DOI: 10.17148/IJARCCE.2025.141075

AI-Powered Personalized Learning & Assessment Platform

Mr. Farendrakumar Ghodichor¹, Tejas Kumbhar², Tushar Jadhav³, Ramkrushna More⁴, Bhagvat Mhaske⁵

Assistant Professor, Department of AI & DS, Dr. D Y Patil College of Engineering & Innovation, Pune, India¹ Student, Department of AI & DS, Dr. DY Patil College of Engineering & Innovation, Pune, India² Student, Department of AI & DS, Dr. DY Patil College of Engineering & Innovation, Pune, India³ Student, Department of AI & DS, Dr. DY Patil College of Engineering & Innovation, Pune, India⁴ Student, Department of AI & DS, Dr. DY Patil College of Engineering & Innovation, Pune, India⁵

Abstract: As education continues to evolve and learners seek personalized experiences, traditional learning systems often struggle to meet these needs. AI is emerging as an intelligent learning assistant that understands, adapts, and teaches in real-time. It takes inputs like a syllabus, subject, prompt, or uploaded notes and automatically creates courses that include videos, text, diagrams, and interactive quizzes. By leveraging machine learning and natural language processing, it can generate question banks, assignments, PYQs, mock tests, and assist with any details required. AI continuously learns from student performance, tracks progress, analyzes areas of weakness, and updates content to provide a personalized and adaptive learning and assessment experience for every learner.

Keywords: AI in Education, Personalized Learning, Adaptive Learning Systems, AI Course Generation, Machine Learning, Natural Language Processing (NLP), Automated Question Bank, Assignment Generation, Interactive Quizzes, Virtual Tutor, Educational Chatbot, PYO Generation, Mock Tests, Learning Analytics, Student Performance Tracking, Intelligent Assessment, AI-Powered Learning Platform.

I. INTRODUCTION

With the rise of digital education, competitive learning, and massive online content, students struggle to find structured, personalized, and result-oriented study paths Conventional educational platforms provide standardized notes, videos, and assessments that are not tailored to individual learning speeds, curricula, or specific areas requiring further attention. This has given rise to a new form of learning experience an intelligent, AI-driven Personalized Learning and Assignment Platform. This platform goes beyond merely delivering courses; it functions as a dynamic learning ally that evolves alongside the student. It generates customized study materials such as theoretical explanations, coding solutions, mathematical concepts, videos, illustrations, and interactive quizzes. By utilizing prompts, subjects, syllabi, past exams, or even handwritten notes, it constructs comprehensive courses that align with the learner's preferences. It also employs natural language processing and machine learning to produce question banks, test series, and assignments, acting as a chatbot tutor that immediately resolves doubts.

Differing from traditional systems that provide the same resources to all, this AI platform consistently enhances itself. It tracks performance, identifies weak areas, and modifies forthcoming assessments and content accordingly. It not only verifies answers but also assesses comprehension, clarity, and advancement. Through real-time dashboards, it offers visual insights into learning trends, forecasts outcomes, and directs the learner on subsequent steps.

In the current fast-paced academic landscape whether students are gearing up for exams, coding interviews, or universitylevel assessments static PDFs and video tutorials fall short. Learners require a platform that instructs, tests, evaluates, and evolves with them, much like a personal mentor. This AI-driven system delivers just that adapting, personalized, and perpetually evolving laying the groundwork for the future of education.

II. LITERATURE REVIEW

A. AI-Based Personalized Learning and Course Generation

Artificial Intelligence has transformed the delivery of education by shifting away from generic approaches toward more individualized learning experiences. Tools such as Modulo and Create-My-Course automatically generate structured learning paths based on inputs like a syllabus, particular topics, or uploaded notes [1],[2]. These platforms leverage

Impact Factor 8.471

Refereed journal

Vol. 14, Issue 10, October 2025

DOI: 10.17148/IJARCCE.2025.141075

machine learning and natural language processing to produce educational content in various formats, including text, videos, coding explanations, and visuals. They also integrate with services like YouTube to recommend pertinent educational videos, making learning more engaging and accessible [1], [12]. Unlike traditional e-learning platforms that provide fixed materials, AI-driven solutions adapt the content in real-time based on students' progress, their accuracy in answering questions, and their learning pace [6].

