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Abstract: The recognition and categorization of bone fractures hold great significance in urgent medical care. It 

determines how practitioners make critical decisions and aids in preventing delays that might jeopardize patient safety. 

Manually interpreting X-rays, CT scans, and MRIs can be time-consuming, and honestly, human reviewers can overlook 

crucial details, especially when it comes to tiny or intricate fractures. However, deep learning has revolutionized this 

landscape. Automated systems now rapidly identify fracture patterns with remarkable precision. In this research, we 

examine how convolutional neural networks (CNNs), transfer learning, and hybrid deep learning frameworks can elevate 

our ability to detect fractures. We train and evaluate these models using medical images that we have pre-processed think 

data augmentation, image enhancement, and feature extraction. This helps the models generalize more effectively and 

identify fractures that may be less evident. The objective is to classify fractures based on type, severity, and location, 

enabling physicians to initiate appropriate treatment promptly. Our findings reveal that deep learning models surpass 

traditional machine learning methods, achieving higher sensitivity and specificity across diverse datasets. AI-driven tools 

can significantly boost radiologists’ efficiency, alleviate their workload, and facilitate quicker, better care for patients. 

Looking forward, there's an opportunity to incorporate additional data types, create real-time systems, and enhance 

understanding of AI, Deep Learning, and Machine Learning decisions, thus making these tools even more dependable 

for everyday clinical applications. 
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I.  INTRODUCTION 

 

Artificial intelligence and deep learning have genuinely transformed the field of medical image analysis, particularly in 

detecting and categorizing bone fractures in X-rays and CT images. Radiologists previously managed this independently, 

but their interpretations can greatly vary factors like experience, workload, or simply the difficulty of recognizing certain 

fractures can all contribute to inconsistencies. Nowadays, deep learning techniques such as VGG-16, ResNet, DenseNet, 

and EfficientNet allow computers to discern intricate bone patterns. This results in more precise diagnoses and minimizes 

errors. Researchers have begun to combine these networks with additional tools for even better performance. 

Combinations such as VGG-16 with Random Forest, ResNet50 paired with SVMs, or EfficientNetB0 connected to 

XGBoost demonstrate improved feature extraction and differentiation between various fracture types. Furthermore, 

YOLO excels in accurately locating fractures, CNN-LSTM models can process sequences of images, and Vision 

Transformers (ViT) offer a holistic approach beneficial for complex clinical scenarios. Deep learning significantly 

enhances fracture detection by learning hierarchical features directly from raw radiographs, allowing models to recognize 

subtle structural irregularities, micro-fractures, and complex fracture morphologies that may elude human detection. 

Unlike traditional rule-based systems, deep learning frameworks autonomously extract important patterns, lessen reliance 

on manually created features, and adapt to variations in bone structures across age, gender, and imaging conditions. 

 Moreover, transfer learning and multi-scale learning strategies enable models to generalize more effectively across 

various datasets and clinical contexts. In practical applications, deep learning-based fracture detection systems provide 

substantial advantages such as expedited diagnoses in emergency medic endeavours, prioritization of urgent trauma cases, 

alleviation of radiologists’ workloads, and enhanced coverage in rural or resource-limited healthcare scenarios where 

expert radiologists are not always present. These systems can function as decision-support instruments, delivering 
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heatmaps, localization maps, and classification probabilities that assist clinicians in reaching more confident diagnoses. 

Additionally, integration with hospital PACS (Picture Archiving and Communication Systems) and deployment on 

portable devices facilitate real-time fracture evaluation at the point of care. As the need for swift, precise, and scalable 

diagnostic solutions continues to rise, deep learning-powered fracture detection systems represent a vital leap forward in 

contemporary healthcare, providing greater reliability, consistency, and efficiency in clinical decision-making. Their 

ability to automate early screening, reduce diagnostic delays, and bolster remote healthcare delivery emphasizes their 

escalating significance in enhancing patient outcomes and shaping the future of medical imaging. 

 

II. BACKGROUND  

 

A. Bone Fracture Detection 

Bone fracture detection is a critical component of diagnostic radiology, enabling clinicians to identify disruptions in bone 

continuity caused by trauma, stress, or pathological conditions. X-ray imaging remains the most widely used modality 

due to its low cost, speed, and accessibility, although fractures can often appear subtle and ambiguous due to overlapping 

anatomical structures, low contrast, or inadequate imaging angles. Traditional fracture diagnosis relies on expert 

evaluation, which can be time-consuming and subject to inter-observer variability. To overcome these limitations, deep 

learning methodologies, particularly Convolutional Neural Networks (CNNs), have emerged as powerful tools capable 

of automatically learning discriminative features from radiographs. Models such as VGG-16, ResNet50, DenseNet121, 

and EfficientNet architectures have demonstrated significant improvements in identifying fracture patterns, bone 

deformities, and early-stage micro-fractures. Advanced deep learning frameworks further integrate object detection 

models like YOLO, classification networks, and segmentation architectures (e.g., UNet) to localize fracture regions and 

classify fracture types with higher precision. These automated systems support radiologists by enhancing diagnostic 

consistency and enabling faster assessment, especially in emergency care settings. 

