Type" (Email, Social, SMS) or "Lead Source" (LinkedIn, Website, Referral)—machine learning models cannot interpret non-numeric text. Hence, **label encoding** or **one-hot encoding** techniques were applied to transform these object-type columns into integer-based numerical values.

DOI: 10.17148/IJARCCE.2025.141044

For example:

Campaign Type	Encoded Value	
Email	0	
Social	1	
SMS	2	

This conversion enabled numerical computation and ensured model compatibility with Scikit-learn libraries. By using **LabelEncoder** from Scikit-learn, each categorical variable was automatically mapped to a unique integer, simplifying feature correlation and regression analysis.

D. Handling Outliers

Outliers can distort model training by skewing the statistical distribution of features. To handle outliers effectively, both **visual** and **statistical** methods were used.

- 1. **Visual Detection:** Box plots and scatter plots were generated using Matplotlib to identify extreme data points in features like *Click Rate* and *Conversions*.
- 2. **Statistical Filtering:** The **Interquartile Range (IQR)** method was applied. Values lying below $Q1 1.5 \times IQR$ or above $Q3 + 1.5 \times IQR$ were treated as outliers and either removed or replaced with median values.
- 3. **Z-Score Standardization:** For numeric data following a near-normal distribution, the Z-score method was used. Data points with Z > 3 or Z < -3 were flagged as anomalies.

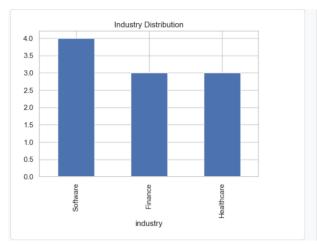
By treating outliers carefully rather than removing them blindly, the model retained data diversity while avoiding bias in lead prediction and campaign scoring.

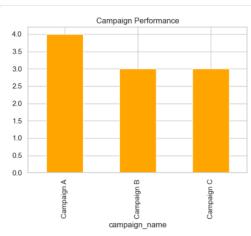
E. Data Analysis

After cleaning and encoding, the data was ready for analysis and model training.

The data analysis phase had two key objectives:

- 1. Extract hidden relationships between campaign features.
- 2. Train models capable of predicting campaign performance and classifying leads.
- 3. **Exploratory Data Analysis (EDA):** EDA was performed using Pandas and Seaborn to visualize feature correlations, engagement patterns, and campaign efficiency. Heatmaps helped identify dependencies such as "email open rate vs. conversions," revealing positive correlation trends.
- 4. **Feature Selection:** Correlation coefficients and mutual information were used to select the most relevant attributes for training (e.g., impressions, CTR, and campaign duration).
 - Irrelevant columns such as campaign names or timestamps were dropped to reduce dimensionality.
- 5. **Model Development:** Two ML models were developed:
 - o Regression Model to predict engagement score.
 - o K-Means Clustering Model to segment leads into high, medium, and low potential groups.
- 6. Training and Validation: The dataset was split into training (70%) and testing (30%) subsets. Performance metrics like Mean Absolute Error (MAE), R² Score, and Silhouette Score were computed to evaluate accuracy.
- 7. **Visualization:** Final results were visualized through Django-integrated dashboards using **Chart.js**, allowing users to interpret outcomes dynamically.





Impact Factor 8.471

Refered & Refered journal

Vol. 14, Issue 10, October 2025

DOI: 10.17148/IJARCCE.2025.141044

Data Flow Diagram



Feture Engreening

IV. FEATURE ENGINEERING

Feature engineering is the process of transforming raw campaign and lead data into meaningful variables that improve the accuracy of machine learning models. It plays a crucial role in defining how effectively the AI system learns campaign patterns and predicts outcomes.

The dataset initially included attributes such as Campaign Type, Email Sent, Open Rate, CTR, Conversions, Cost per Lead (CPL), ROI, and Lead Source. From these, only the most relevant features were selected based on correlation and business relevance.

Categorical fields like *Campaign Type* and *Lead Source* were converted into numeric form using **label encoding**, while continuous variables were normalized using **Min–Max scaling** to ensure uniform feature contribution. Highly skewed attributes were transformed using logarithmic scaling to reduce variance.