B. Automated Question Bank, MCQ, and Assignment Generation

The capacity to generate questions automatically is another significant development in AI education. Multiple-choice, fill-in-the-blank, subjective, and even previous exam papers from textbooks or uploaded notes can be generated by transformer models such as GPT, T5, and BERT, according to research [3], [4], and [9]. Based on Bloom's Taxonomy and semantic similarity, these AI tools also offer accurate responses and challenging choices. Despite saving teachers time, these systems still have problems, such as producing inaccurate information, providing incorrect options, and having trouble managing the difficulty of the questions [3], [4]. In order to solve this, some platforms are now automatically creating assignments and previous papers for more individualized assessments using specialized large language models. [9]

C. AI Chatbots and Virtual Tutoring Systems

AI chatbots use deep learning and natural language processing to answer questions from students, explain theoretical concepts, fix coding problems, and provide mathematical solutions in real time. [5], [11]. By simulating human interaction, these intelligent tutoring systems enable learning outside of conventional classroom environments. To increase student engagement and provide real-time feedback, they are integrated into learning management systems. However, studies point to issues like contextual misunderstandings, a lack of emotional intelligence, and dependence on high-quality datasets. [5], [7].

D. Adaptive Testing, Mock Exams, and Learning Analytics

Personalized testing experiences can now be created with AI thanks to analytics dashboards, adaptive test series, and practice tests. These resources evaluate students' responses to questions, pinpoint their advantages and disadvantages, monitor their accuracy, and recommend customized revision strategies [6, 8, 10]. In order to help teachers and students understand progress and improvement, learning analytics dashboards use charts, course completion statistics, and performance predictions to display progress [10]. Exam preparation is more effective with AI-driven mock exams and automated grading, which also yield useful information to direct learning [8].

E. System Architecture and Practical Implementations

According to research, cloud-based AI models, databases, and APIs are typically included in AI learning platforms that are developed using web or mobile frameworks [1], [2]. These platforms frequently come with capabilities like chatbots, analytics tools, question generators, and course generators. Performance lags, privacy issues, scaling issues, and dependence on third-party services like YouTube or OpenAI are some of the obstacles to integrating these elements [7], [12].

F. Challenges, Ethical Concerns, and Future Scope

Despite advancements, there are still ethical and technological issues with AI in education, including biased content, misinformation, cheating, privacy issues, and a lack of openness in the decision-making process [7]. Solutions including explainable AI, federated learning, secure data practices, human-in-the-loop systems, and plagiarism detection technologies are suggested by experts. AI that can recognize emotions, assess handwriting, incorporate virtual reality (VR) or augmented reality (AR) into the classroom, and offer multilingual coaching are examples of potential future developments [1], [7].

III. PROPOSED METHODOLOGY

A. AI-Driven Personalized Learning Systems

AI-powered personalized learning seeks to replace static curricula with study materials that are tailored to the individual needs of each student. It works as an intelligent tutor that adapts the pace, content, and level of difficulty according to user performance and input.

1. Gathering and Processing Input Data

The utilization of many forms of data is crucial to tailored AI learning systems.

This includes:

Impact Factor 8.471

Refereed journal

Vol. 14, Issue 10, October 2025

DOI: 10.17148/IJARCCE.2025.141075

- Academic input data that is supplied by the student or instructor, such as syllabi, subject names, uploaded notes, previous year's question papers, assignments, and textbooks.
- Information about learner interactions, including how much time is spent on the materials, quiz results, attempts, and frequency of subject revisits. This facilitates learning behavior and progress tracking. Following that, these data inputs are processed by procedures including data cleansing, organization, and the extraction of important concepts using methods like knowledge graphs, keyword matching, and natural language processing (NLP).

2. Input Data Collection and Processing

After processing the data, AI uses it to build a personalized course structure:

- It produces summaries, diagrams, code examples, theoretical explanations, and mathematical answers according to the learner's requirements.
- · All generated concepts and learning content are stored in a Knowledge Base or Learning Graph, which functions similarly to a world model used in cyber ACD systems, allowing structured retrieval and adaptive learning.
- It links content from MOOC platforms or uses APIs like YouTube to recommend pertinent educational videos..

B. Intelligent Question Generation and Assessment Automation

AI introduces automation into academic testing and assignments, moving beyond manually created papers and MCQs.

1. Question Bank & MCO Generation

• Using PYQ or uploaded notes, transformer-based models such as GPT, BERT, and T5 create multiple-choice questions, fill-ups, coding questions, and PYOs.

Semantic similarity and educational Bloom's taxonomy levels are used by AI to generate options and distractions; yet, problems like inaccurate responses or duplicate options still arise and need to be verified.

