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Abstract: The recognition and categorization of bone fractures hold great significance in urgent medical care. It
determines how practitioners make critical decisions and aids in preventing delays that might jeopardize patient safety.
Manually interpreting X-rays, CT scans, and MRIs can be time-consuming, and honestly, human reviewers can overlook
crucial details, especially when it comes to tiny or intricate fractures. However, deep learning has revolutionized this
landscape. Automated systems now rapidly identify fracture patterns with remarkable precision. In this research, we
examine how convolutional neural networks (CNNSs), transfer learning, and hybrid deep learning frameworks can elevate
our ability to detect fractures. We train and evaluate these models using medical images that we have pre-processed think
data augmentation, image enhancement, and feature extraction. This helps the models generalize more effectively and
identify fractures that may be less evident. The objective is to classify fractures based on type, severity, and location,
enabling physicians to initiate appropriate treatment promptly. Our findings reveal that deep learning models surpass
traditional machine learning methods, achieving higher sensitivity and specificity across diverse datasets. Al-driven tools
can significantly boost radiologists’ efficiency, alleviate their workload, and facilitate quicker, better care for patients.
Looking forward, there's an opportunity to incorporate additional data types, create real-time systems, and enhance
understanding of Al, Deep Learning, and Machine Learning decisions, thus making these tools even more dependable
for everyday clinical applications.

Keywords: Bone fracture identification, Deep learning, Convolutional neural networks (CNN), Medical image
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L INTRODUCTION

Artificial intelligence and deep learning have genuinely transformed the field of medical image analysis, particularly in
detecting and categorizing bone fractures in X-rays and CT images. Radiologists previously managed this independently,
but their interpretations can greatly vary factors like experience, workload, or simply the difficulty of recognizing certain
fractures can all contribute to inconsistencies. Nowadays, deep learning techniques such as VGG-16, ResNet, DenseNet,
and EfficientNet allow computers to discern intricate bone patterns. This results in more precise diagnoses and minimizes
errors. Researchers have begun to combine these networks with additional tools for even better performance.
Combinations such as VGG-16 with Random Forest, ResNet50 paired with SVMs, or EfficientNetB0O connected to
XGBoost demonstrate improved feature extraction and differentiation between various fracture types. Furthermore,
YOLO excels in accurately locating fractures, CNN-LSTM models can process sequences of images, and Vision
Transformers (ViT) offer a holistic approach beneficial for complex clinical scenarios. Deep learning significantly
enhances fracture detection by learning hierarchical features directly from raw radiographs, allowing models to recognize
subtle structural irregularities, micro-fractures, and complex fracture morphologies that may elude human detection.
Unlike traditional rule-based systems, deep learning frameworks autonomously extract important patterns, lessen reliance
on manually created features, and adapt to variations in bone structures across age, gender, and imaging conditions.

Moreover, transfer learning and multi-scale learning strategies enable models to generalize more effectively across
various datasets and clinical contexts. In practical applications, deep learning-based fracture detection systems provide
substantial advantages such as expedited diagnoses in emergency medic endeavours, prioritization of urgent trauma cases,
alleviation of radiologists’ workloads, and enhanced coverage in rural or resource-limited healthcare scenarios where
expert radiologists are not always present. These systems can function as decision-support instruments, delivering
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heatmaps, localization maps, and classification probabilities that assist clinicians in reaching more confident diagnoses.
Additionally, integration with hospital PACS (Picture Archiving and Communication Systems) and deployment on
portable devices facilitate real-time fracture evaluation at the point of care. As the need for swift, precise, and scalable
diagnostic solutions continues to rise, deep learning-powered fracture detection systems represent a vital leap forward in
contemporary healthcare, providing greater reliability, consistency, and efficiency in clinical decision-making. Their
ability to automate early screening, reduce diagnostic delays, and bolster remote healthcare delivery emphasizes their
escalating significance in enhancing patient outcomes and shaping the future of medical imaging.

