

Impact Factor 8.471

Refereed journal

Vol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.1411145

"SMART MONITORING AND CONTROL SYSTEM FOR HOME AUTOMATION"

Prof. Divya B N¹, Nandini R², Nikitha S³, Ningaraj⁴, Prakruthi V⁵

Assistant Professor, ECE, East West Institute of Technology, Bengaluru, India¹ Student, ECE, East West Institute of Technology, Bengaluru, India²⁻⁵

Abstract: This project introduces a smart home automation system built on Internet of Things (IoT) technology. It connects everyday household devices through sensors and microcontrollers, enabling them to exchange data and operate intelligently. The system is developed using the Arduino IDE for collecting and displaying data, as well as for remotely controlling appliances. A NodeMCU ESP8266 module serves as the main controller, handling both sensing operations and wireless communication. The goal of this project is to design an efficient and user friendly platform that automates home appliances, reduces manual effort, and promotes energy conservation while enhancing overall comfort and convenience

Keywords: Microcontrollers, Arduino IDE, Wireless communication, Energy conservation

I. INTRODUCTION

The rapid growth of digital technology has changed the way people interact with their surroundings, making homes more comfortable and responsive. This project explores an intelligent living setup where everyday appliances are capable of performing actions automatically with minimal user involvement. The system connects several electronic components through a digital communication network that allows them to share information and respond to environmental changes. The purpose of this innovation is to simplify household operations while conserving energy and improving safety. Such a setup can dim or brighten lights according to room occupancy, manage indoor climate based on temperature variations, and provide alerts when unusual movements are detected. These features together create a living environment that is both convenient and sustainable. In this study, a small-scale working model has been built using control circuits, environmental detectors, and wireless modules. The network continuously gathers data from its surroundings, processes it, and instructs connected devices to perform the required tasks. This approach demonstrates how modern electronic design can convert a normal residence into an intelligent and adaptable home that enhances comfort, efficiency, and resource management.

II. LITERATURE REVIEW

In [1] paper, "IoT-Based Smart Home Automation System" published in the International Research Journal of Modernization in Engineering, focuses on developing an efficient and low-cost system that enables users to monitor and control their household appliances remotely through the Internet of Things (IoT). The processing layer is built using the NodeMCU (ESP8266) microcontroller, which acts as the central controller to process sensor data and communicate with the cloud via Wi-Fi. Users can turn appliances on or off, receive real-time alerts about gas leaks or motion detection, and automate appliances based on preset conditions—for example, turning on a fan when the temperature exceeds a certain threshold. The results show that the prototype functions efficiently with low latency, high reliability, and minimal power consumption. The authors conclude that IoT-based smart home automation provides a scalable, secure, and cost-effective solution for enhancing comfort, energy efficiency, and safety in modern homes.

In [2] paper, "Efficient and Secure IoT Based Smart Home Automation Using Multi-Model Learning and Blockchain Technology". The authors build their automation intelligence by combining classical machine learning and deep models (for example, random forests together with convolutional neural networks) so the system can both classify device states and make programmatic control decisions from IoT sensor streams with higher reliability than a single model alone. The implementation targets economical, IP-agnostic devices (edge/IoT gateways) and reports improved decision accuracy and stronger resilience to unauthorized access in experiments compared with prior single-model or centralized solutions. Overall, the paper's contribution is a hybrid design that aims to improve both operational intelligence (through multi-model learning) and system security/privacy (through blockchain), making it suited to real-world smart-home deployments where both accuracy and trustworthiness matter.

In [3] paper, "IoT Networking Technologies for Smart Home Automation Applications" provides a comprehensive analysis of the communication and networking technologies that enable Internet of Things (IoT)- based smart home systems. The paper also outlines the architecture of a smart home network, where IoT devices communicate through gateways to cloud-based or local control systems for automation tasks like lighting, security, and energy management.

