

Wireless Aquatic Waste Management Boat with pH and Environment Change Detection

Shreenivas Salabannavar¹, Shashank H R², Sunil Kallappa Lakkam³, Subhash Patil⁴, Prof. Savitri G Pujar⁵

Department Of ECE, East West Institute of Technology Bengaluru 560091¹⁻⁵

Abstract: Clean water is a basic need for all living beings. Without water survival in the Earth is not possible. Water covers about 70% of the Earth's surface among that only 3% of that is pure water. Water gets polluted due to any reasons like industry waste, sewage waste, garbage waste. Hence it is important to maintain cleanliness and hygiene of water. We considered this water pollution as a serious issue and start to work on the project. We decided to incorporate technology to get the work done effectively and efficiently. Our project design is in such a way that it collects the waste which floats on water bodies. In present time almost all the people are familiar with robots. We are going to design a very interesting robot that is RF controlled Robot. It is important to monitor the pH of a water body. The Wireless Aquatic Waste Management Boat is an innovative solution designed to address water pollution and monitor aquatic ecosystems. This autonomous boat integrates cutting-edge technologies such as IoT, advanced sensors, and wireless communication. It efficiently removes floating waste while continuously monitoring critical water quality parameters such as pH, temperature, turbidity, and dissolved oxygen. Equipped with real-time data transmission capabilities, the boat provides stakeholders with actionable insights through cloud-based platforms and user-friendly interfaces, promotes sustainability and reduces human intervention. This project aims to conserve aquatic ecosystems.

Keywords: Sewage, garbage, Remote Controlled Robot, Radio Frequency, potential hydrogen, Wireless, aquatic waste management, autonomous boat, pH detection, environmental monitoring, IoT, real-time data, renewable energy, water pollution, sustainability, ecosystem conservation.

I. INTRODUCTION

Traditional method for collecting water surface floating waste is manual basis, by means of boat trash skimmer. The above methods are costly risky and large time consuming. To eliminate the drawbacks of the above-mentioned methods the remote-controlled water cleaning machine was designed which helps in cleaning the water surface efficiently and eco-friendly. The water waste cleaning Robot consists of RF transmitter and receiver DC motor battery pH sensor; bucket collector is attached to it for collecting the waste and monitoring the water. The authors of reference paper are Jacop Anderson, Erik Hall, Josephson Doval, Ryan N. Smith. The main objective of this paper is to develop a surface vehicle equipped with water quality monitoring sensors. The main drawback of this system is that it is very costly and manufacturing become complex. In addition to that, it can only monitor the water quality. The above drawback can be rectified by our proposed system because it can not only monitor the water quality but also collect the garbage waste that floating on the water surface. The Wireless Aquatic Waste Management Boat with pH and environmental change detection is an innovative project aimed at addressing the growing challenges of water pollution and ecosystem degradation. This advanced system is designed to autonomously collect floating waste while continuously monitoring water quality parameters such as pH levels, temperature, turbidity, and dissolved oxygen.

II. BACKGROUND AND MOTIVATION

Water bodies such as lakes, rivers, ponds, and reservoirs play a vital role in sustaining aquatic life, supporting human activities, and maintaining ecological balance. However, rapid urbanization, industrial discharge, and improper waste disposal have resulted in increasing levels of pollution in these water systems. Floating waste such as plastics, bottles, food wrappers, and organic debris not only degrades water quality but also poses a threat to aquatic organisms and affects the overall ecosystem.

Manual cleaning of water bodies is labor-intensive, time-consuming, and often unsafe for workers. Traditional methods also lack real-time monitoring of water quality parameters, making it difficult to detect early signs of pollution or environmental imbalance. In recent years, automation and IoT-based solutions have emerged as promising tools to address these challenges by enabling remote operation, data collection, and efficient waste removal.

Monitoring water quality parameters such as pH is crucial because it directly influences the survival of fish, plants, and microorganisms. Abnormal pH levels indicate chemical contamination, biological activity, or industrial effluents entering the water body.

