

Impact Factor 8.471

Refereed journal

Vol. 14, Issue 10, October 2025

DOI: 10.17148/IJARCCE.2025.141070

Environmental Impact of Artificial Intelligence Overuse

Prof. Salunke S.D¹, Mr. Dhokane Dipak Bhausaheb², Mr. Dhonnar Vishal Bhausaheb³

Guide, Dattakala Group of Institutions Faculty of Engineering, Tal-Daund Dist-Pune¹ Dattakala Group of Institutions Faculty of Engineering, Tal-Daund Dist-Pune^{2,3}

Abstract: Artificial Intelligence (AI) has emerged as a transformative force across industries, but its extensive use has raised serious environmental concerns. The increasing energy demand, carbon emissions, and e-waste generated by AI systems have significant environmental consequences. This paper explores how the overuse of AI technologies contributes to environmental degradation, focusing on data centers in India and their ecological footprint. It also proposes sustainable strategies for mitigating these effects through green computing, renewable energy adoption, and energy-efficient AI models.

Keywords: Artificial Intelligence, Environmental Impact, Data Centers, Energy Consumption, Sustainability, Green AI.

I. INTRODUCTION

Artificial Intelligence (AI) has rapidly evolved from an experimental field of computer science into one of the most powerful and energy-intensive technologies of the 21st century. The increasing adoption of AI-driven systems in industries such as healthcare, finance, education, transportation, and entertainment has resulted in unprecedented computational demand. Modern AI models—particularly deep learning architectures such as GPT, ResNet, and Transformer-based networks—require enormous amounts of data and computing power for training and inference. As these models grow larger and more complex, the energy needed to operate them rises exponentially, resulting in significant environmental costs.

Globally, the AI industry is estimated to consume over 200 terawatt-hours (TWh) of electricity annually—roughly equivalent to the total energy consumption of a medium-sized country like Argentina. A single large AI model can require millions of gigaflop hours of computation during training, translating into high carbon dioxide (CO₂) emissions, especially in countries that rely heavily on fossil fuels for electricity. The International Energy Agency (IEA) warns that by 2030, data centers—many of which are dedicated to AI computation—could account for up to 4% of global electricity use if unchecked growth continues.

In addition to energy consumption, the environmental implications of AI extend to **carbon emissions**, **e-waste generation**, **and water consumption**. The constant upgrading of GPUs, TPUs, and servers creates tons of electronic waste, while large cooling systems used in data centers consume millions of liters of freshwater daily. As a result, AI's environmental footprint encompasses not only energy use but also its entire lifecycle—from hardware production to disposal.

In the Indian context, AI growth has been particularly rapid. With the government's "Digital India" initiative and expanding IT infrastructure, India has become one of the fastest-growing data center hubs in the Asia-Pacific region. Cities like Mumbai, Chennai, Hyderabad, and Bengaluru host major data centers run by companies such as AdaniConneX, Reliance Jio, NTT, and Yotta Infrastructure. However, nearly 70% of India's electricity generation still comes from coal, meaning that AI's expansion directly contributes to carbon emissions and environmental degradation. According to the NASSCOM 2024 Data Center Report, India's total data center energy consumption increased by 35% in two years, largely driven by AI and cloud computing workloads.

At the same time, international efforts to reduce AI's environmental impact—such as Google's **carbon-free energy pledge**, Microsoft's **2030 carbon-negative goal**, and various **green AI research initiatives**—demonstrate that sustainability and technological advancement can coexist. These efforts highlight the need for India and other developing nations to adopt **energy-efficient AI architectures**, renewable power sources, and responsible hardware recycling systems.

Therefore, this paper investigates the environmental impact of AI overuse, with a specific focus on India's growing data center ecosystem. It analyzes four major dimensions—energy consumption, carbon emissions, electronic waste, and water usage—through global and national perspectives. Furthermore, it discusses emerging trends in green AI, sustainable computing, and policy-driven mitigation strategies to balance AI innovation with environmental preservation.

Impact Factor 8.471 😤 Peer-reviewed & Refereed journal 😤 Vol. 14, Issue 10, October 2025

DOI: 10.17148/IJARCCE.2025.141070

II. LITERATURE SURVEY

• Several studies have highlighted the growing environmental consequences of Artificial Intelligence (AI) and data-intensive computing.

According to Strubell et al. (2019), training a single large-scale Natural Language Processing (NLP) model can emit over 280,000 kilograms of CO₂, roughly equal to five average cars' lifetime emissions. This study was among the first to quantify AI's carbon footprint and brought global attention to the energy cost of deep learning.