B. Challenges in Bone Fracture Detection 

Bone fracture detection remains a highly challenging task due to the subtle nature of many fractures and the variability 

present in clinical imaging conditions. Subtle or hairline fractures often appear very faint and can easily blend with normal 

bone textures, making automated detection difficult. Variations in X-ray quality, including noise, motion blur, poor 

contrast, and improper exposure, further complicate the diagnostic process. Additionally, anatomical regions such as the 

wrist, ankle, spine, and pelvis present overlapping structures that obscure fracture lines. Deep learning models also face 

issues related to dataset imbalance, limited availability of annotated fracture images, and significant differences in 

imaging protocols across hospitals, which limit model generalization. The presence of casts, implants, soft-tissue 

shadows, and metal artifacts adds further complexity. Moreover, high computational requirements restrict real-time 

deployment in emergency care, while the black-box nature of deep learning models poses challenges in clinical 

interpretability and trust. 

• Subtle, no displaced, and hairline fractures are difficult to detect. 

• Low-quality or inconsistent X-ray images reduce model accuracy. 

• Overlapping bones and complex anatomical regions obscure fracture lines. 

• Strong class imbalance exists between normal and fractured images. 

• Limited high-quality annotated datasets restrict training. 

• Domain shift occurs between datasets from different hospitals. 

• Presence of casts, implants, and metal artifacts mislead detection models. 

• High computational load limits real-time clinical use. 

• Lack of explainability reduces radiologist trust in AI predictions. 

C.  Fundamentals of Deep Learning-Based Fracture Analysis 

Deep learning-based fracture analysis is built on a series of computational steps designed to extract meaningful visual 

information from radiographic images and classify fractures accurately. The process typically begins with image 

acquisition, where X-ray, CT, or MRI scans serve as inputs. These images undergo pre-processing, including resizing, 

normalization, denoising, contrast enhancement, histogram equalization, and bone segmentation to standardize image 

quality. CNN-based models such as VGG-16, ResNet50, and DenseNet automatically learn hierarchical features—edges, 

textures, contours, and fracture lines—through convolutional layers. Specialized architectures like YOLO and Faster R-

CNN provide localization capabilities, enabling both detection and bounding box generation around fracture regions. 

Hybrid models such as VGG-16 with Random Forest, ResNet50 with SVM, and EfficientNetB0 with XGBoost enhance 

classification using external machine learning algorithms that operate on high-level features extracted by deep neural 

networks. Attention mechanisms and Vision Transformers (ViT) further improve feature learning by capturing long-

range dependencies across the image. Post-processing techniques such as Non-Maximum Suppression (NMS) refine 

predictions by eliminating redundant detections. Finally, fracture classification outputs include fracture presence, 

location, and type, assisting clinicians in making rapid and informed decisions. These methods collectively form a robust 

computational pipeline for automated bone fracture analysis. 
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D. Deep Learning Using Convolutional Neural Networks (CNNs) 

Deep learning, especially through Convolutional Neural Networks (CNNs), allows computers to automatically learn 

patterns from images. These networks use multiple layers of filters to detect features such as edges, shapes, and even 

complex textures. Unlike traditional image processing, CNNs eliminate the need for manual feature extraction and 

achieve remarkable accuracy in tasks like image classification and medical imaging. Their structure built from 

convolution, pooling, and fully connected layers enables them to recognize and understand visual patterns efficiently, 

which is why they play such a vital role in modern AI applications. 

In medical imaging, CNN-based deep learning models are increasingly used for automatic bone fracture detection. By 

analyzing X-ray images, they can spot subtle cracks, edges, and irregular patterns that are sometimes difficult even for 

the human eye to see. These models learn to differentiate between fractured and healthy bones, often highlighting the 

exact regions where fractures occur. As a result, CNN systems assist radiologists in making faster and more accurate 

diagnoses, helping to minimize human error and enhance real-time decision-making in clinical settings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: CNN for Bone Fracture Detection [41] 

 

III. RELATED WORKS  

 

Bone fracture detection and classification play a vital role in medical diagnosis, helping clinicians identify and assess 

injuries quickly and accurately. Traditional interpretation of X-ray and CT images can be challenging due to subtle 

fracture appearances and variations in imaging quality. Deep learning has enhanced this process by automatically learning 

complex bone patterns, improving consistency, reducing diagnostic errors, and enabling faster decision-making in real-

world clinical environments. These advancements support radiologists and improve patient outcomes through timely and 

reliable fracture assessment. 

