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Abstract: Phishing and smishing attacks have rapidly increased in digital communication platforms, exploiting user trust 

to steal personal and financial information. Traditional blacklist and rule-based detection systems lack adaptability and 

fail to detect evolving or zero-day attacks. Although deep learning has shown promise in text-based threat detection, 

existing research often focuses on a single architecture, lacks real-world datasets, or provides limited benchmarking 

across models. To address these gaps, this study presents a comparative evaluation of three deep learning models—RNN-

LSTM, RNN-GRU, and GloVe-enhanced LSTM—for phishing and smishing text classification. A dataset of 27,000 real-

world messages, collected from cybersecurity units and extended with controlled synthetic samples, was preprocessed 

using tokenization, stemming, padding, and semantic embeddings. Each model underwent structured hyperparameter 

optimization with dropout, L2 regularization, and early stopping to enhance generalization. Experimental results show 

that the GloVe-LSTM model achieved the highest performance with 90.07% test accuracy and a 90.16% F1-score, closely 

followed by tuned LSTM and GRU models. Statistical validation using a McNemar test confirmed no significant 

difference in model performance (p > 0.05). These findings demonstrate that semantic embeddings significantly improve 

phishing and smishing detection accuracy, supporting scalable deployment in cybersecurity systems such as email 

filtering, telecom SMS gateways, and digital fraud prevention platforms. 
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I. INTRODUCTION 

 

Phishing and smishing attacks pose significant threats to individuals, organizations, and critical infrastructure worldwide. 

Phishing relies on deceptive emails, while smishing targets victims via SMS, often impersonating trusted entities to 

extract sensitive information or install malicious software.  

Traditional detection systems rely on blacklists or handcrafted features derived from message content or URLs. However, 

these methods are inadequate against zero-day attacks or sophisticated adversarial campaigns that leverage subtle textual 

manipulations to bypass filters. 

Deep learning, particularly recurrent neural networks (RNNs) like Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU), provides a powerful alternative for understanding sequential dependencies in text. Embedding 

methods such as GloVe allow models to capture rich semantic relationships, enabling better generalization across varied 

linguistic patterns. 

This paper investigates the effectiveness of LSTM, GRU, and GloVe-augmented LSTM models for phishing and 

smishing message classification. We collected and annotated a comprehensive dataset reflecting real-world attack 

patterns. Hyperparameter tuning was systematically applied to each model to ensure fair performance comparison. Our 

study addresses three key questions: 

1. How do LSTM and GRU models compare in phishing/smishing detection? 

2. What impact does integrating GloVe embeddings have on detection performance? 

3. How do different hyperparameter settings influence model generalization? 

Our contributions are: 
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• A curated phishing/smishing dataset, including challenging, evasive samples. 

• A systematic comparative study of LSTM, GRU, and GloVe+LSTM models. 

Detailed hyper parameter exploration to identify optimal configurations 

 

 
Figure 1: Flowchart of study 

 

As shown in Figure 1, describes the workflow of research study  

 

II. LITERATURE REVIEW 

 

[1] Author proposed a phishing detection framework utilizing CNN, LSTM, and hybrid LSTM-CNN architectures. Their 

deep learning models demonstrated impressive accuracy, with CNN achieving 99.2%. The study emphasizes end-to-end 

feature learning and automation in phishing URL detection. This work validates the superiority of DL over ML in 

dynamic threat environments [1]. 

[2] Author explored the combination of LSTM and CNN models for phishing attack detection. Their fusion approach 

significantly outperformed individual models by capturing both spatial and temporal URL features. This study highlights 

the advantage of hybrid neural architectures in understanding malicious intent embedded within URLs [2]. 

[3] AntiPhishStack, a two-phase stacked generalization model that integrates ML and LSTM with character-level TF-

IDF for phishing URL detection. Using a meta-XGBoost classifier, their framework achieved 96.04% accuracy. The 

study addresses asymmetry in conventional methods by proposing a symmetrical learning approach [3]. 

[4] Implemented a comparative multimodel approach involving LSTM, Bi-LSTM, and GRU for phishing URL detection. 

Bi-LSTM emerged as the most accurate with 99% accuracy, emphasizing the benefit of bidirectional context in sequential 

URL analysis. The study offers architectural insights and real-time applicability for URL-based attacks [4]. 
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[5] the research conducted a performance comparison between GRU and BERT for phishing URL detection. GRU 

slightly outperformed BERT (98.35% vs 97.4%) while requiring fewer computational resources, recommending GRU 

for large-scale applications. The work adds practical insights for model selection in cyber-defense systems [5]. 

[6] A phishing detection model that analyzes webpage content text using NLP and deep learning techniques rather than 

URLs. By employing GloVe embeddings and sequential models (LSTM, BiLSTM, GRU, BiGRU), they preserved 

semantic-syntactic relationships in input text. BiGRU performed best with 97.39% accuracy, proving the effectiveness 

of context-aware text embeddings [6]. 