- The International Energy Agency (IEA, 2023) reported that data centers currently account for 1–1.3% of global electricity demand, with AI and cloud computing expected to triple this consumption by 2030. The report also emphasized that renewable energy integration is crucial to offset this rising demand.
- In a study by **Patterson et al. (Google, 2022)**, it was shown that using **optimized hardware and data center cooling techniques** can reduce energy consumption by up to 40%. Companies like Google, Microsoft, and Meta are increasingly shifting to **carbon-neutral and water-efficient** data centers in the United States and Europe.
- From an Indian perspective, the NASSCOM 2024 Data Center Market Report highlights that India's data center capacity has grown by over 35% in the past two years, driven by AI, cloud computing, and digital infrastructure expansion. However, 70% of this growth still depends on non-renewable energy sources. Reports by AdaniConneX (2023) and Reliance Jio Data Centers also acknowledge the urgent need to transition toward renewable energy and improve cooling efficiency.
- A comparative assessment by **The Energy and Resources Institute (TERI, 2023)** found that Indian data centers use **1.5–2 times more electricity per unit of compute power** compared to global averages, primarily due to less efficient infrastructure and warmer climate conditions.
- Collectively, these studies underline that while AI brings massive technological and economic benefits, its **environmental sustainability** remains a major concern. Addressing this requires a combination of **green AI algorithms**, **renewable energy adoption**, **and responsible e-waste management** on both global and national scales.

III. ENVIRONMENTAL IMPACT OF AI OVERUSE

A. Energy Consumption

AI models, especially deep learning systems, require massive computational power using GPUs (Graphics Processing Units) and TPUs (Tensor Processing Units). These components perform billions of operations per second during training and inference, leading to extremely high electricity consumption.

For example, training a single large AI model such as GPT or BERT can consume as much electricity as 100 average Indian homes use in a year. Globally, data centers consume about 200 terawatt-hours (TWh) of electricity annually — nearly 1% of total global demand.

The United States and China lead in AI computing infrastructure, hosting the majority of large-scale data centers. In India, energy demand from data centers is growing by 20% per year, with cities like Mumbai, Chennai, and Hyderabad becoming major AI hubs.

High electricity use increases demand on power grids and forces reliance on fossil fules

B. Carbon Emissions

The significant energy usage of AI systems directly translates into high **carbon dioxide (CO₂) emissions**, particularly in regions dependent on fossil fuels. For instance, training a single large natural language model can emit more than **280,000 kilograms of CO₂**, roughly equivalent to the lifetime emissions of five cars.

In countries like the **United States and China**, AI-related data centers produce millions of tons of carbon emissions each year. Although these nations are gradually transitioning to cleaner energy sources, coal and gas still power a substantial portion of their AI infrastructure.

Impact Factor 8.471 $\,st\,$ Peer-reviewed & Refereed journal $\,st\,$ Vol. 14, Issue 10, October 2025

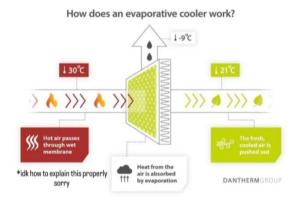
DOI: 10.17148/IJARCCE.2025.141070

In India, over 70% of electricity comes from non-renewable sources, primarily coal. As a result, India's growing AI and cloud industry contributes significantly to the nation's total carbon footprint. If unchecked, AI's energy demands could offset progress made toward achieving carbon neutrality goals under the Paris Climate Agreement. The need for low-carbon AI technologies and renewable-powered data centers has therefore become urgent.

C. E-Waste

Another major consequence of AI overuse is the generation of **electronic waste**, driven by frequent hardware upgrades and replacements. As AI models become more sophisticated, organizations constantly upgrade GPUs, CPUs, and storage systems to handle larger datasets and faster computation speeds.

These obsolete components often end up in landfills, releasing hazardous materials like lead, cadmium, and mercury into the soil and water. According to the United Nations Global E-Waste Monitor (2023), global e-waste exceeded 62 million tons—a record high. The United States, China, and India are among the top three contributors.


In **India**, the rise of AI and data-driven industries has accelerated the disposal of outdated servers and chips. While the government has introduced **E-Waste Management Rules (2022)**, enforcement remains limited. Without effective recycling and refurbishment programs, the environmental burden of AI-related e-waste will continue to grow rapidly.

D. Water Usage

AI data centers also have a lesser-known but equally serious environmental impact—excessive water consumption. Most high-performance data centers use liquid or evaporative cooling systems to maintain safe operating temperatures for their servers. These systems consume massive amounts of freshwater every day.

For example, a single hyperscale data center can use 3–5 million liters of water daily, depending on its size and cooling technology. In the United States, total data center water usage exceeds 700 million gallons per day, while European facilities are moving toward air-cooled or hybrid solutions to reduce consumption.