Spoorthy Torne et al. (2025) emphasized the significance of integrating deep learning with advanced hybrid classification 

strategies for improved fracture diagnosis. Their study compared VGG-16, VGG-16 with Random Forest, ResNet50 with 

SVM, and EfficientNetB0 with XGBoost for X-ray fracture categorization. Among these, the hybrid EfficientNetB0–

XGBoost model achieved the highest accuracy of 96.21%, outperforming conventional CNNs and other ensembles. 

While demonstrating strong diagnostic capability, the study noted the need for broader feature-engineering and stronger 

ensemble fusion techniques. The authors suggest integrating multimodal imaging to further strengthen fracture 

classification in future work. 

Wenlong Wu et al. (2024) proposed an enhanced fracture-detection method by improving feature fusion within a Faster 

R-CNN framework. Their bidirectional feature pyramid network improved detection performance by up to 5.8% over 

standard models, offering better sensitivity to subtle fractures. The model achieved higher accuracy on the Kaggle dataset 

without compromising inference speed. The study highlights that improved fusion can enhance detection of fine structural 

details often missed by traditional CNN-based detectors. 

 Leena Bisht et al. (2024) designed a Python-based CNN system for fracture identification in X-ray images, achieving an 

accuracy of 94%. The model incorporated Grad-CAM visualization for interpretability, supporting radiologists in 

understanding model predictions. The work highlights the growing potential of automated X-ray analysis tools for clinical 

practice. The authors recommend expanding the model to multi-class fracture categorization for improved clinical utility. 

Brikila J et al. (2024) developed a YOLOv8-based detection pipeline for identifying bone fractures across multiple 

anatomical regions. Their system achieved high precision, recall, F1-score, and mAP values, demonstrating strong real-
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time capability. The study noted that detection of extremely small fractures remains a challenge. Future enhancements 

aim at improving sensitivity through higher-resolution backbone architectures.  

Shanvi Chauhan et al. (2024) employed a CNN-AlexNet classifier on a dataset of over 10,000 X-rays, achieving 96.2% 

accuracy in distinguishing fractured and non-fractured bones. The approach proved robust across anatomical regions, 

though it remains limited by AlexNet’s difficulty in detecting micro-fractures. The authors suggest transitioning to more 

modern architectures to improve sensitivity to fine fracture lines.  

Padmakala et al. (2025) compared a custom CNN, MobileNetV2, and ResNet50 for orthopedic X-ray classification, 

reporting a highest accuracy of 73.18%, with MobileNetV2 being the most efficient. The study is limited by low dataset 

diversity and binary classification constraints. The researchers propose augmenting dataset size and diversity to achieve 

more reliable performance. 

Devashish Pradeep Khairnar et al. (2023) developed a CNN-based fracture-classification model using preprocessing and 

augmentation, achieving 94.87% accuracy. While effective for major fractures, the model performs poorly on micro-

fractures and requires moderate computational resources. The authors recommend incorporating attention mechanisms 

to enhance feature focus. 

Tushar Waghulde et al. (2024) introduced a hybrid YOLO-NAS architecture that reached 98.36% accuracy on hand-

fracture X-rays, demonstrating high sensitivity to subtle fractures. However, the model depends on high-quality 

annotations and significant GPU resources. The study emphasizes that further dataset expansion could improve 

generalizability. 

Mohammed Shuaib et al. (2024) presented the FDHN multi-stage CNN achieving 96.12% accuracy on a multi-region 

dataset. The model offers interpretable results but struggles with complex fracture patterns and requires longer training 

time. The authors propose advanced regularization to improve handling of complicated fracture structures. 

Nivethitha V et al. (2025) implemented YOLOv9 with Grad-CAM++, achieving 93.50% accuracy on the HBFMID 

dataset, along with strong explainability. The approach is computationally expensive and dependent on large labeled 

datasets. Future improvements include model compression to support deployment in low-resource settings. 

Khushi Mittal et al. (2024) trained a MobileNet CNN on 4,906 X-ray images, achieving 98% accuracy with lightweight 

and fast inference. However, the system supports only classification and cannot differentiate between fracture subtypes. 

The study recommends incorporating localization modules to improve diagnostic depth. 

H. Mewada et al. (2024) developed a CNN-LSTM hybrid for multi-region fracture detection, attaining 95.68% accuracy. 

The method captures both spatial features and temporal dependencies but requires sequential data preparation and 

significant computation. The authors indicate that a transformer-based temporal encoder may further enhance 

performance. 

Salma Ali Alqazzaz et al. (2024) trained a YOLOv8s model on Roboflow bone data, reaching 93.4% accuracy with strong 

multi-class precision. The small and imbalanced dataset limits wider applicability. Additional data collection is 

recommended to improve class balance and robustness. 