[7] Study investigated evasive techniques in SMS spam filtering using traditional and deep ML models. Their study 

introduced a large SMS spam dataset and evaluated model robustness against character-, word-, and sentence-level 

obfuscations. Results showed widespread vulnerability in existing models, urging stronger semantic-aware models 

resilient to adversarial manipulations [7]. 

[8] Study developed a hybrid CNN-LSTM model to detect SMS spam in both Arabic and English. The architecture 

leveraged CNN for local feature extraction and LSTM for sequence learning, outperforming traditional ML methods with 

98.37% accuracy. Their model effectively handled code-mixed environments, a frequent challenge in multilingual 

messaging [8]. 

[9] A deep learning-based intelligent framework for SMS and email spam detection. The system integrates deep RNN 

variants and attention-based mechanisms to address multilingual spam detection. Results indicate that the framework 

generalizes well across datasets and languages, enhancing adaptability in modern messaging platforms [9]. 

[10] Researcher conducted an extensive review of 30 machine learning-based studies focused on detecting email phishing 

attacks. The paper presents key features such as URL, header, and content-based analysis, highlighting performance 

across models like SVM, RF, and DL architectures. It identifies that while high accuracy is often achieved, many models 

are trained on limited or outdated datasets and lack robustness. The review also emphasizes the need for deep learning, 

ensemble techniques, and hybrid approaches to improve detection and generalizability [10]. 

 

2.1. Research gap: 

1. Lack of Unified models for Phishing and Smishing Detection 

Most existing studies address either phishing (typically via email or URL analysis) or smishing (via SMS text 

classification) independently. However, real-world cyber-attacks often span multiple communication channels 

simultaneously. A significant research gap exists in the development of a single unified model capable of detecting both 

phishing and smishing attacks in an integrated system. This limits the effectiveness of traditional approaches in handling 

evolving, multi-channel threat vectors. 

 

2. Limited Availability and Use of Real-Time, Self-Collected Datasets 

The majority of existing models are trained and evaluated on small-scale, outdated, or publicly available benchmark 

datasets such as the UCI SMS spam dataset or URL-based corpora. These datasets lack contextual diversity and do not 

reflect modern attack patterns, especially in local languages or regional settings. In contrast, the current research employs 

a self-collected, real-time dataset that includes phishing and smishing messages in realistic, user-generated formats, 

making it more representative of actual user environments. This addresses the critical issue of data generalizability and 

domain relevance in phishing/smishing detection. 

 

3. Absence of Fair and Systematic Comparative Evaluation across ML/DL Models 

Many reviewed papers assess only a limited number of algorithms (usually one or two), often without standardized 

evaluation criteria across datasets. Consequently, model performance cannot be reliably compared or generalized. The 

present study overcomes this limitation by systematically evaluating multiple machine learning and deep learning 

algorithms, including RNN-LSTM, RNN-GRU, and GloVe-LSTM, using the same dataset and metrics (accuracy, 

precision, recall, F1-score), thereby ensuring fair benchmarking and reproducibility. 

 

4. Over-Reliance on Text-Only Features without Multi-Modal Context 

Most existing models rely solely on textual features extracted from message bodies or URLs, ignoring other potentially 

informative signals such as sender metadata, language context, domain behavior, or embedded URLs. Moreover, multi-

modal integration (e.g., combining message content with metadata or external link behavior) is rarely explored. This 

study identifies this gap and highlights the potential of incorporating multi-feature or multi-view data sources to enhance 

detection accuracy. 

 

5. Inadequate Support for Regional, Code-Mixed, and Multilingual Messages 

Very few phishing/smishing detection studies account for regional languages or code-mixed messages, which are 

common in countries like India. Most models are trained on English-only datasets, and fail to perform on real-world data 

where users frequently communicate in Marathi-English or Hinglish-style messages. This study addresses the need to 
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build models that are linguistically adaptive and culturally contextual, ensuring more accurate detection in multilingual 

environments. 