1L BACKGROUND

A. Bone Fracture Detection
Bone fracture detection is a critical component of diagnostic radiology, enabling clinicians to identify disruptions in bone
continuity caused by trauma, stress, or pathological conditions. X-ray imaging remains the most widely used modality
due to its low cost, speed, and accessibility, although fractures can often appear subtle and ambiguous due to overlapping
anatomical structures, low contrast, or inadequate imaging angles. Traditional fracture diagnosis relies on expert
evaluation, which can be time-consuming and subject to inter-observer variability. To overcome these limitations, deep
learning methodologies, particularly Convolutional Neural Networks (CNNs), have emerged as powerful tools capable
of automatically learning discriminative features from radiographs. Models such as VGG-16, ResNet50, DenseNet121,
and EfficientNet architectures have demonstrated significant improvements in identifying fracture patterns, bone
deformities, and early-stage micro-fractures. Advanced deep learning frameworks further integrate object detection
models like YOLO, classification networks, and segmentation architectures (e.g., UNet) to localize fracture regions and
classify fracture types with higher precision. These automated systems support radiologists by enhancing diagnostic
consistency and enabling faster assessment, especially in emergency care settings.
B. Challenges in Bone Fracture Detection
Bone fracture detection remains a highly challenging task due to the subtle nature of many fractures and the variability
present in clinical imaging conditions. Subtle or hairline fractures often appear very faint and can easily blend with normal
bone textures, making automated detection difficult. Variations in X-ray quality, including noise, motion blur, poor
contrast, and improper exposure, further complicate the diagnostic process. Additionally, anatomical regions such as the
wrist, ankle, spine, and pelvis present overlapping structures that obscure fracture lines. Deep learning models also face
issues related to dataset imbalance, limited availability of annotated fracture images, and significant differences in
imaging protocols across hospitals, which limit model generalization. The presence of casts, implants, soft-tissue
shadows, and metal artifacts adds further complexity. Moreover, high computational requirements restrict real-time
deployment in emergency care, while the black-box nature of deep learning models poses challenges in clinical
interpretability and trust.

e Subtle, no displaced, and hairline fractures are difficult to detect.
Low-quality or inconsistent X-ray images reduce model accuracy.
Overlapping bones and complex anatomical regions obscure fracture lines.
Strong class imbalance exists between normal and fractured images.
Limited high-quality annotated datasets restrict training.
Domain shift occurs between datasets from different hospitals.
Presence of casts, implants, and metal artifacts mislead detection models.
High computational load limits real-time clinical use.
Lack of explainability reduces radiologist trust in Al predictions.
C. Fundamentals of Deep Learning-Based Fracture Analysis
Deep learning-based fracture analysis is built on a series of computational steps designed to extract meaningful visual
information from radiographic images and classify fractures accurately. The process typically begins with image
acquisition, where X-ray, CT, or MRI scans serve as inputs. These images undergo pre-processing, including resizing,
normalization, denoising, contrast enhancement, histogram equalization, and bone segmentation to standardize image
quality. CNN-based models such as VGG-16, ResNet50, and DenseNet automatically learn hierarchical features—edges,
textures, contours, and fracture lines—through convolutional layers. Specialized architectures like YOLO and Faster R-
CNN provide localization capabilities, enabling both detection and bounding box generation around fracture regions.
Hybrid models such as VGG-16 with Random Forest, ResNet50 with SVM, and EfficientNetB0O with XGBoost enhance
classification using external machine learning algorithms that operate on high-level features extracted by deep neural
networks. Attention mechanisms and Vision Transformers (ViT) further improve feature learning by capturing long-
range dependencies across the image. Post-processing techniques such as Non-Maximum Suppression (NMS) refine
predictions by eliminating redundant detections. Finally, fracture classification outputs include fracture presence,
location, and type, assisting clinicians in making rapid and informed decisions. These methods collectively form a robust
computational pipeline for automated bone fracture analysis.
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D. Deep Learning Using Convolutional Neural Networks (CNNs)

Deep learning, especially through Convolutional Neural Networks (CNNs), allows computers to automatically learn
patterns from images. These networks use multiple layers of filters to detect features such as edges, shapes, and even
complex textures. Unlike traditional image processing, CNNs eliminate the need for manual feature extraction and
achieve remarkable accuracy in tasks like image classification and medical imaging. Their structure built from
convolution, pooling, and fully connected layers enables them to recognize and understand visual patterns efficiently,
which is why they play such a vital role in modern Al applications.