Pratham Kaushik et al. (2024) proposed a custom CNN achieving 98% accuracy on a small radiography dataset. Despite 

high performance, the limited dataset size increases overfitting risk. The authors suggest evaluating the model on larger 

clinical datasets for verification. 

Komati Sushma et al. (2025) introduced a multi-scale CNN trained on 10,581 X-rays, achieving 99.8% accuracy. 

Although highly accurate, the results indicate possible overfitting and require heavy computation. Further validation on 

unseen datasets is advised to confirm the model’s stability. 

N. Sathish Balaji et al. (2025) used SVM with WLBP texture features, achieving 98.42% accuracy. While lightweight 

and interpretable, the model performs poorly on complex fractures and lacks multi-class support. Integrating deep 

learning features may enhance classification strength. 

A. Yoganathan et al. (2025) proposed an augmented ResNet-50 model achieving 95.6% accuracy on a large dataset. 

Though effective, the model demands extensive data and is unsuitable for real-time applications. The authors recommend 

pruning and quantization for deployment efficiency. 

Pushpendra Kumar et al. (2025) used YOLOv8 on 399 images, reporting 74.2% accuracy. Despite real-time capability, 

the small dataset caused uneven class performance. The study highlights the necessity of high-quality annotation for 

improved results. 

Vishnu Kant et al. (2024) developed a hybrid CNN achieving 97% accuracy on Kaggle X-ray data. The system is 

restricted to binary classification and offers no localization. Future work aims at integrating bounding-box prediction for 

better clinical relevance. 

Nishat Vasker et al. (2023) built a lightweight CNN with softmax classification obtaining 92.44% accuracy. Although 

fast for real-time use, it is limited by small dataset size and binary output. The authors propose using transfer learning to 

enhance model performance. 

H. A. Vishwa Dharshenee et al. (2025) applied ViT and DETR to hand-fracture datasets, obtaining high detection 

performance (accuracy unspecified). However, the extremely high computational cost limits real-world deployment. 

Efficiency-focused variants of ViT are suggested for future work. 
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Aditya Kumar et al. (2024) applied machine-learning classifiers achieving 94% accuracy with lightweight models. 

Handcrafted features limit detection of subtle fractures. Deep-learning-based feature extraction is recommended for 

improved sensitivity. 

 

Sajiv G et al. (2025) developed the NLCL hybrid CNN achieving 98.66% accuracy on Kaggle data. While effective 

across multiple categories, training demands high computational power. Future enhancements may include model 

optimization for faster inference. 

Aditya Kumar et al. (2024) implemented an augmented AlexNet achieving 96% accuracy on 10,581 images, but struggles 

with fine-grained fracture detection and is considered outdated. The study recommends migrating to modern architectures 

like EfficientNet. 

Gunjan Shandilya et al. (2024) optimized AlexNet to reach 97.12% accuracy for multi-region X-rays. The system lacks 

localization and offers limited explainability. The authors suggest integrating attention layers to improve interpretability. 

I. Sudha et al. (2025) integrated CNN with a modified Canny edge detector to achieve 96.2% accuracy, providing strong 

visual justification. High-quality data and powerful GPUs are required. Further research may explore lightweight edge-

detection hybrids. 

 

Jay Kotecha et al. (2024) implemented MobileNetV2 achieving 97% accuracy on custom X-rays, suitable for edge 

devices but limited in detecting subtle fractures. The authors recommend enhanced preprocessing to capture finer details. 

Naveen Kumar et al. (2024) used Faster R-CNN, obtaining 94.5% accuracy with strong localization. Slower inference 

and high GPU requirements are drawbacks. Efficient variants such as Faster R-CNN-lite may improve deployment 

feasibility. 

Aisha Rahman et al. (2025) tested YOLOv5 and YOLOv8, achieving 98% accuracy with strong real-time generalization. 

Large labeled datasets are essential. The authors propose domain-adaptation techniques to reduce data dependency. 

Abhimanyu Verma et al. (2024) applied YOLOv4 on humerus X-rays, achieving 95% accuracy. The model is limited to 

a single anatomical region. Expanding to multi-region datasets is recommended. 

Ahmet Ilhan et al. (2025) evaluated EfficientNetV2-Small and other lightweight models, reaching 98.4% accuracy on a 

2,384-image dataset. Lack of localization and limited fracture types constrain usefulness. The study proposes integrating 

detection modules for better clinical relevance. 

 

K. Rama Krishna Reddy et al. (2024) trained a DNN on 100 X-rays, achieving 92.44% accuracy. The very small dataset 

prevents generalization. The authors emphasize enlarging the dataset for reliable outcomes. 

Nesrine Affes et al. (2025) used YOLOv7 achieving 64.4% accuracy on hand/forearm X-rays, with fast inference but 

low recall due to annotation quality issues. Improved labeling consistency is required for achieving higher performance. 