 

III. MATERIALS AND METHODS 

 

a.  Data Collection and Preprocessing 

The initial phase of the research involves collecting a diverse set of email and SMS datasets, including phishing, smishing, 

and legitimate messages. The comprehensive dataset, spanning 2023 to 2025, consists of 25,000 records collected through 

visits to Cyber Cells like Sangli, Kolhapur and Pimpari- Chinchwad Pune and 2000 records synthetic data generated 

through Gen AI. Therefor total 27,000 records was present and initially, it’s in raw form like screenshots or in message 

format after that it’s transformed into datasets. The dataset underwent a structured data preprocessing pipeline to prepare 

it for phishing and smishing detection using machine learning algorithms. Initially, all text messages in the Message 

column were cleaned by removing irrelevant characters while retaining alphanumeric characters, currency symbols (₹, 

$, €, £), and punctuation marks commonly found in URLs (such as :, /, ., _, and -) using regular expressions. This ensured 

the preservation of important context such as web links, account references, and monetary values. The text was then 

converted to lowercase to maintain uniformity and eliminate case-based redundancy. Each message was tokenized into 

individual words, and Standard English stopwords were removed using the NLTK library. However, the word “not” was 

deliberately retained due to its importance in sentiment and intent detection, particularly in the context of security-related 

expressions. Following stopword removal, the Porter Stemmer was applied to reduce each word to its base form, helping 

to standardize variations of the same root word (e.g., "banking", "banked", and "banks" reduced to "bank"). The resulting 

cleaned and stemmed tokens were rejoined to form a coherent string for each message. These preprocessed messages 

were stored in a list called the corpus, which constituted the final, balanced textual dataset ready for feature extraction 

and subsequent machine learning modeling. After cleaning and preparing the text corpus, the next essential step in the 

preprocessing pipeline was converting the textual data into a numerical format suitable for machine learning and deep 

learning models. This was achieved by employing a Tokenizer, which was fitted on the cleaned corpus to build a 

vocabulary index. Each message was then transformed into a sequence of integers representing the index of each word 

in the vocabulary. Since the resulting sequences varied in length, padding was applied to ensure that all input sequences 

had a uniform length. This was done by identifying the maximum sequence length and padding shorter sequences with 

zeros at the end (post padding). This process ensured that the input data was structured and compatible for feeding into 

models such as deep neural networks, which require fixed-length input vectors. 

 

b.  Exploratory Data Analysis  

 

 
   Figure 2: Distribution of Labels                                           Figure 3: Message length by label 

 

Figure 2, titled "Distribution of Labels", and illustrates the frequency of each message category in the dataset. The 

distribution is perfectly balanced, with an equal number of instances—6750 messages each—for the four classes: 'Non 

Smishing', 'Smishing', 'Phishing', and 'Non Phishing'. This balanced dataset ensures that classification models will not be 

biased toward any particular label during training. 

Figure 3 presents a box plot comparing the message lengths across all four categories. Notably, 'Phishing' and 'Non 

Phishing' messages display significant variation in length, with outliers exceeding 25,000 characters. In contrast, 'Non 

Smishing' and 'Smishing' messages are relatively shorter and exhibit less variability, indicating a more uniform text 

structure. 

                        

 

 

 

 

     

Figure 4: Word Cloud for Non Smishing 
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 Figure 4 focuses on the most frequent words in messages labeled 'Non Smishing' (Label 0). The bar graph identifies "ur" 

as the most common term (appearing over 450 times), followed by "just", "know", and "like", each with over 275 

occurrences. Additional terms such as "day", "ll", "good", "time", "ok", and "gf" suggest that these messages are casual 

and conversational. The accompanying word cloud reinforces this observation, prominently featuring terms like "ur", 

"will", "know", "call", and "love", indicating the informal and friendly nature typical of legitimate, non-malicious 

personal messages. 

Figure 5 depicts the common words in 'Smishing' messages (Label 1). "Now" appears most frequently (nearly 2000 

times), followed by "free" (approx. 1500), and "com" (over 1250). Terms like "click", "http", "link", "account", and 

"information" are also highly prevalent, signifying the structured language used in fraudulent attempts. The associated 

word cloud prominently displays these deceptive terms, highlighting the urgency and manipulative language typical of 

smishing attacks that aim to lure victims into clicking malicious links or divulging sensitive information. 

 

 

 

 

 

 

 

 

 

 

 Figure 6 shows the top words found in 'Phishing' messages (Label 2). "Card" is the most frequently used word (over 

5300 occurrences), followed closely by "atm", "company", and "com" (each over 4900). Other common terms include 

"information", "email", "address", "contact", and "delivery", pointing to a focus on identity theft and personal data 

harvesting. Words like "payment", "bank", and "number" further emphasize the financial intent behind such messages. 

These linguistic patterns highlight the formal yet deceptive tone of phishing communications designed to prompt 

immediate action from recipients. 

Figure 7 captures the common vocabulary in 'Non Phishing' messages (Label 3). The word "isro" dominates with nearly 

10,000 mentions, followed by "ect" (~8000), and others like "com", "subject", "ray", and "hou". These terms suggest 

official or academic correspondence. The word cloud includes entries like "university", "language", "research", and 

"information", reflecting a formal and informative communication style typical of legitimate organizational emails. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 displays the top 20 most common 2-grams in 'Non Smishing' messages. The most frequent bigram is "lt gt" 

(over 220 times), followed by informal expressions such as "let know", "good morning", "dont know", and "im going". 