In medical imaging, CNN-based deep learning models are increasingly used for automatic bone fracture detection. By
analyzing X-ray images, they can spot subtle cracks, edges, and irregular patterns that are sometimes difficult even for
the human eye to see. These models learn to differentiate between fractured and healthy bones, often highlighting the
exact regions where fractures occur. As a result, CNN systems assist radiologists in making faster and more accurate
diagnoses, helping to minimize human error and enhance real-time decision-making in clinical settings.
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Fig 1: CNN for Bone Fracture Detection [41]
111. RELATED WORKS

Bone fracture detection and classification play a vital role in medical diagnosis, helping clinicians identify and assess
injuries quickly and accurately. Traditional interpretation of X-ray and CT images can be challenging due to subtle
fracture appearances and variations in imaging quality. Deep learning has enhanced this process by automatically learning
complex bone patterns, improving consistency, reducing diagnostic errors, and enabling faster decision-making in real-
world clinical environments. These advancements support radiologists and improve patient outcomes through timely and
reliable fracture assessment.
Spoorthy Torne et al. (2025) emphasized the significance of integrating deep learning with advanced hybrid classification
strategies for improved fracture diagnosis. Their study compared VGG-16, VGG-16 with Random Forest, ResNet50 with
SVM, and EfficientNetB0O with XGBoost for X-ray fracture categorization. Among these, the hybrid EfficientNetB0—
XGBoost model achieved the highest accuracy of 96.21%, outperforming conventional CNNs and other ensembles.
While demonstrating strong diagnostic capability, the study noted the need for broader feature-engineering and stronger
ensemble fusion techniques. The authors suggest integrating multimodal imaging to further strengthen fracture
classification in future work.
Wenlong Wu et al. (2024) proposed an enhanced fracture-detection method by improving feature fusion within a Faster
R-CNN framework. Their bidirectional feature pyramid network improved detection performance by up to 5.8% over
standard models, offering better sensitivity to subtle fractures. The model achieved higher accuracy on the Kaggle dataset
without compromising inference speed. The study highlights that improved fusion can enhance detection of fine structural
details often missed by traditional CNN-based detectors.

Leena Bisht et al. (2024) designed a Python-based CNN system for fracture identification in X-ray images, achieving an
accuracy of 94%. The model incorporated Grad-CAM visualization for interpretability, supporting radiologists in
understanding model predictions. The work highlights the growing potential of automated X-ray analysis tools for clinical
practice. The authors recommend expanding the model to multi-class fracture categorization for improved clinical utility.
Brikila J et al. (2024) developed a YOLOv8-based detection pipeline for identifying bone fractures across multiple
anatomical regions. Their system achieved high precision, recall, F1-score, and mAP values, demonstrating strong real-
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time capability. The study noted that detection of extremely small fractures remains a challenge. Future enhancements
aim at improving sensitivity through higher-resolution backbone architectures.

Shanvi Chauhan et al. (2024) employed a CNN-AlexNet classifier on a dataset of over 10,000 X-rays, achieving 96.2%
accuracy in distinguishing fractured and non-fractured bones. The approach proved robust across anatomical regions,
though it remains limited by AlexNet’s difficulty in detecting micro-fractures. The authors suggest transitioning to more
modern architectures to improve sensitivity to fine fracture lines.

Padmakala et al. (2025) compared a custom CNN, MobileNetV2, and ResNet50 for orthopedic X-ray classification,
reporting a highest accuracy of 73.18%, with MobileNetV2 being the most efficient. The study is limited by low dataset
diversity and binary classification constraints. The researchers propose augmenting dataset size and diversity to achieve
more reliable performance.

Devashish Pradeep Khairnar et al. (2023) developed a CNN-based fracture-classification model using preprocessing and
augmentation, achieving 94.87% accuracy. While effective for major fractures, the model performs poorly on micro-
fractures and requires moderate computational resources. The authors recommend incorporating attention mechanisms
to enhance feature focus.

Tushar Waghulde et al. (2024) introduced a hybrid YOLO-NAS architecture that reached 98.36% accuracy on hand-
fracture X-rays, demonstrating high sensitivity to subtle fractures. However, the model depends on high-quality
annotations and significant GPU resources. The study emphasizes that further dataset expansion could improve
generalizability.

Mohammed Shuaib et al. (2024) presented the FDHN multi-stage CNN achieving 96.12% accuracy on a multi-region
dataset. The model offers interpretable results but struggles with complex fracture patterns and requires longer training
time. The authors propose advanced regularization to improve handling of complicated fracture structures.

Nivethitha V et al. (2025) implemented YOLOvV9 with Grad-CAM++, achieving 93.50% accuracy on the HBFMID
dataset, along with strong explainability. The approach is computationally expensive and dependent on large labeled
datasets. Future improvements include model compression to support deployment in low-resource settings.