Nay Thazin Htun et al. (2024) utilized fuzzy enhancement with ensemble CNNs, achieving 98.85% accuracy on MURA 

elbow images. The model is computationally expensive and region-specific. Generalization across multiple anatomical 

regions is suggested for future improvement. 

Happy Kumar Sharma et al. (2025) integrated ResNet-50, SE blocks, and gcForest, achieving 96.2% accuracy and 98.6% 

AUC. The system is classification-only with limited fracture-type differentiation. The authors propose adding 

segmentation modules for richer analysis. 

Alina Maryum et al. (2024) applied ResNet-50 with augmentation on Kaggle data, achieving 99.82% accuracy. 

Overfitting concerns arise due to extremely high accuracy. External validation on clinical data is strongly recommended. 

Ruhi S. S. F. et al. (2024) introduced an attention-based transfer-learning model reaching 93.5% accuracy. Lack of clear 

dataset details limits reproducibility. More transparent dataset reporting is recommended to strengthen replicability. 

Preeti P. Kale et al. (2024) developed an optimized CNN achieving 95.48% accuracy on synthetic data and 90.78% on 

real wrist X-rays. The reliance on synthetic samples reduces clinical reliability. The study suggests incorporating 

generative models for better synthetic-real alignment. 

 

Arpan Tripathi et al. (2024) proposed an unsupervised transporter framework for fracture-related ultrasound features. 

While avoiding manual annotation, accuracy was unspecified and dataset size was very small. The authors highlight the 

need for larger ultrasound datasets to validate performance. 

Altaf Uddin et al. (2024) combined MobileViT with YOLOv8, achieving up to 99% accuracy on Kaggle datasets. 

Performance is strong but limited to selected anatomical regions. Future work may extend the pipeline to whole-body 

fracture detection. 

Recent studies on bone fracture detection highlight the growing effectiveness of deep learning models in automating 

classification and localization tasks across various bone types. Researchers have explored CNNs, hybrid architectures, 

and advanced object detectors like YOLO and transformers to improve reliability, speed, and real-time clinical 

usefulness. Overall, the collective work shows strong progress toward AI-assisted diagnosis, enhanced workflow 

efficiency, and more consistent fracture identification in medical imaging. 
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IV. SYSTEMATIC ANALYSIS 

 

Bone fracture detection and classification shows that deep learning methods consistently outperform traditional 

diagnostic techniques by learning complex bone patterns directly from imaging data. Studies across CNN-based models, 

hybrid classifiers, and advanced object detectors demonstrate strong capability in identifying diverse fracture types with 

improved consistency and reduced human error. Techniques such as data augmentation, transfer learning, and 

hierarchical classification further enhance model robustness. Overall, deep learning presents a reliable and efficient 

framework for automated fracture assessment in clinical practice. 

 

Table 1: Comparison Analysis 

 

Reference 

No.  

Methodologies Dataset Accuracy  Merits  Demerits  

Wenlong 

Wu et al.[1] 

Faster R-CNN + Bi-

Directional Feature 

Pyramid Module (Bi-

FPM), ResNeXt-101 

backbone 

Kaggle Bone 

Fracture Dataset 

(150 training, 

350 testing) 

88.4% Strong multi-scale 

feature fusion 

Better small fracture 

detection Improved 

localization  

High computational 

cost. 

Slower inference   

Leena Bisht 

et al. 

[2] 

TensorFlow/Keras 

CNN, data 

augmentation, 

preprocessing, RPN-

based detection 

 X-ray datasets 

(MURA,RSNA, 

clinical images) 

92.8% Easy , general-

purpose CNN 

performance and 

helps radiologists 

reduce workload 

Dependent on image 

quality 

Misses micro-

fractures sometimes  

Brikila J et 

al.[3] 

YOLOv8 object 

detection + OpenCV 

for visualization 

Labeled fracture 

vs. non-fracture 

X-ray dataset 

91.6% Real-time detection, 

high accuracy , high 

efficiency  

Struggles with 

hairline fractures. 

Requires large 

annotated datasets  

Shanvi 

Chauhan et 

al. [4] 

CNN-AlexNet for 

fractured vs. non-

fractured 

classification 

10,580 X-ray 

images (9,246 

train, 828 val, 

506 test) 

96.2%  High classification 

accuracy 

Reliable 

generalization  

AlexNet is outdated 

Not ideal for real-

time detection  

Spoorthy 

Torne et 

al.[5] 

VGG-16, VGG-16 

with Random Forest, 

ResNet50 with SVM, 

and EfficientNetB0 

with XGBoos 

Kaggle X-ray 

dataset of 1,129 

images 

96.21% Strong VGG-based 

performance 

Dataset imbalance 

and small dataset size 

S. 

Padmakala 

et al.[6] 

Custom CNN vs. 

MobileNetV2 vs. 