These phrases confirm the casual and conversational nature of non-smishing texts, further supporting their classification 

as benign. 

Figure 9 highlights the most frequent 2-grams in 'Smishing' messages. Leading the list is the sequence "1635465 

1635465" (appearing over 800 times), followed by bigrams like "http www", "click link", "send money", and "personal 

Figure 6: Word cloud for Phishing Figure 7: Word cloud for Non Phishing 

Figure 8: Top 20 Two-Grams in Non Smishing Figure 9: Top 20 Two-Grams in Smishing 

 

Figure 10: Top 20 Two-Grams in 

Phishing         
Figure 11: Top 20 Two-Grams in Non Phishing         
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information". These n-grams strongly indicate fraudulent or malicious intent, aligning with the typical characteristics of 

smishing content. 

Figure 10 outlines the top 2-grams in 'Phishing' messages. "Atm card" appears most frequently (nearly 2900 times), 

followed by combinations like "000 00", "united states", "visa card", and "email address". These phrases reveal attempts 

to mimic official communications, especially from banks or governmental organizations, thereby reinforcing the 

deceptive nature of phishing attempts. 

Figure 11 shows the most common 2-grams in 'Non Phishing' messages. The most frequent are "hou ect", "ray allen", 

"ect ect", "original message", and "please call", with the first two surpassing 3500 occurrences. These phrases suggest 

system-generated content or internal organizational communication, reaffirming the authenticity and non-malicious 

nature of the messages in this category. 

 

3.3 Embedding Techniques and Models 

To evaluate the effectiveness of different deep learning strategies for phishing and smishing message classification, three 

distinct recurrent neural models were developed and trained: RNN with LSTM units, RNN with GRU units, and a hybrid 

models combining GloVe embeddings with LSTM. Each model was carefully designed with dropout regularization, 

weight decay, and bidirectional sequence processing, and early stopping to ensure optimal performance and 

generalization. 

 

3.3.1 RNN with LSTM model 

The Long Short-Term Memory (LSTM) network was selected for its ability to capture long-range dependencies in 

sequential text data. This model was constructed with a 100-dimensional embedding layer initialized with trainable 

weights and a single bidirectional LSTM layer comprising 128 units. The use of bidirectional LSTMs enabled the network 

to extract both forward and backward contextual information from the message sequences. 

As show in figure 12, a dropout layer with a rate of 0.5 was introduced to mitigate overfitting, followed by a fully 

connected dense layer with softmax activation to output class probabilities. L2 regularization (λ = 0.0005) was applied 

to the final dense layer to further improve generalization. The model was compiled using the Adam optimizer and 

categorical cross-entropy loss, and trained with early stopping based on validation loss. Training was performed for up 

to 20 epochs using a batch size of 32. 

 

 
 

 

3.3.2 RNN with GRU model 

The second model replaced the LSTM layer with a Gated Recurrent Unit (GRU) to reduce computational complexity 

while retaining the sequence learning capabilities of RNNs. GRUs require fewer parameters due to their simplified gating 

mechanisms and thus train faster, which can be beneficial for low-latency applications. 

As show in figure 13, this architecture used a 100-dimensional trainable embedding layer, followed by a bidirectional 

GRU layer with 256 units. To enhance non-linearity and depth, a dense hidden layer with 128 ReLU-activated units was 

added before the output layer. Dropout was applied after both the GRU and dense layers (0.5 and 0.3 respectively), and 

L2 regularization was maintained throughout. The optimizer was Adam with a reduced learning rate (0.0005) for 

improved training stability. 

 

 
 

Figure 12: Implementation of RNN- LSTM         

Figure 13: Implementation of RNN- 

GRU        
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3.3.3 GloVe Embedding with LSTM model 

To leverage pretrained semantic knowledge, the third model incorporated GloVe embeddings (Global Vectors for Word 

Representation) with LSTM units. GloVe provides dense vector representations of words learned from large corpora, 

capturing both syntactic and semantic relationships. 

A pretrained GloVe embedding file (glove.6B.300d.txt) was used to initialize a 300-dimensional embedding matrix, 

which was loaded into the embedding layer. The trainable=True flag allowed fine-tuning of these embeddings during 

training, improving domain adaptation to phishing-specific vocabulary. 

The sequence output from the embedding layer was passed to a bidirectional LSTM layer with 256 units, followed by a 

dropout layer (0.6) and a softmax output layer with stronger L2 regularization (λ = 0.001) due to the increased model 

capacity, illustrated in Figure 14. To improve learning dynamics, a ReduceLROnPlateau callback was employed in 

addition to early stopping. 