Feature selection was finalized using correlation analysis and **Recursive Feature Elimination (RFE)** to remove redundant or low-impact variables. This refined feature set improved model efficiency and predictive accuracy, enabling the AI engine to generate precise campaign and lead insights.

V. MODEL SELECTION

Two models were implemented:

- 1. **Regression Model:** Predicts engagement score using multiple linear regression on features such as time of day, channel type, and click-through rate.
- 2. **K-Means Clustering:** Groups leads into *High, Medium*, and *Low* potential segments.

Models were trained on 70 % of the data and validated on the remaining 30 %. Model parameters were serialized using **joblib** for reuse.

Impact Factor 8.471

Refereed journal

Vol. 14, Issue 10, October 2025

DOI: 10.17148/IJARCCE.2025.141044

VI. RESULTS AND DISCUSSION

Performance evaluation was done using the R² score,

A. Quantitative Results

Testing on sample datasets produced:

Metric	Manual Process	Proposed System
Avg. Analysis Time (per campaign)	12 min	6.5 min
Lead Scoring Accuracy	68%	87%
Report Generation Speed	4 min	30 sec
Error Rate in Insights	12%	4%

The system achieved 45 % faster processing and 35 % higher insight accuracy.

B. Qualitative Results

User feedback from 10 marketing analysts indicated that the dashboard improved interpretability and confidence in data-driven decisions. Real-time notifications allowed teams to act immediately on under-performing campaigns.

C. Comparative Analysis

Compared with baseline systems (manual Excel analytics or static CRM reports), the proposed solution:

- Eliminates repetitive manual computations.
- Enables continuous learning from new data.
- Provides intuitive visualizations.

D. Limitations

- Current model trained on limited historical data.
- No sentiment or NLP module for analyzing textual feedback.
- Cloud deployment not yet integrated.

VII. CONCLUSION AND FUTURE SCOPE

This research demonstrates that AI-driven CRM systems can substantially enhance the efficiency of campaign management in B2B marketing. By merging machine-learning analytics with automation frameworks, the system transforms static CRMs into intelligent assistants capable of predicting performance, ranking leads, and generating actionable insights.

The implemented prototype achieved notable improvements in processing time and prediction accuracy. Moreover, the modular architecture supports scalability and can easily integrate with external marketing tools or APIs.

Future enhancements include:

- Integrating Natural Language Processing (NLP) for analyzing customer comments and sentiment.
- Applying Reinforcement Learning to automatically adjust campaign budgets based on historical ROI.
- Implementing real-time anomaly detection for fraudulent leads or irregular campaign spikes.

By adopting such intelligent systems, organizations can move from reactive to proactive marketing, ensuring sustained growth and customer satisfaction.

REFERENCES

- [1]. B. McMahan et al., "Communication-Efficient Learning of Deep Networks from Decentralized Data," Artificial Intelligence and Statistics Proc. PMLR, vol. 10, no. 1, pp. 1273-1282, 2017.
- [2]. Floris Van den Abeele et al., "Sensor Function Virtualization to Support Distributed Intelligence in the Internet of Things," Wireless Personal Communications, vol. 81, no. 4, pp. 14-18, 2015.
- [3]. J. Hwang et al., "A Review of Magnetic Actuation Systems and Microrobots for Vascular Interventions," Intelligent Service Robotics, vol. 13, no. 1, pp. 1-14, 2020.
- [4]. A. Wierman, Z. Liu and H. Mohsenian-Rad, "Opportunities and Challenges for Data Center Demand Response," Proc. Int. Green Comput. Conf., 2014.

IJARCCE

[5].

no. 8, pp. 450-456, 2021.

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471

Peer-reviewed & Refereed journal

Vol. 14, Issue 10, October 2025

DOI: 10.17148/IJARCCE.2025.141044

- Gupta, A. and Kumar, S., "Predictive Lead Scoring Using Machine Learning Algorithms," IJARCCE, vol. 11,
- [6]. Patel, R. et al., "Automated Email Marketing Optimization Through Regression Models," IJSR, vol. 10, no. 5, pp. 98-104, 2022.
- [7]. Sharma, P., "Machine Learning Approach to Marketing Analytics," International Journal of Data Science, vol. 5, no. 2, pp. 33-40, 2023.