2. Assignment and Mock Test Generation

- · AI is capable of automatically creating code-based assignments, lab tasks, chapter-by-chapter worksheets, and subjective practice exams according to learner
- Using models for predicting difficulty, questions can be categorized as Easy, Moderate, and Hard.

C. AI Chatbots and Interactive Tutors

AI chatbots serve as online instructors that answer questions, clarify concepts like theory and code, and engage in realtime communication.

• They respond to queries similarly to a human mentor by utilizing transformer models, natural language processing, and retrieval-augmented generation (RAG).

Chatbots can receive text, voice, and image input and provide step-by-step answers. Like cyber defense ACDs, these bots continuously improve based on user feedback and fresh learning data.

D. Adaptive Testing, Result Analytics & Continuous Improvement

Like cyber agents that learn from feedback, AI assessments are dynamic and change according to student achievement.

1. Performance Analytics and Weak Area Detection:

AI evaluates every test to determine factors like accuracy rate, time spent on each question, weak subjects, thoughtless errors, etc. The results are shown in progress bars, dashboards, and graphs for improved clarity.

2. Continuous Learning Loop:

AI platforms for teaching improve material in response to test outcomes, much way autonomous defense systems do.

• Weak concepts are automatically retaught to students, and they are automatically given more practice questions.

AI-Powered Personalized Learning and Assessment

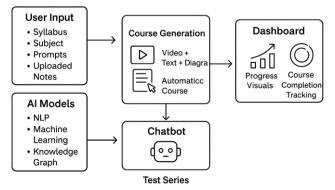


Fig 1. System Architecture Diagram

Impact Factor 8.471

Refereed journal

Vol. 14, Issue 10, October 2025

DOI: 10.17148/IJARCCE.2025.141075

IV. **SCENARIO**

1. Initiation Phase

Scenario Description User Input (Syllabus/Prompt A student uploads a subject syllabus or types a prompt like "Python for AI Upload) Basics to Advanced". **Content** Upload class notes or previous-year question papers (PYQs), making them **Upload** (Notes/PYQ/Assignments) public or private. Students request customized course plans with video lectures, coding **Adaptive Learning Demand** exercises, and test series.

AI Integration Begins

The platform starts extracting topics, generating study content, and preparing question banks automatically using NLP and ML.

2. Escalation Phase

Event Description

AI breaks syllabus into modules → generates theory, coding examples, diagrams, YouTube **Course Auto-Generation**

video suggestions.

Lessons are delivered with embedded MCOs between videos for active recall. **Live Content Delivery Test Series Activation** AI generates chapter-wise tests, PYQs, assignment sheets, coding challenges.

Student Interaction **Increases**

Students ask doubts to AI Chatbot; system collects performance data and behavior analytics.

3. Detection & Analysis Phase

AI Detection Mechanism **Feature**

Weak Identification

Topic AI analyzes incorrect answers, time spent per topic, low-scoring areas using ML models.

Cheating / Plagiarism

AI detects copied answers in assignments, rephrased content, or AI-generated responses

using plagiarism detection.

Pattern NLP + learning analytics detect attention span, skipped topics, frequent pauses in video Learning

Tracking content.

Student **Level** Based on accuracy, speed, and attempts → AI classifies students into Beginner / Intermediate

Classification / Advanced.

4. Response Phase (AI Actions)

Scenario AI Response

in

AI suggests revision notes, generates simpler explanations or extra practice Weak Subject Areas

MCOs and Mock test.

Repeated Mistakes

Coding/Maths

AI chatbot explains the step-by-step solution, provides hints instead of direct

answers.

AI reduces difficulty level, assigns micro-quizzes, and enables "Learn Mode" **Test Failure / Low Accuracy**

instead of "Test Mode."

AI generates new assignments automatically from reference materials or **Assignment or PYQ Request**

syllabus topics.

5. Mitigation Phase (System-Level Improvements)

Problem Mitigation

Hallucinated/Wrong Answers by

Human-teacher verification mode + feedback loop improves model accuracy.

Overloaded Student

AI balances exam difficulty per student potential & adds interval-based

breaks.

Bias / Repetitive Questions AI rotates question templates, adds Bloom's taxonomy levels to diversify.