Khushi Mittal et al. (2024) trained a MobileNet CNN on 4,906 X-ray images, achieving 98% accuracy with lightweight
and fast inference. However, the system supports only classification and cannot differentiate between fracture subtypes.
The study recommends incorporating localization modules to improve diagnostic depth.

H. Mewada et al. (2024) developed a CNN-LSTM hybrid for multi-region fracture detection, attaining 95.68% accuracy.
The method captures both spatial features and temporal dependencies but requires sequential data preparation and
significant computation. The authors indicate that a transformer-based temporal encoder may further enhance
performance.

Salma Ali Alqazzaz et al. (2024) trained a YOLOv8s model on Roboflow bone data, reaching 93.4% accuracy with strong
multi-class precision. The small and imbalanced dataset limits wider applicability. Additional data collection is
recommended to improve class balance and robustness.

Pratham Kaushik et al. (2024) proposed a custom CNN achieving 98% accuracy on a small radiography dataset. Despite
high performance, the limited dataset size increases overfitting risk. The authors suggest evaluating the model on larger
clinical datasets for verification.

Komati Sushma et al. (2025) introduced a multi-scale CNN trained on 10,581 X-rays, achieving 99.8% accuracy.
Although highly accurate, the results indicate possible overfitting and require heavy computation. Further validation on
unseen datasets is advised to confirm the model’s stability.

N. Sathish Balaji et al. (2025) used SVM with WLBP texture features, achieving 98.42% accuracy. While lightweight
and interpretable, the model performs poorly on complex fractures and lacks multi-class support. Integrating deep
learning features may enhance classification strength.

A. Yoganathan et al. (2025) proposed an augmented ResNet-50 model achieving 95.6% accuracy on a large dataset.
Though effective, the model demands extensive data and is unsuitable for real-time applications. The authors recommend
pruning and quantization for deployment efficiency.

Pushpendra Kumar et al. (2025) used YOLOv8 on 399 images, reporting 74.2% accuracy. Despite real-time capability,
the small dataset caused uneven class performance. The study highlights the necessity of high-quality annotation for
improved results.

Vishnu Kant et al. (2024) developed a hybrid CNN achieving 97% accuracy on Kaggle X-ray data. The system is
restricted to binary classification and offers no localization. Future work aims at integrating bounding-box prediction for
better clinical relevance.

Nishat Vasker et al. (2023) built a lightweight CNN with softmax classification obtaining 92.44% accuracy. Although
fast for real-time use, it is limited by small dataset size and binary output. The authors propose using transfer learning to
enhance model performance.

H. A. Vishwa Dharshenee et al. (2025) applied ViT and DETR to hand-fracture datasets, obtaining high detection
performance (accuracy unspecified). However, the extremely high computational cost limits real-world deployment.
Efficiency-focused variants of ViT are suggested for future work.
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Aditya Kumar et al. (2024) applied machine-learning classifiers achieving 94% accuracy with lightweight models.
Handcrafted features limit detection of subtle fractures. Deep-learning-based feature extraction is recommended for
improved sensitivity.

Sajiv G et al. (2025) developed the NLCL hybrid CNN achieving 98.66% accuracy on Kaggle data. While effective
across multiple categories, training demands high computational power. Future enhancements may include model
optimization for faster inference.

Aditya Kumar et al. (2024) implemented an augmented AlexNet achieving 96% accuracy on 10,581 images, but struggles
with fine-grained fracture detection and is considered outdated. The study recommends migrating to modern architectures
like EfficientNet.

Gunjan Shandilya et al. (2024) optimized AlexNet to reach 97.12% accuracy for multi-region X-rays. The system lacks
localization and offers limited explainability. The authors suggest integrating attention layers to improve interpretability.
I. Sudha et al. (2025) integrated CNN with a modified Canny edge detector to achieve 96.2% accuracy, providing strong
visual justification. High-quality data and powerful GPUs are required. Further research may explore lightweight edge-
detection hybrids.

Jay Kotecha et al. (2024) implemented MobileNetV2 achieving 97% accuracy on custom X-rays, suitable for edge
devices but limited in detecting subtle fractures. The authors recommend enhanced preprocessing to capture finer details.
Naveen Kumar et al. (2024) used Faster R-CNN, obtaining 94.5% accuracy with strong localization. Slower inference
and high GPU requirements are drawbacks. Efficient variants such as Faster R-CNN-lite may improve deployment
feasibility.