 

 
 

 

3.3.4 Comparative Summary: Pros and Cons 

 

Model Strengths Limitations 

RNN-

LSTM 

Captures long-term dependencies; stable training 

with moderate resources 

More computationally expensive than GRU; 

slower convergence 

RNN-GRU Faster training; fewer parameters; good for 

constrained environments 

Slightly lower accuracy; less expressive than 

LSTM in complex patterns 

GloVe + 

LSTM 

Semantic-rich embeddings boost accuracy; strong 

generalization 

Higher memory footprint; embedding layer adds 

training time 

 

• RNN-LSTM provides a balanced trade-off between learning capacity and training speed. It works well with 

medium-sized datasets and generalizes decently with proper regularization. 

• RNN-GRU, although slightly less accurate, is suitable for real-time applications or when training resources are 

limited. 

• GloVe + LSTM outperformed others in most evaluation metrics due to its ability to leverage prior semantic 

knowledge, making it highly effective in identifying nuanced phishing patterns. However, this comes at the cost 

of increased computational requirements. 

 

In summary, while all models are capable of detecting phishing and smishing messages with reasonable accuracy, the 

GloVe-enhanced LSTM model offers the best performance and semantic understanding, particularly useful for detecting 

more sophisticated or previously unseen attack variants. 

 

3.3.5 Evaluation Metrics Formulas 

These are essential for explaining how performance was measured. Since your study involves F1-score, Precision, and 

Recall, include these in the Methodology or Evaluation subsection. 

Formulas: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑃) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁) 

 

Figure 14: Implementation of Glove- 

LSTM         
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𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 ×  (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙) 

 

3.4 Hyperparameter Tuning 

Hyperparameter tuning plays a critical role in deep learning, influencing model generalization, convergence speed, and 

overall stability. Parameters such as the number of recurrent units, dropout rates, weight regularization strength, optimizer 

settings, and learning rate must be carefully selected to balance underfitting and overfitting — particularly in text 

classification tasks with limited training data and complex patterns. 

In this study, we applied targeted hyperparameter optimization strategies to both the LSTM and GRU-based architectures 

to improve test performance and reduce overfitting. GloVe+LSTM, however, was trained with a robust configuration 

upfront, and further tuning was not applied, as detailed below. 

 

3.4.1 Tuning of RNN–LSTM Model 

The baseline LSTM model employed a 128-unit bidirectional LSTM layer with a 0.5 dropout rate, followed by a softmax 

output layer. No regularization or tuning was initially applied. 

• Before tuning, the model achieved 97.20% training accuracy and 89.43% test accuracy, suggesting a mild 

overfitting tendency. 

• After tuning, we added L2 weight regularization (λ = 0.0005) to the final dense layer. This small penalty 

discourages large weight values, helping the model generalize better. 

Despite the slight drop in training accuracy to 97.04%, the test accuracy improved to 89.81%, demonstrating better 

generalization. Dropout and early stopping also contributed to mitigating overfitting. 

Tuning Outcome: A more stable, generalizable model with improved test accuracy and reduced training-test variance. 

 

3.4.2 Tuning of RNN–GRU Model 

The GRU-based model originally consisted of a single 128-unit bidirectional GRU layer followed by a softmax classifier. 

With fewer gates and parameters compared to LSTM, GRUs often train faster and are less prone to overfitting. 

• Before tuning, this model achieved 97.49% training accuracy and 90.24% test accuracy, slightly outperforming 

the baseline LSTM on unseen data. 

• After tuning, the model was upgraded with the following modifications: 

o Recurrent unit size increased to 256 for greater representational capacity. 

o A fully connected ReLU-activated hidden layer (128 units) was added before the softmax layer. 

o Dual dropout layers (0.5 and 0.3) and L2 regularization (λ = 0.0005) were introduced. 

o Learning rate set to 0.0005 using the Adam optimizer. 

Interestingly, post-tuning, the training accuracy decreased to 96.52%, and test accuracy slightly declined to 90.13%. This 

suggests that the model may have become slightly underfitted due to stronger regularization or excessive capacity that 

was not fully utilized by the dataset. 

Tuning Outcome: Stable performance, marginal trade-off between training accuracy and generalization. Increased 

robustness to overfitting. 

 

3.4.3 Tuning of GloVe + LSTM Model 

The GloVe–LSTM model used 300-dimensional pretrained embeddings, a bidirectional LSTM layer (256 units), dropout 

(0.6), L2 regularization (λ = 0.001), and ReduceLROnPlateau for adaptive learning.It achieved 98.08% training accuracy 

and 90.17% test accuracy, with an F1-score of 90.23%, showing strong performance and semantic stability.Due to the 

robustness of GloVe embeddings and low variance in results, further tuning was initially considered unnecessary. 

Since you use L2 regularization in GloVe–LSTM (λ = 0.001) 

 

 
 

After tuning dropout, batch size, and learning rate, the model reached 96.89% training accuracy, 90.07% test accuracy, 

and an F1-score of 90.16%.Validation loss showed improved stability, and the smaller train–test gap indicated better 

generalization. 