ResNet50 (transfer 

learning) 

Kaggle 

Orthopedic X-

ray dataset  

73.18% Comprehensive 

model comparison 

MobileNetV2 

highly efficient and 

accuracy 

Only binary 

classification 

Limited dataset 

diversity 
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Devashish 

Pradeep 

Khairnar et 

al.[7] 

CNN-based deep 

learning model with 

preprocessing + 

augmentation 

Labeled fracture 

/ non-fracture X-

ray images  

94.87% Good generalization 

High fracture-

recognition 

accuracy  

Difficulty in micro-

fractures 

Moderate 

computational cost  

Tushar 

Waghulde et 

al. [8] 

Hybrid YOLO-NAS 

(neural architecture 

search + YOLO 

detection) 

Annotated hand 

X-ray dataset 

(custom) 

98.36% Fast inference. 

Detects subtle hand 

fractures 

 

Requires high-quality 

annotations. 

High GPU usage 

during training 

 

Mohammed 

Shuaib et 

al.[9] 

Multi-stage FDHN 

with preprocessing + 

CNN feature 

extraction 

Orthopedic X-

ray dataset 

(custom multi-

region) 

96.12% Works across 

multiple bone 

regions. 

Interpretable 

outputs  

Lower precision for 

complex fractures. 

Longer training time 

. 

Nivethitha V 

et al.[10] 

YOLOv9 hierarchical 

detection + Grad-

CAM++ 

explainability 

Human Bone 

Fractures Multi-

modal Image 

Dataset 

(HBFMID) 

93.50%  Highly accurate 

multi-bone 

detection. 

Visual 

explainability   

Requires large 

labeled datasets. 

High computational 

complexity  

Khushi 

Mittal et 

al.[11] 

MobileNet CNN 

using depthwise-

separable 

convolutions 

4,906 X-ray 

images 

98%  Lightweight and fast 

Suitable for 

mobile/edge devices  

Classification only 

No multi-class 

fracture typing  

H. Mewada 

et al.[12] 

CNN , LSTM and 

CNN-LSTM hybrid 

Bone Fracture 

Multi-Region X-

ray Dataset 

95.68% Captures both 

spatial + temporal 

fracture 

characteristics 

Requires 

sequential/temporal 

data preparation, 

more expensive 

Salma Ali 

Alqazzaz et 

al.[13] 

YOLOv8s deep 

learning model multi-

class fracture 

classification. 

Roboflow Bone 

Fracture Dataset 

 93.4% Fast inference, 

strong multi-class 

detection, good 

precision and recall. 

Small dataset, class 

imbalance, limited 

generalization. 

Pratham 

Kaushik et 

al.[14] 

Custom CNN with 

convolution, binary 

fracture classification. 

Custom 

Radiography 

Dataset (No 

official name) 

98% High accuracy, 

strong 

precision/recall, 

lightweight 

architecture. 

Small dataset, only 

binary classification, 

may over fit. 

Komati 

Sushma et 

al.[15] 

Multi-scale feature 

fusion CNN (parallel 

convolutional 

pathways). 

10,581 X-ray 

images (9,246 

train; 829 

validation; 506 

test). 

99.8%  Excellent detail 

capture, robust 

across diverse 

images, high 

generalization 

High computational 

cost, extremely high 

accuracy , overfitting 

risks,  

N. Sathish 

Balaji et 

al.[16] 

SVM classifier with 

Weighted Local 

Binary Pattern 

(WLBP) features + 

preprocessing 

X-ray dataset  98.42%  Lightweight, 

interpretable, low 

computational load. 

Less effective for 

complex fractures, 

limits scalability, not 

suitable for multi-

class tasks. 
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A. 

Yoganathan 

et al.[17] 

Augmented ResNet-

50 CNN, 

preprocessing, 

Softmax 

classification, 10-fold 

cross-validation 

10,000 annotated 

X-ray images 

(CNN) + 26,000 

images  

95.6%  Higher accuracy 

than SVM, better 

severity 

classification, 

reduced false 

positives, robust 

performance 

Requires large 

datasets, high 

computational cost, 

not optimized for 

real-time deployment 

Pushpendra 

Kumar et 

al.[18] 

Used: YOLOv8 deep 

learning architecture, 

CSP backbone, 

PANet, GPU-based 

training, object 

detection 

399 images, 557 

annotated 

fracture 

instances 

74.2% High speed, real-

time detection, 

reliable results, 

works well in 

constrained 

environments 

Smaller dataset limits 

generalization, 

uneven performance 

across classes. 

Vishnu Kant 

et al. 

[19] 

Hybrid CNN Kaggle-based 

fracture dataset  

97% Very high accuracy, 

strong edge 

detection, improved 

robustness with 

augmentation 

extended training. 