Aisha Rahman et al. (2025) tested YOLOv5 and YOLOVS, achieving 98% accuracy with strong real-time generalization.
Large labeled datasets are essential. The authors propose domain-adaptation techniques to reduce data dependency.
Abhimanyu Verma et al. (2024) applied YOLOv4 on humerus X-rays, achieving 95% accuracy. The model is limited to
a single anatomical region. Expanding to multi-region datasets is recommended.

Ahmet Ilhan et al. (2025) evaluated EfficientNetV2-Small and other lightweight models, reaching 98.4% accuracy on a
2,384-image dataset. Lack of localization and limited fracture types constrain usefulness. The study proposes integrating
detection modules for better clinical relevance.

K. Rama Krishna Reddy et al. (2024) trained a DNN on 100 X-rays, achieving 92.44% accuracy. The very small dataset
prevents generalization. The authors emphasize enlarging the dataset for reliable outcomes.

Nesrine Affes et al. (2025) used YOLOvV7 achieving 64.4% accuracy on hand/forearm X-rays, with fast inference but
low recall due to annotation quality issues. Improved labeling consistency is required for achieving higher performance.
Nay Thazin Htun et al. (2024) utilized fuzzy enhancement with ensemble CNNS, achieving 98.85% accuracy on MURA
elbow images. The model is computationally expensive and region-specific. Generalization across multiple anatomical
regions is suggested for future improvement.

Happy Kumar Sharma et al. (2025) integrated ResNet-50, SE blocks, and gcForest, achieving 96.2% accuracy and 98.6%
AUC. The system is classification-only with limited fracture-type differentiation. The authors propose adding
segmentation modules for richer analysis.

Alina Maryum et al. (2024) applied ResNet-50 with augmentation on Kaggle data, achieving 99.82% accuracy.
Overfitting concerns arise due to extremely high accuracy. External validation on clinical data is strongly recommended.
Ruhi S. S. F. et al. (2024) introduced an attention-based transfer-learning model reaching 93.5% accuracy. Lack of clear
dataset details limits reproducibility. More transparent dataset reporting is recommended to strengthen replicability.
Preeti P. Kale et al. (2024) developed an optimized CNN achieving 95.48% accuracy on synthetic data and 90.78% on
real wrist X-rays. The reliance on synthetic samples reduces clinical reliability. The study suggests incorporating
generative models for better synthetic-real alignment.

Arpan Tripathi et al. (2024) proposed an unsupervised transporter framework for fracture-related ultrasound features.
While avoiding manual annotation, accuracy was unspecified and dataset size was very small. The authors highlight the
need for larger ultrasound datasets to validate performance.

Altaf Uddin et al. (2024) combined MobileViT with YOLOVS, achieving up to 99% accuracy on Kaggle datasets.
Performance is strong but limited to selected anatomical regions. Future work may extend the pipeline to whole-body
fracture detection.

Recent studies on bone fracture detection highlight the growing effectiveness of deep learning models in automating
classification and localization tasks across various bone types. Researchers have explored CNNs, hybrid architectures,
and advanced object detectors like YOLO and transformers to improve reliability, speed, and real-time clinical
usefulness. Overall, the collective work shows strong progress toward Al-assisted diagnosis, enhanced workflow
efficiency, and more consistent fracture identification in medical imaging.
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Iv. SYSTEMATIC ANALYSIS

Bone fracture detection and classification shows that deep learning methods consistently outperform traditional
diagnostic techniques by learning complex bone patterns directly from imaging data. Studies across CNN-based models,
hybrid classifiers, and advanced object detectors demonstrate strong capability in identifying diverse fracture types with
improved consistency and reduced human error. Techniques such as data augmentation, transfer learning, and
hierarchical classification further enhance model robustness. Overall, deep learning presents a reliable and efficient
framework for automated fracture assessment in clinical practice.