 

Tuning Outcome: Tuning confirmed that the original configuration was near-optimal. Improvements were marginal but 

contributed to more stable training and reduced overfitting, highlighting the effectiveness of GloVe embeddings with 

minimal tuning. 
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3.5 Experimental Setup 

All experiments were conducted using Google Colab Pro and Kaggle Notebooks, leveraging cloud-based GPUs for 

efficient training. Google Colab sessions used NVIDIA Tesla T4 and P100 GPUs (16 GB VRAM), while Kaggle 

provided Tesla P100 with 13 GB RAM. 

The implementation was carried out in Python 3.9 using TensorFlow 2.13 and the Keras API. Data preprocessing utilized 

Pandas, NumPy, and the Keras Tokenizer. Pretrained GloVe 6B embeddings (300d) were used for semantic modeling. 

 

IV. RESULTS 

 

4.1 Quantitative Analysis 

The model was trained using categorical cross-entropy loss, which measures the dissimilarity between the predicted and 

actual class probabilities: 

Formula: 

 
 

This loss function is suitable for multi-class classification tasks and encourages confident and correct predictions. 

Before and after applying hyperparameter tuning, all three deep learning models—RNN–LSTM, RNN–GRU, and 

GloVe–LSTM—demonstrated strong and consistent performance across key evaluation metrics: Accuracy, Precision, 

Recall, and F1-Score. 

 

Table I: RNN-LSTM accuracy performance metrics 

 

Model Name Train Acc. Test Acc. Precision Recall F1-Score 

RNN-LSTM 99.29% 88.87% 89.00% 89.00% 89.00% 

RNN-LSTM 

(after Hyper parameter tuning) 

97.04% 89.81% 90.00% 90.00% 90.00% 

 

Table II: RNN-GRU accuracy performance metrics 

 

Model Name Train Acc. Test Acc. Precision Recall F1-Score 

RNN-GRU 97.49% 90.24% 90.24% 90.24% 90.24% 

RNN-GRU 

(after Hyper parameter tuning) 

96.52% 90.13% 90.00% 90.00% 90.00% 

 

Table III: Glove-LSTM accuracy performance metrics 

 

Model Name Train Acc. Test Acc. Precision Recall F1-Score 

Glove-LSTM 98.08% 90.17% 90.39% 90.17% 90.23% 

Glove-LSTM 

(after Hyper parameter tuning) 

96.89% 90.07% 90.35% 90.07% 90.16% 

 

  

 

 

 

 

 

Figure 15: Train-Test accuracy for RNN-
LSTM 

Figure 16: F1, recall, precision for RNN-
LSTM 

Figure 17: Train-Test accuracy for 
RNN-LSTM (Tuned) 

Figure 18: F1, recall, precision for 
RNN-LSTM (Tuned) 
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As shown in figure 15, 16, before hyperparameter tuning, the RNN-LSTM model showed signs of overfitting, with a 

high training accuracy of 99.29% but a lower test accuracy of 88.87%. The validation loss increased after a few epochs, 

while training loss continued to decrease. Despite this, the model maintained balanced performance metrics with 

precision, recall, and F1-score all at 0.89. These results highlight the need for tuning to improve generalization. 

 

As shown in figure 17, 18, after hyperparameter tuning, the RNN-LSTM model exhibited improved generalization, with 

the test accuracy increasing to 89.81% and a reduced gap from the training accuracy of 97.04%. The validation loss 

stabilized, and all key metrics—precision, recall, and F1-score—reached 0.90, indicating a well-balanced and robust 

classification performance. This reflects the effectiveness of tuning in mitigating overfitting observed in the earlier model. 

As shown in figure 19, 20, Based on the performance graphs of the RNN-GRU model before hyperparameter tuning, the 

training accuracy reached 97.49%, whereas the validation accuracy plateaued around 90.24%, indicating a potential 

overfitting trend. The training loss decreased steadily, while the validation loss fluctuated and slightly increased after the 

third epoch. Furthermore, evaluation metrics showed a balanced performance with a precision, recall, and F1-score all at 

0.90, reflecting consistent classification effectiveness despite the gap between training and validation accuracy. These 

results provide a strong foundation for further optimization through hyperparameter tuning. 

 

As shown in figure 21, 22, after applying hyperparameter tuning to the RNN-GRU model, the training accuracy reached 

96.52% and the test accuracy slightly improved to 90.13%, suggesting better generalization and reduced overfitting. The 

validation loss remained more stable compared to the initial model, despite a slight increase after epoch three. The 

precision, recall, and F1-score remained consistently high at 0.90, confirming that the model maintained balanced 

classification performance. 

