

DOI: 10.17148/IJARCCE.2025.1411109

Smart Parenting: IoT Solutions for Infant Safety

Mrs. Dhanyashree P N¹, Naveenkumar Kammar², Prajwal B K³, Pratham Patil⁴, Ramesh P S⁵

Assistant Professor, Department of ECE, East West Institute of Technology, Bangalore, India¹

Student, Department of ECE, East West Institute of Technology, Bangalore, India²

Student, Department of ECE, East West Institute of Technology, Bangalore, India³

Student, Department of ECE, East West Institute of Technology, Bangalore, India⁴

Student, Department of ECE, East West Institute of Technology, Bangalore, India⁵

Abstract: The proposed project, Smart Parenting: IoT Solutions for Infant Safety, aims to ensure the continuous protection, comfort, and well-being of infants through an intelligent monitoring system built around the Raspberry Pi controller. The setup combines a range of sensors and control units that work together to observe the baby's environment and physical condition in real time. When the system detects irregular behavior such as unusual body posture or distress it automatically sends alerts to parents via a notification platform. In addition, it can manage environmental factors such as temperature and lighting, and an automated mosquito-net mechanism helps shield the baby from insects. Overall, the system provides a reliable, data-driven approach to infant care and comfort.

Keywords: Raspberry Pi, Internet of Things, Infant Safety, Intelligent Monitoring, Automation.

I. INTRODUCTION

Infant care has always been one of the most sensitive responsibilities in households, requiring constant attention, quick responses, and careful observation. In today's world, where families are increasingly balancing professional and personal commitments, it becomes challenging to monitor infants continuously. Traditional methods of baby monitoring rely heavily on manual supervision or basic audio-video monitors that provide limited insights and lack intelligent alert mechanisms. These systems do not automatically respond to emergencies or environmental changes, making them insufficient for modern caregiving needs.

The emergence of IoT technologies has unlocked new possibilities by enabling connected sensing, automation, and data-driven decision-making. IoT devices can collect real-time information, learn behavioral patterns, and interact with actuators to ensure a safe and comfortable environment. Integrating IoT into infant care offers a promising solution to address challenges such as delayed detection of discomfort, health fluctuations, cry analysis, changing environmental conditions, and safety risks due to improper posture or unattended surroundings.

This project proposes a holistic smart parenting system leveraging Raspberry Pi as the central hub, equipped with multiple sensors and automated mechanisms. Through advanced monitoring and intelligent responses, the system not only alerts caregivers about real-time abnormalities but also takes proactive actions such as swinging the cradle, activating cooling systems, turning on lights, or deploying mosquito nets. With live streaming, cloud connectivity, and mobile notifications, the system creates an always-on safety net for infants.

II. LITERATURE SURVEY

Several researchers have explored smart infant monitoring systems integrating IoT, image processing, and automation. Jabbar et al. proposed IoT-BBMS, an IoT-based baby monitoring system for smart cradles, focusing on environmental sensing and alert generation. Their work highlights the importance of real-time data collection and remote notifications. Rudyansyah and colleagues developed a Raspberry Pi-based monitoring prototype, emphasizing cost-effective hardware integration and live video streaming.

Pallavor and Pavundoss designed an Arduino-based infant monitoring prototype that integrates basic sensors such as temperature and sound modules, though their system remains limited in automation and advanced analytics. Pratap and team implemented a smart cradle using IoT, concentrating mainly on mechanical swinging and sensor-based notifications.

More advanced frameworks have explored machine learning for cry detection and facial recognition. Salehin and coauthors introduced an IoT-based system equipped with face-recognition capabilities for enhanced infant safety. Lobo and collaborators combined audio processing, machine learning, and image processing to classify cry patterns and detect unusual infant behaviour.

Impact Factor 8.471

Refereed journal

Vol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.1411109

The proposed system addresses this gap by offering a comprehensive, multi-module architecture that unifies IoT sensing, automation, ML-based prediction, and live remote access.

III. METHODOLOGY

The methodology of the proposed smart infant monitoring system is structured around five core stages: sensor integration, data processing, condition identification, automated actuation, and cloud-based notification delivery.

- Data Acquisition: Multiple sensors, including the DHT11 temperature—humidity sensor, moisture detector, sound sensor, accelerometer, heart rate sensor, and PiCam module, continuously capture environmental, physiological, and visual data. Audio streams are processed using Python-based signal analysis techniques to detect infant cry patterns, while video inputs are analyzed through OpenCV algorithms for face detection and posture assessment.
- **Data Processing:** The Raspberry Pi serves as the primary processing unit, where all sensor inputs are analyzed. Threshold values for parameters such as temperature, humidity, cry duration, and posture angle are predefined in accordance with general pediatric safety standards to ensure accurate evaluation of infant conditions.
- **Decision Model:** Based on the processed data, the system identifies critical conditions such as prolonged crying, abnormal environmental temperature, wet bedding, hazardous sleeping posture, or absence of movement. Each detected condition is mapped to a specific response action within the decision model.
- **Automated Actuation:** Upon identification of an irregular condition, appropriate automated mechanisms are activated. Servo motors initiate cradle swinging when prolonged crying is detected. A relay-driven control system manages the fan and lighting modules.
- Notifications and Cloud Synchronization: All alerts and events are immediately communicated to parents via a Telegram bot, enabling real-time remote monitoring. Sensor readings and system logs are periodically uploaded to the ThingSpeak cloud platform to support data visualization, performance tracking, and long-term analytical insights.