Impact Factor 8.471

Refereed journal

Vol. 14, Issue 10, October 2025

DOI: 10.17148/IJARCCE.2025.141075

Problem Mitigation

AI enforces typing-based answers or voice-based reasoning instead of direct Plagiarism/Copy Culture

6. Self-Learning & Continuous Improvement Phase

AI Learning Mechanism **Description**

AI adjusts difficulty levels, video recommendations, test formats based on Reinforcement Learning (RL)

student success/failure.

Feedback Loop from AI retrains using ratings, corrections, reported incorrect solutions.

Teachers/Students

New syllabus content, past paper solutions, and user questions are added into **Knowledge Graph Updates**

the AI database for future learners.

Personalized Roadmap AI dynamically updates learning path based on performance trends and concept

Upgrades mastery.

V. **CONCLUSION**

The future of education is being transformed by AI-powered platforms that enable personalized learning and assessment. Unlike traditional one-way teaching methods, these systems continuously learn and adapt as each student progresses. AI can automatically generate structured courses, question banks, assignments, previous year question papers (PYQs), mock tests, and interactive quizzes using inputs such as syllabi, uploaded notes, and prompts [1], [2], [3].

Intelligent tutoring systems and AI-based chatbots further enhance the learning process by providing real-time doubt solving and explanations similar to a human mentor [5], [11]. Through adaptive testing, learning analytics, and personalized dashboards, each student receives a customized learning path based on their pace, strengths, and weaknesses [6], [10]. However, challenges such as data privacy, ethical issues, and maintaining content accuracy still remain important concerns [7]. Despite these challenges, rapid advancements in machine learning, natural language processing (NLP), and educational data mining are making AI-based educational systems increasingly reliable and intelligent [3], [4]. AI is not just a supporting tool but a transformative learning companion that delivers personalized education at scale, reduces academic workload, and creates a smart, adaptive, and accessible learning ecosystem for all.

REFERENCES

- [1] S. F. Amal, I. A. Saiid, and H. Mansor, "An Empirical Study for the Dynamic and Personalized Learning Experience of AI Course Generator," International Journal on Perceptive and Cognitive Computing (IJPCC), vol. 10, no. 2, pp. 23-30, 2024.
- [2] A. Wijerathne, M. Fernando, and S. Perera, "Create-My-Course: AI-Based Automatic Course Generation System Using NLP and APIs," in *Proc. IEEE Int. Conf. on Education and AI*, 2023.
- [3] H. Zhou, L. Wang, and Y. Shi, "AI-Based Question Paper Creation and Automated Assessment," IEEE Transactions on Learning Technologies, vol. 17, no. 2, pp. 150-161, 2024.
- [4] A. B. Kar and S. De, "MCQ Generation Using NLP and Transformer Models," *IEEE Access*, vol. 11, pp. 56789– 56801, 2023.
- [5] M. Gupta and P. Sharma, "AI-Powered Virtual Tutors and Chatbots in Education," Journal of Educational Technology Systems, vol. 52, no. 1, pp. 45-62, 2024.
- [6] S. Yadav and R. Mehta, "Adaptive Learning Systems using Machine Learning and Real-Time Analytics," International Journal of Advanced Computer Science, vol. 15, no. 6, pp. 987–995, 2023.
- [7] N. Patel and D. Singh, "AI in Education: Challenges, Ethics, and Opportunities," ACM Computing Surveys, vol. 56, no. 4, pp. 1–25, 2023.
- [8] P. Bhattacharya, "AI-Generated Test Series and Mock Examination Systems," in Proc. Int. Conf. on Artificial Intelligence in Education (AIED), 2024.
- [9] D. Sood and V. Jain, "Automated Assignment and Previous Year Question Generation using GPT Models," International Journal of Innovative Research in Computer Science and Eng., vol. 12, no. 4, pp. 112–118, 2024.
- [10] M. Alvi and R. Khan, "Learning Analytics Dashboards for Personalized Progress Tracking," in Proc. IEEE Conf. on Smart Learning Environments, 2024.
- [11] R. Agarwal, S. Banerjee, and T. Kulkarni, "NLP-Based Educational Chatbots for Intelligent Doubt Solving," International Journal of Emerging Technologies in Learning (iJET), vol. 19, no. 2, pp. 55–63, 2024.

DOI: 10.17148/IJARCCE.2025.141075

[12] M. Ibrahim and A. Rahman, "Integration of YouTube API and AI for Dynamic Video-Based Course Delivery," International Journal of Interactive Learning Research, vol. 34, no. 3, pp. 204–212, 2023.