This project aims to develop a Wireless Aquatic Waste Management Boat equipped with a waste-collecting mechanism, a pH sensor, and an environmental change detection module. Using wireless control—such as radio frequency (RF), Bluetooth, or Wi-Fi—the boat can be navigated remotely across the water surface to collect floating waste. At the same time, real-time monitoring of water quality data helps in identifying pollution trends and taking necessary preventive measures. Through this dual-purpose system, the project contributes to a cleaner aquatic environment, supports ecological sustainability, and reduces human effort in water maintenance operations.

III. LITERATURE REVIEW

A. Aquatic Pollution and the Need for Automated Waste Management

Water pollution has become a critical global issue due to rapid urbanization, industrial discharge, and improper waste disposal practices. Researchers highlight that lakes, rivers, and ponds are increasingly contaminated by floating waste, chemicals, and biological pollutants. This pollution not only affects aquatic ecosystems but also disrupts human activities such as fishing, irrigation, and recreation. Many studies emphasize that without efficient waste removal technologies, the situation will continue to deteriorate. Floating solid waste—plastics, containers, polythene, and organic debris—poses a major threat to aquatic life. These pollutants obstruct oxygen exchange, block sunlight, and release toxic substances during decomposition. Literature clearly shows that the accumulation of floating waste has long-term ecological consequences, including fish mortality, reduced biodiversity, and the formation of dead zones. Manual waste removal methods have been used traditionally, but research reports that these techniques are inefficient, risky, and require continuous human labor. Workers are exposed to harmful pathogens, chemical contaminants, and sharp objects. Studies strongly recommend transitioning from manual cleaning to smart, automated systems to reduce human risk and improve cleaning efficiency.

B. Development of Automated and Robotic Cleaning Boats

Studies on robotic boats have shown that automated navigation significantly improves waste collection efficiency. Researchers experimented with DC motors, propellers, rudders, and hull designs to optimize movement across floating waste patches. These early prototypes proved that surface-level waste could be collected autonomously. Conveyor-belt-based systems were introduced to enable continuous waste lifting from the water surface. These designs improved waste retrieval rates and allowed cleaner separation of waste and water. Research highlights that this mechanical innovation greatly enhanced the performance of robotic waste collectors. However, many of these robotic systems lacked environmental monitoring features. They were designed only for cleaning and could not measure or report water quality parameters. Literature suggests that a dual-function system—both cleaning and monitoring—would be far more beneficial for environmental

C. Wireless Control Technologies in Aquatic Systems

Wireless communication technologies such as RF modules, Bluetooth, and Wi-Fi have been widely explored to enhance the usability and safety of aquatic robots. Researchers found that wireless control eliminates the need for operators to be near polluted water, reducing health risks. Bluetooth-based systems gained early popularity due to their simplicity and low cost. They enabled basic remote control within short distances, making them suitable for small-scale research projects and student prototypes. However, limitations such as poor range and signal interference restricted their efficiency-based control systems provided moderate range and stronger transmission stability. Some studies used RF modules for controlling water-cleaning robots across medium-sized water bodies. However, RF lacked the ability to support data feedback, making it unsuitable for real-time environmental monitoring.

D. IoT-Based Water Quality Monitoring

IoT technology has revolutionized environmental monitoring by enabling low-cost, real-time data collection. Researchers have extensively used microcontrollers like Arduino, ESP8266, and ESP32 to monitor water quality parameters and transmit data wirelessly. Monitoring is highlighted in multiple studies as a critical parameter for assessing water health.

Abnormal pH levels indicate chemical contamination, acidification, or biological waste decomposition. Researchers emphasize the importance of continuous pH monitoring to detect early signs of pollution. IoT-based pH measurement systems have been integrated with mobile apps, cloud platforms, and dashboards for real-time observation. Studies report that such systems improve environmental decision-making by providing instant notifications and long-term analytics.