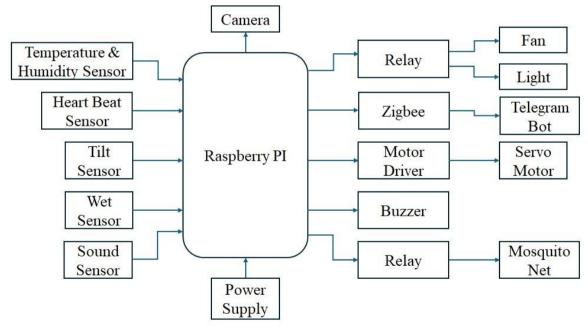


Figure 1: Block Diagram of Proposed System

IV. IMPLEMENTATION

The flowchart gives a clear picture of how the proposed Raspberry Pi–based infant monitoring system operates from start to finish. The sequence begins the moment the device is powered on.

Impact Factor 8.471

Refereed journal

Vol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.1411109

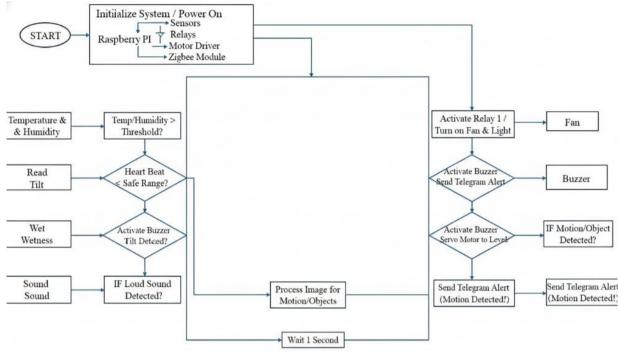


Figure 2: Flow Chart of Proposed System

System Start-Up: The system powers on, the Raspberry Pi boots, and all sensors, relays, the motor driver, and the Zigbee module get initialized.

Reading Environmental Sensors:

- The temperature and humidity sensors are checked continuously.
- If either value crosses the preset limit, Relay 1 is turned ON to operate the fan and light.

Tilt & Heartbeat Monitoring:

- The tilt sensor checks if the cradle or baby's position has shifted unusually.
- The heartbeat sensor verifies if the pulse is within a safe range.
- If anything appears unsafe (tilt detected or heartbeat too low), the buzzer is triggered and a Telegram alert is sent.

Wetness Detection:

- The wet sensor monitors if the baby's bedding is wet.
- If wetness is detected, the buzzer activates and the system notifies the parent.

Sound Monitoring:

- The sound sensor listens for loud noises or crying.
- When a loud sound is detected, the camera becomes active for further checking.

Image Processing:

- The camera analyses for movement or any object near the baby.
- If motion is detected, the servo adjusts to a preset angle (e.g., to position the camera) and the buzzer warns.
- A Telegram alert is also sent to the parent.

Continuous Checking:

- After completing all checks and actions, the system waits for one second.
- It then repeats the entire cycle to provide constant monitoring.

V. SYSTEM REQUIREMENTS

Hardware Requirements:

- Raspberry Pi 4 Model B with quad-core processor.
- Sensors: DHT11, moisture sensor, accelerometer, sound sensor, heartbeat sensor.
- Pi Camera for face and posture detection.
- Actuators: Servo motor, DC motor, relay-controlled fan/light, buzzer.
- Power supply module and voltage regulators.

Impact Factor 8.471

Refereed journal

Vol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.1411109

Software Requirements:

- Raspberry Pi OS for system management.
- Python for data processing scripts.
- OpenCV for vision analysis.
- PAHO-MQTT for messaging.
- ThingSpeak for cloud analytics.
- Telegram Bot API for remote communication.

VI. RESULTS

The proposed system was implemented and tested under various infant-like conditions. Cry detection successfully identified audio patterns exceeding predefined thresholds. Temperature and humidity tracking allowed automated activation of cooling or lighting systems. The bedwetting module accurately detected moisture presence and sent instant alerts. The cradle swinging mechanism responded swiftly to crying stimuli.

Fig 5.1: Prototype of Proposed System

This prototype is designed to monitor the baby's health and safety using different sensors.

The DHT11 sensor with an external probe measures body temperature, while the heartbeat sensor checks the pulse and sends alerts if irregularities occur.

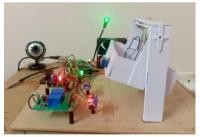


Fig 5.2: Working Cradle

For comfort, the sound sensor identifies when the baby cries and activates a servo motor to swing the cradle automatically. We using a camera to monitors the baby's accurate activities like sleeping position, cry detection.