Model has 6.6M 

parameters, only binary 

classification, no 

localization capabilities 

Nishat 

Vasker et 

al.[20] 

 CNN with Conv–

Pooling layers 

CNN with 

Conv–Pooling 

layers, softmax 

classifier, 

92.44% Good performance, 

real-time 

deployment 

possible, reduced 

overfitting 

Dataset very small, 

model limited to 

binary classification, 

lower accuracy. 

H.A. Vishwa 

Dharshenee 

et al.[21] 

 Vision Transformer 

(ViT), Detection 

Transformer (DETR), 

patch embedding 

Large hand-

fracture X-ray 

dataset 

High Excellent for subtle 

& complex 

fractures, superior 

localization 

Very high 

computational 

demand, needs very 

large datasets 

Aditya 

Kumar et 

al.[22] 

Machine Learning 

classifiers + 

preprocessing + 

feature extraction 

Custom X-ray 

dataset 

94% Lightweight and 

easy to deploy 

Good accuracy for 

basic fracture 

detection  

Handcrafted features 

limit performance 

Weaker on subtle 

fractures  

Sajiv G et 

al.[23] 

NLCL hybrid deep-

learning model + 

CNN feature 

extraction + 

classification logic 

Kaggle Bone 

Fracture Dataset 

98.66% Very high accuracy 

Handles multiple 

fracture categories 

. 

Requires high 

computation for 

training 

Complex model 

structure  

Aditya 

Kumar et 

al.[24] 

AlexNet CNN + data 

augmentation + 

preprocessing 

10,581-image 

custom multi-

region X-ray 

dataset 

96% Works on multiple 

anatomical regions 

High consistency 

and reliability  

AlexNet is outdated 

Not suitable for tiny 

fracture detection  

Gunjan 

Shandilya et 

al.[25] 

Optimized AlexNet 

with transfer learning 

Bone Fracture 

MultiRegion X-

ray Dataset  

97.12% 

 

  

High accuracy 

Reliable binary 

classification  

No fracture 

localization 

Limited explainability  

 I. Sudha et 

al.[26] 

Hybrid CNN + 

modified Canny 

preproc 

Large multi-

region 

96.2% High precision and 

recall 

Requires powerful 

GPU Needs high-

quality labeled data  
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radiographic 

dataset  

Provides visual 

explanations  

Jay Kotecha 

et al.[27] 

MobileNetV2 CNN + 

transfer learning + 

preprocessing + 

augmentation 

Custom 

annotated X-ray 

dataset  

97% Lightweight and 

fast. 

Suitable for 

mobile/edge 

devices.  

Struggles with very 

subtle fractures. 

Requires high-quality 

images.  

Naveen 

Kumar et 

al.[28] 

Faster R-CNN + 

region proposal 

networks + bounding-

box detection 

Custom X-ray 

dataset with 

annotated 

fracture regions 

94.5% Good localization 

accuracy. 

Useful for 

telesurgery/remote 

diagnosis.  

Slower than YOLO 

models. 

High GPU 

requirement. 

. 

Aisha 

Rahman et 

al.[29] 

YOLOv5 & YOLOv8 

object detection 

models 

Multi-bone X-

ray dataset 

(wrist, humerus, 

femur, forearm) 

98% Real-time detection. 

Strong multi-bone 

generalization  

Requires large 

labeled datasets. 

High computational 

cost  

Abhimanyu 

Verma et 

al.[30] 

YOLOv4 deep 

learning detector + 

preprocessing + 

annotation 

 Custom 

humerus X-ray 

dataset  

95%  Real-time inference. 

Good detection for 

humerus fractures. 

Limited to humerus 

region. 

Needs high-quality 

annotations.  

Ahmet Ilhan 

et al. 

[31] 

MobileNetV3-Small, 

EfficientNetV2-

Small, ShuffleNetV2 

with transfer learning 

X-ray Bone 

Fracture Dataset 

(2,384 images, 

simple vs. 

comminuted) 

98.4% High accuracy with 

lightweight models. 

Good for 

classification tasks. 

Only two fracture 

types supported. 

No localization 

(classification-only) 

. 

K. Rama 

Krishna 

Reddy et 

al.[32] 

Deep Neural Network 

(DNN) + 

preprocessing + 

augmentation 

 Custom dataset 

of 100 X-ray 

bone images 

92.44% Good performance 

on small dataset. 

Handles noisy 

medical images  

Very small dataset. 

Does not handle 

multi-class fractures  

Nesrine 

Affes et al. 

[33] 

YOLOv7 object 

detection + bounding 

box localization 

Custom 

annotated hand 

& forearm X-ray 

dataset 

64.4% Strong precision. 

Fast real-time 

inference  

Low recall (misses 

fractures). 

Needs high-quality 

annotations  

Nay Thazin 

Htun et al. 

[34] 

Fuzzy histogram 

equalization + 

Ensemble CNN 

(ResNet-50 + VGG-

16) 

MURA Elbow 

X-ray Dataset 

(2,320 images) 

98.85% 

(stated 

earlier) 

Enhanced image 

clarity using fuzzy 

logic. 