Table 1: Comparison Analysis

Reference Methodologies Dataset Accuracy Merits Demerits
No.
Wenlong Faster R-CNN + Bi- | Kaggle Bone 88.4% Strong multi-scale High computational
Wuetal.[1] | Directional Feature Fracture Dataset feature fusion cost.
Pyramid Module (Bi- | (150 training, Better small fracture | Slower inference
FPM), ResNeXt-101 | 350 testing) detection Improved
backbone localization
Leena Bisht | TensorFlow/Keras X-ray datasets 92.8% Easy , general- Dependent on image
et al. CNN, data (MURA,RSNA, purpose CNN quality
[2] augmentation, clinical images) performance and Misses micro-
preprocessing, RPN- helps radiologists fractures sometimes
based detection reduce workload
Brikila J et YOLOVS object Labeled fracture | 91.6% Real-time detection, | Struggles with
al.[3] detection + OpenCV | vs. non-fracture high accuracy , high | hairline fractures.
for visualization X-ray dataset efficiency Requires large
annotated datasets
Shanvi CNN-AlexNet for 10,580 X-ray 96.2% High classification | AlexNet is outdated
Chauhan et fractured vs. non- images (9,246 accuracy Not ideal for real-
al. [4] fractured train, 828 val, Reliable time detection
classification 506 test) generalization
Spoorthy VGG-16, VGG-16 Kaggle X-ray 96.21% Strong VGG-based | Dataset imbalance
Torne et with Random Forest, | dataset of 1,129 performance and small dataset size
al.[5] ResNet50 with SVM, | images
and EfficientNetB0
with XGBoos
S. Custom CNN vs. Kaggle 73.18% Comprehensive Only binary
Padmakala MobileNetV2 vs. Orthopedic X- model comparison classification
et al.[6] ResNet50 (transfer ray dataset MobileNetV2 Limited dataset
learning) highly efficient and | diversity
accuracy
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Devashish CNN-based deep Labeled fracture | 94.87% Good generalization | Difficulty in micro-
Pradeep learning model with / non-fracture X- High fracture- fractures
Khairnar et | preprocessing + ray images recognition Moderate
al.[7] augmentation accuracy computational cost
Tushar Hybrid YOLO-NAS | Annotated hand | 98.36% Fast inference. Requires high-quality
Waghulde et | (neural architecture X-ray dataset Detects subtle hand | annotations.
al. [8] search + YOLO (custom) fractures High GPU usage
detection) during training
Mohammed | Multi-stage FDHN Orthopedic X- 96.12% Works across Lower precision for
Shuaib et with preprocessing + | ray dataset multiple bone complex fractures.
al.[9] CNN feature (custom multi- regions. Longer training time
extraction region) Interpretable
outputs
Nivethitha V | YOLOV9 hierarchical | Human Bone 93.50% Highly accurate Requires large
et al.[10] detection + Grad- Fractures Multi- multi-bone labeled datasets.
CAM++ modal Image detection. High computational
explainability Dataset Visual complexity
(HBFMID) explainability
Khushi MobileNet CNN 4,906 X-ray 98% Lightweight and fast | Classification only
Mittal et using depthwise- images Suitable for No multi-class
al.[11] separable mobile/edge devices | fracture typing
convolutions
H. Mewada | CNN,LSTM and Bone Fracture 95.68% Captures both Requires
et al.[12] CNN-LSTM hybrid Multi-Region X- spatial + temporal sequential/temporal
ray Dataset fracture data preparation,
characteristics more expensive
Salma Ali YOLOVSs deep Roboflow Bone 93.4% Fast inference, Small dataset, class
Algazzaz et | learning model multi- | Fracture Dataset strong multi-class imbalance, limited
al.[13] class fracture detection, good generalization.
classification. precision and recall.
Pratham Custom CNN with Custom 98% High accuracy, Small dataset, only
Kaushik et convolution, binary Radiography strong binary classification,
al.[14] fracture classification. | Dataset (No precision/recall, may over fit.
official name) lightweight
architecture.
Komati Multi-scale feature 10,581 X-ray 99.8% Excellent detail High computational
Sushma et fusion CNN (parallel | images (9,246 capture, robust cost, extremely high
al.[15] convolutional train; 829 across diverse accuracy , overfitting
pathways). validation; 506 images, high risks,
test). generalization
N. Sathish SVM classifier with X-ray dataset 98.42% Lightweight, Less effective for
Balaji et Weighted Local interpretable, low complex fractures,
al.[16] Binary Pattern computational load. | limits scalability, not
(WLBP) features + suitable for multi-
preprocessing class tasks.
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A. Augmented ResNet- 10,000 annotated | 95.6% Higher accuracy Requires large
Yoganathan | 50 CNN, X-ray images than SVM, better datasets, high
etal.[17] preprocessing, (CNN) + 26,000 severity computational cost,
Softmax images classification, not optimized for
classification, 10-fold reduced false real-time deployment
cross-validation positives, robust
performance
Pushpendra | Used: YOLOvS8 deep | 399 images, 557 | 74.2% High speed, real- Smaller dataset limits
Kumar et learning architecture, | annotated time detection, generalization,
al.[18] CSP backbone, fracture reliable results, uneven performance
PANet, GPU-based instances works well in across classes.
training, object constrained
detection environments
Vishnu Kant | Hybrid CNN Kaggle-based 97% Very high accuracy, [Model has 6.6M
et al. fracture dataset strong edge parameters, only binary
[19] detection, improved [classification, no
robustness with localization capabilities
augmentation
extended training.
Nishat CNN with Conv— CNN with 92.44% Good performance, | Dataset very small,
Vasker et Pooling layers Conv—Pooling real-time model limited to
al.[20] layers, softmax deployment binary classification,
classifier, possible, reduced lower accuracy.
overfitting
H.A. Vishwa | Vision Transformer | Large hand- High Excellent for subtle | Very high
Dharshenee | (ViT), Detection fracture X-ray & complex computational
etal.[21] Transformer (DETR), | dataset fractures, superior demand, needs very
patch embedding localization large datasets
Aditya Machine Learning Custom X-ray 94% Lightweight and Handcrafted features
Kumar et classifiers + dataset easy to deploy limit performance
al.[22] preprocessing + Good accuracy for | Weaker on subtle
feature extraction basic fracture fractures
detection
Sajiv G et NLCL hybrid deep- Kaggle Bone 98.66% Very high accuracy | Requires high
al.[23] learning model + Fracture Dataset Handles multiple computation for
CNN feature fracture categories training
extraction + Complex model
classification logic structure
Aditya AlexNet CNN + data | 10,581-image 96% Works on multiple | AlexNet is outdated
Kumar et augmentation + custom multi- anatomical regions | Not suitable for tiny
al.[24] preprocessing region X-ray High consistency fracture detection
dataset and reliability
Gunjan Optimized AlexNet Bone Fracture 97.12% High accuracy No fracture
Shandilya et | with transfer learning | MultiRegion X- Reliable binary localization
al.[25] ray Dataset classification Limited explainability
I. Sudhaet | Hybrid CNN + Large multi- 96.2% High precision and | Requires powerful
al.[26] modified Canny region recall GPU Needs high-
preproc quality labeled data
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radiographic Provides visual
dataset explanations
Jay Kotecha | MobileNetV2 CNN + | Custom 97% Lightweight and Struggles with very
et al.[27] transfer learning + annotated X-ray fast. subtle fractures.
preprocessing + dataset Suitable for Requires high-quality
augmentation mobile/edge images.
devices.
Naveen Faster R-CNN + Custom X-ray 94.5% Good localization Slower than YOLO
Kumar et region proposal dataset with accuracy. models.
al.[28] networks + bounding- | annotated Useful for High GPU
box detection fracture regions telesurgery/remote | requirement.
diagnosis.
Aisha YOLOVS5 & YOLOvS8 | Multi-bone X- 98% Real-time detection. | Requires large
Rahman et object detection ray dataset Strong multi-bone labeled datasets.
al.[29] models (wrist, humerus, generalization High computational
femur, forearm) cost
Abhimanyu | YOLOv4 deep Custom 95% Real-time inference. | Limited to humerus
Verma et learning detector + humerus X-ray Good detection for | region.
al.[30] preprocessing + dataset humerus fractures. Needs high-quality
annotation annotations.
Ahmet Ilhan | MobileNetV3-Small, | X-ray Bone 98.4% High accuracy with | Only two fracture
et al. EfficientNetV2- Fracture Dataset lightweight models. | types supported.
[31] Small, ShuffleNetV2 | (2,384 images, Good for No localization
with transfer learning | simple vs. classification tasks. | (classification-only)
comminuted)
K. Rama Deep Neural Network | Custom dataset | 92.44% Good performance | Very small dataset.
Krishna (DNN) + of 100 X-ray on small dataset. Does not handle
Reddy et preprocessing + bone images Handles noisy multi-class fractures
al.[32] augmentation medical images
Nesrine YOLOV7 object Custom 64.4% Strong precision. Low recall (misses
Affes et al. detection + bounding | annotated hand Fast real-time fractures).
[33] box localization & forearm X-ray inference Needs high-quality
dataset annotations
Nay Thazin | Fuzzy histogram MURA Elbow 98.85% Enhanced image High computational
Htun et al. equalization + X-ray Dataset (stated clarity using fuzzy cost.
[34] Ensemble CNN (2,320 images) carlier) logic. Only elbow region
(ResNet-50 + VGG- Ensemble CNN covered
16) improves robustness
Happy ResNet-50 + SE Kaggle Bone 96.2% High accuracy & Classification-only
Kumar Networks + gcForest | Fracture fast inference (32 (no localization).
Sharma et + adaptive Detection ms). Limited fracture-type
al.[35] preprocessing Dataset Strong AUC-ROC differentiation