In India, data centers in coastal regions such as Mumbai and Chennai rely on municipal water sources for cooling, which exacerbates local water scarcity. The Central Pollution Control Board (CPCB) has raised concerns over this trend, emphasizing the need for water-efficient cooling technologies and wastewater recycling systems.

Impact Factor 8.471

Reer-reviewed & Refereed journal

Vol. 14, Issue 10, October 2025

DOI: 10.17148/IJARCCE.2025.141070

IV. MOTIVATION

The rapid evolution of Artificial Intelligence (AI) has revolutionized industries, economies, and everyday life. From healthcare diagnostics to autonomous vehicles and smart cities, AI systems now drive progress in nearly every sector. However, this technological expansion has come with a hidden cost — a **growing environmental footprint** that threatens to undermine global sustainability goals.

The motivation for this study arises from the urgent need to understand and address the **ecological consequences of AI's overuse**. While AI promises efficiency and innovation, its infrastructure depends heavily on large-scale data centers, powerful processors, and continuous electricity supply. Training deep learning models requires **massive energy input**, and the operational demand of AI-driven applications is rising exponentially each year. These developments raise critical questions about the long-term **energy sustainability** and **environmental compatibility** of modern AI systems.

At the global level, organizations such as the International Energy Agency (IEA) and the United Nations Environment Programme (UNEP) have warned that data centers and AI workloads could double or even triple global energy consumption by 2030. Studies by Strubell et al. (2019) and Google Research (2022) have demonstrated that training large AI models emits hundreds of tons of CO₂, contributing significantly to climate change. As nations worldwide commit to net-zero emissions, understanding AI's role in this carbon equation becomes a priority.

In the **Indian context**, this issue is especially relevant. India is rapidly emerging as a **digital superpower**, hosting large-scale AI and cloud infrastructure projects in cities like **Mumbai**, **Chennai**, **Hyderabad**, **and Bengaluru**. The Indian data center industry is expected to reach **1,400 MW capacity by 2026**, driven largely by AI and cloud computing workloads. Yet, with nearly **70% of India's electricity derived from coal**, this expansion risks worsening carbon emissions unless sustainable measures are adopted.

Furthermore, India faces additional challenges such as **high temperatures**, **limited water availability**, **and slower e-waste recycling**, which intensify the environmental impact of AI infrastructure. These factors create a unique national scenario that differs from developed countries with greater access to renewable energy. Hence, studying AI's environmental footprint within the Indian context provides valuable insights for balancing technological growth with ecological responsibility.

The primary motivation of this paper, therefore, is to highlight the **environmental implications of AI overuse**, examine **current global and Indian data center trends**, and propose **sustainable strategies** such as Green AI, renewable-powered computing, and efficient hardware management. By understanding these dimensions, policymakers, researchers, and industry leaders can work toward developing AI technologies that are both **innovative and environmentally responsible**.

V. GREEN AI AND SUSTAINABILITY STRATEGIES

A. Energy-Efficient AI Models

One of the most direct methods to reduce environmental impact is designing energy-efficient AI architectures. Traditional deep learning models often rely on massive datasets and prolonged training cycles, consuming enormous computational power.

Green AI focuses on optimizing algorithms to achieve the same performance with fewer parameters and lower energy costs.

Techniques such as model pruning, quantization, and knowledge distillation help reduce the size and complexity of neural networks, enabling faster and more efficient computation.

For example, lightweight models like MobileNet and TinyBERT can perform tasks with far less energy compared to larger models, making them suitable for edge devices and low-power environments.

Additionally, advancements in federated learning and transfer learning allow reusing trained models instead of retraining from scratch, further conserving energy.

B. Renewable Energy for Data Centers

Data centers — the backbone of AI computation — consume vast amounts of electricity for servers and cooling systems. Transitioning these facilities to renewable energy sources such as solar, wind, and hydro power is a critical step toward sustainability.

Impact Factor 8.471

Refereed journal

Vol. 14, Issue 10, October 2025

DOI: 10.17148/IJARCCE.2025.141070

Globally, companies like Google, Microsoft, and Amazon Web Services (AWS) have pledged to operate 100% carbon-free data centers by 2030, integrating renewable power and energy storage systems. In India, major players like AdaniConneX, Reliance Jio, and Yotta Infrastructure have begun investing in solar-powered data centers and hybrid energy systems.

Moreover, the Indian government's National Renewable Energy Mission encourages companies to adopt green power procurement models. Implementing such measures can reduce both the operational cost and the carbon intensity of AI-driven industries.