Ensemble CNN 

improves robustness  

High computational 

cost. 

Only elbow region 

covered  

Happy 

Kumar 

Sharma et 

al.[35] 

ResNet-50 + SE 

Networks + gcForest 

+ adaptive 

preprocessing 

Kaggle Bone 

Fracture 

Detection 

Dataset 

96.2% High accuracy & 

fast inference (32 

ms). 

Strong AUC-ROC 

(98.6%)  

Classification-only 

(no localization). 

Limited fracture-type 

differentiation 

 

. 
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Alina 

Maryum et 

al.[36] 

ResNet-50 + resizing 

+ under-sampling + 

augmentation 

Kaggle “Fracture 

Classification 

Dataset” 

99.82% Extremely high 

accuracy.Effective 

handling of 

imbalance. 

AlexNet is older; 

consider modern 

alternatives. 

Ruhi S. S. F. 

et al. [37] 

Attention-based 

transfer learning + 

deep CNN + feature 

localization 

Not specified  93.5% Fracture-focused 

feature extraction. 

Strong classification  

for radiographic 

images  

Dataset not described, 

limiting 

reproducibility  

Preeti P. 

Kale et al. 

[38] 

Adaptive 

preprocessing + 

dynamic threshold 

segmentation + 

optimized CNN + 

Softmax/SVM/LR/RF 

classifiers 

1: 480 synthetic 

3D bone model 

images 

2: 193 real wrist 

X-ray images  

95.48% 

(Dataset-

1) 

90.78% 

(Dataset-

2)  

Better accuracy than 

baseline methods. 

Efficient 

segmentation using 

dynamic 

thresholding  

Synthetic dataset 

reduces real-world 

reliability. 

Lower accuracy on 

real X-rays  

 Arpan 

Tripathi et 

al.[39] 

Transporter neural 

network + local phase 

bone probability 

mapping + TGA 

compensation + FF-

CNN  

Ultrasound wrist 

dataset from 30 

pediatric subjects 

(accuracy 

not in 

specified) 

No need for 

annotated training 

data (unsupervised). 

Highly robust to 

ultrasound noise  

Very small dataset. 

Applies only to 

ultrasound (not X-

rays)  

Altaf Uddin 

et al.[40] 

MobileViT, ViT, 

CNN, ConvNeXt, 

VGG16/19, and 

YOLOv8 

Kaggle datasets 

the Bone 

Fracture 

Detectionon 

Project 

99%  balanced datasets, 

high accuracy, and 

lightweight 

MobileViT 

efficiency 

YOLOv8 detection is 

tested only on X-rays 

with limited 

anatomical diversity 

 

 

Table 2: Technologies used analysis 

 

Technology Used Percentage (%) Ref Nos. 

CNN-based Models 27.5 % [2] [4] [6] [7] [11] [12] [14] [15] [17] 

[20] [28] 

YOLO / Object Detection Models 22.5 % [1] [3] [8] [10] [13] [18] [25] [30] [33] 

Hybrid Deep Learning Models 17.5 % [5] [9] [19] [23] [26] [34] [35]  

Transformer / ViT-based Models 15 % [21] [27] [32] [36] [37] [40] 

SVM / Traditional ML Models 10 % [16] [22] [38] [39] 

Unsupervised, Classical ML 7.5 % [24] [29] [31]   
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Fig 2: Technologies used analysis  

 

V.   CONCLUSION AND FUTURE WORKS  

 

Deep learning is really changing the way we handle bone fracture detection in medical imaging. These models pick up 

on complex patterns fast, spot all sorts of fractures even the tricky ones that overlap or barely show up and they’re often 

more accurate and consistent than the old manual methods. They don’t miss things, and that means doctors can make 

quicker, better decisions for their patients. Plus, with the help of object detection, transfer learning, and hybrid models, 

these systems work well across different types of images and fractures. As AI keeps improving, it’s becoming a must-

have for radiologists. It lightens their workload, cuts down on mistakes, and gives reliable answers especially in busy 

hospitals or places where resources are tight. Simply put, deep learning is pushing bone fracture diagnosis to be faster, 

more accurate, and a lot more accessible, and that translates directly to better care for patients. 

 Looking ahead, there’s still room to grow. Building bigger, high-quality datasets will help tackle problems with data 

imbalance and all the different ways images are taken. Combining information from CT, MRI, and patient records should 

make diagnoses even stronger. We also need models that hold up well across different hospitals and devices, so things 

like domain adaptation and federated learning are important. Making AI more transparent—with explainable results, 

uncertainty estimates, and easy-to-read visuals will boost trust among doctors. Finally, getting these tools to run in real 

time on low-power devices, in the cloud for remote care, or in systems where humans and AI work together will help 

bring deep learning into everyday clinical routines. 
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