(98.6%)
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Alina ResNet-50 + resizing | Kaggle “Fracture | 99.82% Extremely high AlexNet is older;
Maryum et + under-sampling + Classification accuracy.Effective consider modern
al.[36] augmentation Dataset” handling of alternatives.
imbalance.
Ruhi S. S. F. | Attention-based Not specified 93.5% Fracture-focused Dataset not described,
et al. [37] transfer learning + feature extraction. limiting
deep CNN + feature Strong classification | reproducibility
localization for radiographic
images
Preeti P. Adaptive 1: 480 synthetic | 95.48% Better accuracy than | Synthetic dataset
Kale et al. preprocessing + 3D bone model (Dataset- | baseline methods. reduces real-world
[38] dynamic threshold images 1) Efficient reliability.
segmentation + 2: 193 real wrist | 90.78% segmentation using | Lower accuracy on
optimized CNN + X-ray images (Dataset- | dynamic real X-rays
Softmax/SVM/LR/RF 2) thresholding
classifiers
Arpan Transporter neural Ultrasound wrist | (accuracy | No need for Very small dataset.
Tripathi et network + local phase | dataset from 30 | notin annotated training Applies only to
al.[39] bone probability pediatric subjects | specified) | data (unsupervised). | ultrasound (not X-
mapping + TGA Highly robust to rays)
compensation + FF- ultrasound noise
CNN
Altaf Uddin | MobileViT, ViT, Kaggle datasets | 99% balanced datasets, YOLOVS detection is
et al.[40] CNN, ConvNeXt, the Bone high accuracy, and | tested only on X-rays
VGG16/19, and Fracture lightweight with limited
YOLOVS Detectionon MobileViT anatomical diversity
Project efficiency