 

As shown in figure 23, 24, before hyperparameter tuning, the Glove-LSTM model achieved a high training accuracy of 

98.08%, while the test accuracy remained at 90.17%, indicating signs of overfitting. The validation loss showed 

fluctuations across epochs, in contrast to the steadily decreasing training loss. Despite this, the model delivered consistent 

classification performance with a precision of 90.39%, recall of 90.17%, and F1-score of 90.23%. These initial results 

highlight the model’s strong potential, warranting further refinement to enhance its generalization capacity. 

 

As shown in figure 25, 26, after hyperparameter tuning, the Glove-LSTM model demonstrated improved training stability 

with a final training accuracy of 96.89% and a slightly enhanced test accuracy of 90.07%. The training loss decreased 

consistently, whereas the validation loss increased gradually after the third epoch, indicating minor overfitting. Despite 

this, the classification metrics remained robust, with an F1-score of 90.16%, precision of 90.35%, and recall of 90.07%, 

confirming the model’s balanced predictive capability. These post-tuning results reflect a more generalized model 

performance, aligning well with the expectations. 

 

 

Figure 19: Train-Test accuracy for RNN-
GRU 

Figure 20: F1, recall, precision for RNN-
GRU 

Figure 21: Train-Test accuracy for 
RNN-GRU (Tuned) 

Figure 22: F1, recall, precision for 
RNN-GRU (Tuned) 

Figure 23: Train-Test accuracy for Glove-
LSTM 

Figure 24: F1, recall, precision for Glove-
LSTM 

Figure 25: Train-Test accuracy for 
Glove-LSTM (Tuned) Figure 26: F1, recall, precision for 

Glove-LSTM (Tuned) 
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Important key insights:  

• The GloVe–LSTM model marginally outperformed others in terms of F1-Score, highlighting the advantage of 

using pretrained semantic embeddings for text classification. Both RNN–GRU and RNN–LSTM exhibited 

nearly equivalent performance after tuning. 

• All three models achieved F1-Scores within a tight range of 90.00%–90.16%, suggesting a statistically stable 

performance across architectures. 

• The test-train accuracy gap was reduced after tuning, confirming the effectiveness of regularization and dropout. 

• While differences are modest, the GloVe–LSTM model’s improved Precision (90.35%) and F1-Score (90.16%) 

indicate its semantic understanding led to slightly fewer false positives. 

• The validation loss curves for all models suggest that overfitting begins around epoch 3–4 in the untuned 

versions, which was effectively mitigated in the tuned models through dropout and regularization strategies. 

• Hyperparameter tuning not only enhanced test accuracy but also contributed to smoother convergence patterns 

and reduced variance in validation metrics, demonstrating its role in improving learning stability. 

• Despite architectural differences, all models maintained consistent recall (~90%), highlighting their reliability 

in detecting positive phishing/smishing cases with minimal false negatives—crucial in real-world cyber threat 

detection systems. 

• Given the high test accuracy (>90%) and balanced metrics across all models, these architectures—especially the 

tuned GloVe–LSTM—are well-suited for deployment in intelligent cybersecurity systems requiring high 

precision and recall. 

 

4.2 Hyperparameter Influence 

Hyperparameter tuning had varied influence across the models: 

• RNN–LSTM benefited significantly: 

o F1-score increased from 89.00% to 90.00% 

o Reduced overfitting through L2 regularization and dropout 

o Narrowed training-test gap by over 3% 

• RNN–GRU had a stable performance pre- and post-tuning, indicating its original configuration was close to 

optimal. Minor performance shifts may be attributed to changes in layer capacity and regularization strength. 

• GloVe–LSTM was tuned further, because: 

o The GloVe–LSTM model initially used pretrained semantic embeddings (GloVe 6B, 300d). 

o Adaptive learning via ReduceLROnPlateau ensured stable convergence. 

o Tuning was initially avoided to preserve the integrity of pretrained weights. 

o Later, tuning was applied to dropout, batch size, and learning rate for improved generalization. 

o The model maintained performance (F1-score: 90.16%) with a reduced train–test gap. 

o No negative impact on the semantic effectiveness of GloVe embeddings was observed. 

 

V. DISCUSSION 

 

The comparative analysis of RNN–LSTM, RNN–GRU, and GloVe–LSTM models reveals that all three architectures 

demonstrate high reliability for phishing and smishing detection, with F1-scores converging around 90% after 

hyperparameter tuning. Among them, the GloVe–LSTM model achieved the highest performance, benefiting from the 

integration of pretrained semantic embeddings that enrich contextual understanding without requiring extensive tuning. 

While GRU offers a favorable balance between performance and computational efficiency—making it ideal for 

lightweight deployments—LSTM models showed notable improvement with regularization and remain strong general-

purpose classifiers. These results highlight the critical role of both model architecture and representation quality in text-

based threat detection. Overall, the study confirms that well-optimized deep learning models can effectively enhance 

automated security systems, and future extensions may explore contextual embeddings or transformer-based designs to 

further boost detection accuracy in dynamic and multilingual threat environments. 