C. Advanced Cooling and Heat Recovery Systems

Cooling is one of the most energy- and water-intensive processes in data centers. Implementing advanced cooling technologies, such as liquid immersion cooling, free-air cooling, and AI-optimized thermal management, can drastically reduce energy consumption and water usage.

For example, Microsoft's underwater data center project (Natick) demonstrated that servers submerged in water could operate 8 times more efficiently than land-based systems.

In India, where water scarcity is a major issue, shifting to air-cooled or closed-loop liquid systems can help conserve millions of liters of water annually.

Additionally, heat recovery systems can capture waste heat from data centers and repurpose it for nearby buildings or industrial applications, improving overall energy efficiency.

D. E-Waste Management and Recycling

With rapid AI hardware evolution, e-waste management has become a crucial sustainability factor. Many high-performance chips, servers, and devices have short lifespans and are replaced frequently.

Establishing hardware recycling and refurbishing programs can help reduce toxic waste and promote a circular economy.

India has already introduced E-Waste Management Rules (2022) that require producers and recyclers to ensure environmentally safe disposal. Encouraging chip reuse, component recovery, and eco-friendly packaging can further minimize the waste generated by AI infrastructure. Multinational companies are also developing modular hardware designs, allowing individual components to be upgraded without replacing the entire system, thus reducing e-waste generation.

E. Policy and Awareness Initiatives

Sustainability in AI requires not only technical innovation but also policy-level interventions and awareness. Governments, industries, and academic institutions must collaborate to set energy efficiency standards, carbon reporting mechanisms, and AI lifecycle assessments.

Awareness campaigns promoting the concept of Green AI can help developers and organizations adopt more responsible computational practices.

India's National Programme on AI (NPAI) and global frameworks such as the UN Sustainable Development Goals (SDGs) highlight the importance of environmentally responsible technology. By integrating these policies into the AI ecosystem, countries can ensure that innovation supports both economic and ecological development.

VI. CONCLUSION

Artificial Intelligence has emerged as one of the most transformative technologies of the modern era, but its rapid growth comes with considerable environmental costs. The overuse of AI systems — driven by large-scale data centers, energy-intensive computations, and frequent hardware upgrades — has resulted in a sharp increase in energy consumption, carbon emissions, e-waste generation, and water usage. These impacts collectively pose a threat to global climate goals and natural resource sustainability.

Globally, developed nations such as the United States, China, and European Union members are investing heavily in green data centers and carbon-neutral AI operations. However, developing nations like India, which are experiencing fast digital expansion, face unique challenges due to dependence on coal-based power and limited recycling infrastructure. As India aims to become an AI powerhouse, integrating renewable energy, efficient cooling systems, and e-waste recycling into its data center strategy is critical for sustainable growth.

Impact Factor 8.471 $\,\,st\,\,$ Peer-reviewed & Refereed journal $\,\,st\,\,$ Vol. 14, Issue 10, October 2025

DOI: 10.17148/IJARCCE.2025.141070

The transition toward Green AI is no longer optional but necessary. By adopting energy-efficient algorithms, renewable-powered infrastructure, and eco-conscious policies, governments and industries can align AI innovation with environmental preservation. Collaborative efforts between policymakers, researchers, and corporations will be key to ensuring that AI's progress contributes not only to technological advancement but also to a sustainable and environmentally responsible future.

REFERENCES

- [1]. E. Strubell, A. Ganesh, and A. McCallum, "Energy and Policy Considerations for Deep Learning in NLP," *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL)*, pp. 3645–3650, 2019.
- [2]. International Energy Agency (IEA), "Data Centres and Data Transmission Networks Analysis," *IEA Report*, Paris, 2023.
- [3]. United Nations Environment Programme (UNEP), "Global E-Waste Monitor 2023," *United Nations University and ITU Joint Report*, 2023.
- [4]. NASSCOM, "India's Data Center Market and Green Energy Transition," *National Association of Software and Service Companies (NASSCOM) Industry Report*, 2024.
- [5]. The Energy and Resources Institute (TERI), "Sustainability in India's Digital Infrastructure," *TERI Research Paper*, New Delhi, 2023.
- [6]. Ministry of Electronics and Information Technology (MeitY), "E-Waste (Management) Rules, 2022," *Government of India*, New Delhi, 2022.
- [7]. Microsoft, "Project Natick: Subsea Data Center Deployment and Environmental Impact Study," *Microsoft Research White Paper*, 2022.
- [8]. International Renewable Energy Agency (IRENA), "Renewable Energy and Data Center Efficiency," *IRENA Insight Report*, 2023.
- [9]. United Nations, "Sustainable Development Goals (SDG 13: Climate Action)," *United Nations Official Documentation*, 2023.
- [10]. Ministry of Power, "National Renewable Energy Mission Status Report," Government of India, 2024.