IV. ANALYSIS AND DISCUSSION

This section investigates how well micro front end architecture deals with scalability challenges. It looks at some of its broader benefits, talks about potential trade-offs and limitations. In the end, some insights into future trends and potential areas for further research.

A. Addressing Scalability Challenges

Scalability is one of the most critical challenges in aquatic waste management systems, especially when transitioning from small-scale prototypes to real-world implementations. Many research studies highlight that systems designed for small ponds or controlled environments often fail when deployed in larger and more complex water bodies such as rivers, lakes, or reservoirs. As the operational area increases, factors such as battery capacity, motor power, communication range, and waste storage capacity become significant constraints. Addressing these challenges requires design improvements that ensure consistent performance across varying scales. One major aspect of scalability involves energy management. Small prototypes typically use limited-capacity batteries that work well for demonstration purposes but are insufficient for long-duration cleaning tasks in larger water bodies. Multiple studies suggest the need for higher-capacity batteries, power-efficient components, and alternative energy sources such as solar panels to support extended operation. Efficient power management strategies ensure that the boat can clean larger areas without frequent interruptions for charging.

Times

Before Adoption: water bodies were cleaned primarily through manual labor, which was slow, inefficient, and often hazardous for workers. Floating waste such as plastics, bottles, and organic debris accumulated rapidly, posing serious threats to aquatic ecosystems and public health. Manual cleaning teams struggled to cover large areas, and many polluted zones remained unattended due to limited manpower and resources.

After Adoption: The wireless control system allowed operators to navigate the boat over polluted areas without any direct physical contact with contaminated water. The built-in pH sensor and environmental change detection module provided real-time data, enabling immediate identification of abnormal water conditions and early signs of pollution.

Development Cycle Times

Before Adoption: the development cycle of water-cleaning operations was slow, disconnected, and heavily dependent on manual processes. Traditional methods required separate phases for waste collection, water quality testing, and environmental analysis, each involving different personnel, tools, and time-consuming procedures.

After Adoption: Real-time information from the pH sensor and environmental monitoring unit provided immediate feedback on system performance and water conditions, enabling quicker modifications and more informed decision-making.

Resource Utilization

Before Adoption: Large teams of workers were required to manually remove floating waste, often using simple tools such as nets, boats, and collection bins.

After Adoption: The automated waste collection system reduced the need for large manual labor teams, significantly lowering workforce requirements and operational costs.

Benefits of Wireless Aquatic Waste Management Boat with pH and Environmental Change Detection

1. Efficient Aquatic Waste Collection: The system significantly improves the efficiency of cleaning water bodies by automating the waste collection process. Unlike traditional manual cleaning, which is slow and labor-intensive, the boat collects floating waste continuously as it moves across the water. This not only speeds up the cleaning process but also enables coverage of larger areas with minimal human involvement.

2. Real-Time Water Quality Monitoring: The integration of a pH sensor provides immediate insights into the chemical condition of the water. Real-time monitoring helps detect pollution, contamination, or sudden changes in water quality.

This allows authorities to take quick corrective measures, preventing long-term ecological damage and ensuring healthier aquatic ecosystems.

3. Enhanced Environmental Protection: The environmental change detection module enables the boat to observe variations in water parameters, helping identify developing issues like chemical spills, algae growth, or harmful effluent discharge. Early detection means faster response, leading to better preservation of aquatic life and improved sustainability of water resources.

Future Trends and Areas for Further Research

1. Integration of Advanced Water Quality Sensors: Future models of the aquatic waste management boat can incorporate additional sensors such as turbidity, dissolved oxygen, conductivity, ORP, ammonia, and temperature. These parameters would provide a more complete picture of water health and enable comprehensive environmental analysis. Advanced multi-parameter probes could further improve accuracy and allow continuous monitoring in larger water bodies.