Fig 5.3: Working Fan and Light

Impact Factor 8.471

Refereed journal

Vol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.1411109

For comfort, the sound sensor identifies when the baby cries and activates a servo motor to swing the cradle automatically. We using a camera to monitors the baby's accurate activities like sleeping position, cry detection.

Fig 5.4: Working Wet detection and Mosquito Net

A wet sensor detects urination, and a tilt sensor monitors the baby's sleeping posture for unsafe positions. A mosquito net is also provided to protect the infant from insects and ensure a safe environment.

Fig 5.5: Telegram Bot

All readings and alerts like readings of heart beat, temperature, sound, wet are sent to parents in real time through a Telegram bot.

They can remotely control the cradle, fan, and light using a mobile app.

Fig 5.6: Live Streaming of Baby

Impact Factor 8.471

Representation February F

DOI: 10.17148/IJARCCE.2025.1411109

The baby sleeping safely in a cradle while system monitors and confirms the baby's posture as "Correct Form + Correct Depth". If The baby sleeping safely in a cradle while system monitors and confirms the baby's posture as "Wrong Form", "Incorrect Depth".

VII. CONCLUSION AND FUTURE SCOPE

This system demonstrates the potential of IoT in transforming infant care by offering an intelligent, automated, and responsive monitoring platform. It significantly reduces caregiver stress by ensuring real-time safety assurance. By integrating sensor networks, real-time analytics, and automated actuation, the system reduces manual intervention and enhances infant safety.

Future enhancements may include advanced machine learning-based cry classification, facial emotion recognition, improved mobile dashboard interfaces, and integration with pediatric healthcare networks for clinical recommendations. Future work includes integrating advanced machine learning for predictive analytics, cloud dashboards for long-term health tracking, and expanding support for healthcare professionals.

ACKNOWLEDGMENT

I would like to express my sincere appreciation to everyone who supported and guided me throughout the development of this project.

First and foremost, I extend my heartfelt thanks to my project guide, Prof. Dhanyashree P N, for her consistent encouragement, insightful suggestions, and valuable technical guidance. Her expertise and mentorship greatly contributed to the successful completion of this work.

I am also grateful to the faculty members and technical staff of the Department of Electronics and Communication Engineering, East West Institute of Technology, Bengaluru, for their assistance during the project. Their support in laboratory facilities, troubleshooting, and system integration played an important role in overcoming the various challenges encountered during implementation.

Lastly, I owe deep gratitude to my family and friends for their continuous motivation, understanding, and moral support, which helped me stay focused and determined during this work.

This project would not have been possible without the contributions of all these individuals, and I am sincerely thankful for their support.

REFERENCES

- [1] W. A. Jabbar, H. K. Shang, S. N. I. S. Hamid, A. A. Almohammedi, R. M. Ramli and M. A. H. Ali, "IoT-BBMS: Internet of Things-Based Baby Monitoring System for Smart Cradle," in IEEE Access, vol. 7, pp. 93791-93805, 2019.
- [2] A. Rudyansyah, H. L. Hendric Spits Warnars, F. Lumban Gaol and T. Matsuo, "A prototype of Baby Monitoring Use Raspberry Pi," International Conference on ICT for Smart Society (ICISS), Bandung, Indonesia, 2020, pp. 1-4.
- [3] V. Pallavor and D. Pavundoss, "Baby Monitoring System using Arduino Uno,"2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN), Vellore, India, 2023, pp. 1-5.
- [4] H. M. Ishtiaq Salehin, Q. R. Anjum Joy, F. T. Zuhra Aparna, A. T. Ridwan and R. Khan, "Development of an IoT based Smart Baby Monitoring System with Face Recognition," IEEE World AI IoT Congress (AIIoT), Seattle, WA, USA, 2021, pp. 0292-0296.
- [5] C. Lobo, A. Chitrey, P. Gupta, Sarfaraj and A. Chaudhari, "Infant Care Assistant using Machine Learning, Audio Processing, Image Processing and IoT Sensor Network," International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 2020, pp. 317-322.
- [6] S. Durga, S. Itnal, K. Soujanya, C. Z. Basha and C. Saxena, "Advanced and effective baby care monitoring Smart cradle system using Internet of Things," 2nd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 2021, pp. 35-42.
- [7] S. K. K. V., P. L. S., A. Vadde and R. P. G., "Development of Intelligent Cradle for Infant Monitoring System," IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 2022, pp. 1-6.

Impact Factor 8.471 $\,\,st\,\,$ Peer-reviewed & Refereed journal $\,\,st\,\,$ Vol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.1411109

- [8] S. Joseph, A. Gautham.J, A. Kumar and M. K. Harish Babu, "IoT Based Baby Monitoring System Smart Cradle," 7th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2021, pp. 748-751.
- [9] K. B, V. P, V. P, N. K and K. C. Sriharipriya, "IoT Based Neonatal Patient Monitoring System," 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN), Vellore, India, 2023, pp. 1-6.
- [10] N. Saude and P. A. H. Vardhini, "IoT based Smart Baby Cradle System using Raspberry Pi B+," International Conference on Smart Innovations in Design, Environment, Management, Planning and Computing (ICSIDEMPC), Aurangabad, India, 2020, pp. 273-278.