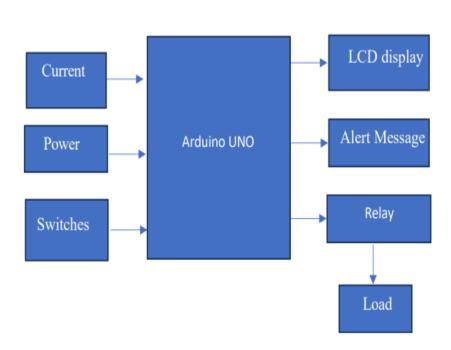
IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471

Refereed journal

Vol. 14, Issue 11, November 2025


DOI: 10.17148/IJARCCE.2025.1411145

Additionally, the authors address challenges such as network congestion, latency, security vulnerabilities, and standardization issues, proposing hybrid networking approaches that combine multiple protocols to optimize performance.

In [4] paper, "IoT-Based Smart Home Automation System" focuses on the design and implementation of a smart home system that relies heavily on sensors integrated through Internet of Things (IoT) technology. This data is then processed to automatically adjust home appliances, improving energy efficiency, cort, and security. The system uses low-cost hardware components like ESP8266 microcontrollers and Raspberry Pi boards, which serve as gateways between the sensors and the cloud-based control platform. Through this setup, users can monitor real-time data and control devices remotely via mobile or web applications. The paper highlights how the sensors act as the foundation of automation by continuously monitoring environmental conditions and triggering appropriate responses, such as turning lights on when motion is detected or adjusting room temperature based on humidity and heat readings. Overall, the study demonstrates how IoT sensors can create an intelligent, efficient, and user-friendly home environment with enhanced automation and control capabilities.

In [5] paper, The review and survey papers on IoT for Home Automation to provide comprehensive analyses of the technologies, architecturesomf and challenges involved in developing IoT-based smart home systems. Garg and Gupta focus on comparing various IoT frameworks, communication protocols (such as Wi-Fi, ZigBee, Bluetooth, and Z-Wave), and control platforms used for home automation, emphasizing how these technologies impact performance, energy efficiency, cost, and scalability. Their review also highlights the importance of interoperability among devices from different manufacturers and discusses the role of cloud and edge computing in managing smart home data. They evaluate different architectures, including centralized and distributed systems, and address critical issues such as data privacy, network security, and user authentication. Together, these reviews conclude that while IoT technologies have greatly enhanced the automation, monitoring, and control of smart homes, future systems need to focus on improving security, energy efficiency, interoperability, and real-time responsiveness to achieve fully reliable and intelligent home automation environments.

III. METHODOLOGY

Working Principle:

The methodology represented in this diagram can be described as follows:

- Inputs (Current, Power, Switches) are read by the Arduino UNO.
- The Arduino UNO processes these inputs.
- Outputs are generated based on the processing to control the LCD display, send alert messages, control a relay (which in turn controls a load).

Impact Factor 8.471

Representation February F

DOI: 10.17148/IJARCCE.2025.1411145

IV. HARDWARE AND SOFTWARE DESCRIPTIONS

HARDWARE REQUIREMENTS

Arduino ESP 32

ESP 32/Genuine Uno is a microcontroller board based on the ATmega328P. It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz quartz crystal, a USB connection, a power jack, an ICSP header and a reset button. It contains everything needed to support the microcontroller; simply connect it to a computer with a USB cable or power it with an AC-to-DC adapter or battery to get started. You can tinker with your UNO without worrying too much about doing something wrong, worst-case scenario you can replace the chip for a few dollars and start over again. "Uno" means one in Italian and was chosen to mark the release of ESP 32 Software (IDE) 1.0. The Uno board and version 1.0 of ESP 32 Software (IDE) were the reference versions of ESP 32, now evolved to newer releases. The Uno board is the first in a series of USB ESP 32 boards, and the reference model for the ESP 32 platform; for an extensive list of current, past or outdated boards see the ESP 32 index of boards.

Figure: Arduino ESP 32

LCD Display

A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals. Liquid crystals do not emit light directly, instead using a backlight or reflector to produce images in color or monochrome. LCDs are available to display arbitrary images (as in a general-purpose computer display) or fixed images with low information content, which can be displayed or hidden, such as preset words, digits, and 7-segment displays, as in a digital clock.

Current Sensor

A current sensor is a device that detects and measures the current flowing through a conductor, converting it into a readable signal for monitoring, control, or protection purposes. It's commonly used in power monitoring, automation, and protection applications, such as tracking energy consumption, controlling electrical systems, and detecting overcurrent conditions. Current sensors come in various types, including Hall effect sensors, current transformers, and shunt resistors, and are essential in industrial, commercial, and residential settings for optimizing energy efficiency and ensuring electrical safety.