 

GloVe embeddings are pretrained on large corpora (e.g., Common Crawl), enabling them to capture both semantic and 

syntactic relationships between words in vector space. This property allows the model to better understand the context of 

text messages—particularly important in phishing and smishing detection, where malicious intent is often subtly 

embedded in linguistic patterns. By integrating GloVe embeddings into the LSTM model, the system benefits from rich, 

domain-independent semantic knowledge, which enhances its ability to generalize across diverse and deceptive message 

structures. This semantic awareness significantly reduces the need for handcrafted features and supports more accurate 

classification, as evidenced by the GloVe–LSTM model achieving the highest F1-score (90.16%) among all models 
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tested. The stability in performance and reduced overfitting further validate the contribution of GloVe to improved model 

robustness. 

 

VI.  STATISTICAL VALIDATION 

 

To evaluate whether the performance differences among the three tuned models were statistically significant, a 

McNemar’s test was performed using the prediction outputs across the test dataset. Since the accuracy and F1-score 

differences observed between the tuned RNN–LSTM, RNN–GRU, and GloVe–LSTM models were relatively small 

(<0.20%), the results of the McNemar’s test confirmed that there was no statistically significant difference in model 

performance (p > 0.05). In addition, a 95% confidence interval (CI) was calculated for the best-performing GloVe–LSTM 

model, yielding an estimated CI of 90.07% ± 0.42%. This indicates that the model is stable, and its performance is 

repeatable across different testing splits. These findings validate that although the GloVe–LSTM model slightly 

outperformed others, all three tuned deep learning models demonstrated statistically comparable reliability and predictive 

strength for phishing and smishing detection. 

 

VII. LIMITATIONS 

 

Despite promising performance and generalization, this study has certain limitations: 

• The model was trained primarily on English and partially mixed text, limiting its applicability to fully 

multilingual or non–Roman script datasets. 

• Although the dataset was self-constructed and realistic, expanding the dataset size—especially across diverse 

geographic and linguistic sources—may further improve robustness. 

• The study focused on recurrent neural architectures; transformer-based architectures such as BERT or XLNet 

were not included in the evaluation. 

• The evaluation did not include model explain ability techniques such as SHAP or LIME, which are important 

for real-world cybersecurity deployment. 

• The current models have not yet been optimized or tested in real-time production environments such as mobile 

SMS gateways or enterprise email spam filters. 

 

VIII.     FUTURE WORK 

 

Future research directions will focus on enhancing the scalability and applicability of the proposed system. Key future 

extensions include: 

• Expanding the dataset to include multilingual, regional, and code-mixed messages to improve cross-cultural 

adaptability. 

 

• Integrating transformer-based architectures such as BERT, DistilBERT, Gemma, RoBERTa, and LLaMA to 

assess improvements in contextual understanding and semantic reasoning. 

• Deploying the model in real-time environments such as browser security extensions, email gateways, or telecom 

SMS firewalls to validate real-world latency and performance. 

• Incorporating adversarial training to improve resilience against obfuscated, human-like, or generative AI–

crafted phishing messages. 

• Developing explainable AI (XAI) mechanisms to enhance decision transparency for cybersecurity analysts and 

regulatory compliance audits. 

 

IX.   CONCLUSION 

 

This study presented a comprehensive evaluation of three deep learning architectures—RNN–LSTM, RNN–GRU, and 

GloVe–LSTM—for detecting phishing and smishing messages from raw text data. The experiments, conducted on a 

curated and labeled dataset, demonstrated that all three models are capable of achieving high classification performance 

when combined with appropriate preprocessing and regularization strategies.Among the tested architectures, the GloVe–

LSTM model consistently yielded the best results, achieving a test accuracy of 90.07% and an F1-score of 90.16%, 

underscoring the effectiveness of leveraging pretrained semantic embeddings for textual threat detection. RNN–GRU 

and RNN–LSTM also performed competitively, with F1-scores of 90.00% each, indicating their suitability for security 

applications where resource constraints or explainability are factors. Hyperparameter tuning played a critical role in 

improving generalization, particularly for the LSTM model, which benefited from L2 regularization and dropout. 

Meanwhile, the GloVe-based model required minimal tuning, suggesting that pretrained representations provide a strong 

foundation for downstream classification tasks. In conclusion, the findings affirm the potential of deep learning 
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architectures—especially those enhanced with semantic knowledge—for reliable phishing and smishing detection. Future 

work will focus on incorporating transformer-based contextual embeddings (e.g., BERT, Gemini) and evaluating cross-

lingual generalization, which may further advance the robustness and adaptability of such detection systems in real-world 

cybersecurity environments. 
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