2. Use of Artificial Intelligence and Machine Learning: AI-driven navigation and decision-making could dramatically improve the efficiency of the system. Machine learning algorithms can be trained to identify dense waste zones, predict pollution patterns, and optimize cleaning routes. Future systems could automatically adjust their speed, direction, and waste collection frequency based on real-time data analytics.

3. Autonomous Navigation and Path Planning: While the current system relies on wireless control, future developments may enable fully autonomous operation. Technologies such as GPS-based navigation, obstacle detection sensors, and LiDAR can be integrated to allow the boat to navigate independently, avoid obstacles, and follow predefined cleaning routes without human intervention.

4. Solar Power and Sustainable Energy Use: To extend operational time and reduce dependency on batteries, solar panels can be integrated into the boat's structure. Solar-powered boats would allow continuous operation throughout the day, making the system more sustainable, eco-friendly, and cost-efficient. Hybrid energy systems could also be explored for uninterrupted functioning.

V. CONCLUSION

The Wireless Aquatic Waste Management Boat with pH and Environmental Change Detection successfully demonstrates a modern, efficient, and technology-driven approach to maintaining and monitoring aquatic environments. By integrating wireless control, automated waste collection, and real-time water quality sensing, the system addresses key shortcomings of traditional manual cleaning methods, such as limited coverage, high labor requirements, and the absence of continuous monitoring. The use of a pH sensor and environmental detection module enables early identification of contamination, allowing timely intervention and contributing to healthier and more sustainable water ecosystems. The project highlights the potential of combining mechanical automation with IoT-based sensing to create a dual-purpose system capable of both cleaning and monitoring water bodies. Its modular design, improved accessibility, and reduced human involvement make it a safe, cost-effective, and environmentally beneficial solution. Through this innovation, the project not only enhances operational efficiency but also supports data-driven decision-making for long-term environmental management. Overall, the system serves as an effective prototype for future smart water management solutions. With further development—such as integrating more sensors, incorporating solar power, or enabling fully autonomous navigation—the project can evolve into a robust and scalable technology suitable for large-scale environmental applications. This work marks an important step toward sustainable aquatic waste management and represents a valuable contribution to environmental engineering and technological advancement.

REFERENCES

- [1]. Prof. Kean V. Dhande, "Design and fabrication of river cleaning system", "International Journal of Modern trends in Engineering and Research" Volume 4, Issue 2 [February 2024], ISSN (PRINT): 2398161.
- [2]. Prof. Ajay Dhumal, "study of river harvesting and trash cleaning machine" "International Journal of Innovation Research in Science and Engineering", Volume 2, Issue 3 [March-2023] ISSN:2454-9665.
- [3]. Prof. N.G.Jogi. "Efficient lake garbage collector by using pedal operated boat", "International Journal of Modern trends in Engineering and Research", Volume 02, Issue 04 [April-2022] ISSN:2455-1457.
- [4]. B.D. Skinwalker, "Design data for machine elements", 2023 Edutainment & Co. pp.203.

- [5]. S. K. Hajra Choudhury, A. K. Hajra Choudhury, Narahari, "Manufacturing processes", Volume -I, 14th Edition, Media Promoters and Publisher Pvt. Ltd, pp 373.
- [6]. Jianhua Wang, Wei Gu, Jianxin Zhu, Juliao Zhang. "An Unmanned Surface Vehicle for Multi - Mission Applications". Proc.2023 international Conference on Electronic Computer Technology, 22-23 Feb, Shanghai, P.R. China, Page(S):358-361.
- [7]. Caccia, M., Babali M., Bono R., Bruzzone G. "Aluminum hull USV for coastal water and seafloor monitoring". Proc. OCEANS 2024-EUROPE, 11-14 May, Bremen Germany, Page(s): 1-5.
- [8]. Manley, J. "Unmanned Surface Vehicles, 15 Years of Development", Proc. Oceans 2023 MTS/IEEE Quebec Conference and Exhibition (Ocean '08), Sept. 2023.