Table 2: Technologies used analysis

Technology Used Percentage (%) Ref Nos.
CNN-based Models 27.5% [2]1[4] [6] [71[11][12][14][15][17]
[20] [28]
YOLO / Object Detection Models 22.5% [1]7[3]1[8] [10] [13] [18] [25] [30] [33]
Hybrid Deep Learning Models 17.5 % [5]11[9][19] [23] [26] [34] [35]
Transformer / ViT-based Models 15% [211127][32] [36] [37] [40]
SVM / Traditional ML Models 10 % [16] [22] [38] [39]
Unsupervised, Classical ML 7.5 % [24]1[29][31]
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B CNN-based Models

YOLO / Object Detection
Models

B Hybrid Deep Learning Models
H Transformer / ViT-based
Models

W SVM / Traditional ML Models

B Unsupervised, Classical ML

17.50%

Fig 2: Technologies used analysis
V. CONCLUSION AND FUTURE WORKS

Deep learning is really changing the way we handle bone fracture detection in medical imaging. These models pick up
on complex patterns fast, spot all sorts of fractures even the tricky ones that overlap or barely show up and they’re often
more accurate and consistent than the old manual methods. They don’t miss things, and that means doctors can make
quicker, better decisions for their patients. Plus, with the help of object detection, transfer learning, and hybrid models,
these systems work well across different types of images and fractures. As Al keeps improving, it’s becoming a must-
have for radiologists. It lightens their workload, cuts down on mistakes, and gives reliable answers especially in busy
hospitals or places where resources are tight. Simply put, deep learning is pushing bone fracture diagnosis to be faster,
more accurate, and a lot more accessible, and that translates directly to better care for patients.

Looking ahead, there’s still room to grow. Building bigger, high-quality datasets will help tackle problems with data
imbalance and all the different ways images are taken. Combining information from CT, MRI, and patient records should
make diagnoses even stronger. We also need models that hold up well across different hospitals and devices, so things
like domain adaptation and federated learning are important. Making Al more transparent—with explainable results,
uncertainty estimates, and easy-to-read visuals will boost trust among doctors. Finally, getting these tools to run in real
time on low-power devices, in the cloud for remote care, or in systems where humans and Al work together will help
bring deep learning into everyday clinical routines.
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