Relay

A relay is an electrically operated switch that controls the flow of electrical current to a circuit or device. It consists of a coil and contacts, where a small input signal energizes the coil, causing the contacts to open or close, thereby controlling a larger electrical load. Relays are commonly used in automation, control systems, and protection applications, such as turning devices on/off, implementing safety shutdowns, or isolating circuits. They're essential in industrial, commercial, and residential settings for managing electrical systems, enhancing safety, and improving efficiency.

Load (fan ,bulb)

A load refers to any device or appliance that consumes electrical power. For example, a fan and a bulb are common household loads. When connected to a power source, they convert electrical energy into useful work - the fan into airflow and the bulb into light. Loads can be categorized into resistive (like bulbs) and inductive (like fans) types, each requiring specific handling in electrical circuits. Understanding load characteristics is crucial for designing efficient electrical systems, ensuring safety, and optimizing energy consumption.

Power Supply

A power supply is a crucial component that provides electrical power to devices and circuits. It converts input power

Impact Factor 8.471

Refereed journal

Vol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.1411145

from a source, such as a wall outlet or battery, into a stable and regulated output voltage and current suitable for the load. Power supplies can be linear or switch-mode, with varying levels of efficiency, reliability, and output quality. They're used in a wide range of applications, from consumer electronics and industrial systems to medical devices and renewable energy systems. A reliable power supply ensures the proper functioning, safety, and longevity of electrical devices.

SOFTWARE REQUIREMENTS

The Arduino software (Arduino IDE) is an open-source platform that allows users to write, compile, and upload code to Arduino microcontroller boards. It is widely used for projects involving embedded systems and IoT devices, like an IV bag monitoring system.

Embedded C is one of the most popular and most commonly used Programming Languages in the development of Embedded Systems. Embedded C is a specialized version of the C programming language designed for developing software for embedded systems, which are compact computing devices integrated into hardware.

V. RESULTS

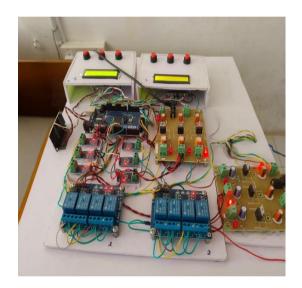


Figure: Complete Model

Figure: Message Received on Telegram

DOI: 10.17148/IJARCCE.2025.1411145

VI. CONCLUSION

The Smart Monitoring and Control System for Home Automation is a practical balance between simplicity, safety, and intelligence. It achieves reliable protection against overloads, ensures uninterrupted operation of higher-priority devices, and provides valuable monitoring data for energy awareness. While the system is currently designed for small-scale home appliances, the same methodology can be extended to larger or more complex systems, making it a strong foundation for advanced smart energy management solutions.

REFERENCES

- [1.]. Various (IRJMETS issues), "IOT-Based Smart home Automation", Several project papers presenting ESP32/ESP8266-based prototypes and implementation notes for real-time monitoring & control,2025.
- [2.]. N. Alturki; R. Alharthi; M. Umer; et al, "IoT Based Smart Home Automation Using Multi-Model Learning and Blockchain Technology", Efficient and Secure IoT Based Smart Home Automation Using Multi-Model Learning and Blockchain Technology, 2024.
- [3.]. V. A. Orfanos; S. D.Kaminaris; P.Papageorgas; et al, "IoT Networking Technologies for Smart Home Automation Applications", Technical review focused on networking stack choices (Wi-Fi, Zigbee, Thread, MQTT) and trade-offs for latency, power and reliability in smart homes, 2023.
- [4.]. Cristina Stolojescu-Crisan; Calin Crisan; Bogdan-Petru Butunoi, "IoT-Based Smart Home Automation System Sensors", IoT home automation architecture (sensors, edge devices, cloud, UI) with experimental validation. Good conceptual & implementation reference, 2021.
- [5.]. Multiple authors (Garg & Gupta, Talal Alsharari) et al, "Reviews & comparative surveys on IoT for home automation", Articles summarizing technologies common sensors, protocols, security/privacy challenges, and energy management strategies useful background material,2020.