
ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141120

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 124

Behavioral Anomaly Detection for

Real-time Runtime Security in

Serverless Computing

Dr. Sachin S. Bere1, Mrs. Baravkar B.Y2, Miss.Rutuja S. Shinde3, Miss.Jyoti J. Chaudhari4

Guide, Department of Computer Engineering, Dattakala Group of Institutions Faculty of Engineering, Swami

Chincholi, Daund, Pune, Maharashtra, India1,2

Student, Department of Computer Engineering, Dattakala Group of Institutions Faculty of Engineering,

swami Chincholi, Daund, Pune, Maharashtra, India3,4

Abstract: Serverless computing has redefined cloud ap- plication deployment by abstracting infrastructure and enabling

on-demand, event-driven execution, thereby en- hancing developer agility and scalability. However, main- taining

consistent application performance in serverless environments remains a significant challenge. The dynamic and

transient nature of serverless functions makes it difficult to distinguish between benign and anomalous behavior, which

in turn undermines the effectiveness of traditional anomaly detection methods. These conventional approaches, designed

for stateful and long-running ser- vices, struggle in serverless settings where executions are short-lived, functions are

isolated, and observability is limited.

In this first comprehensive vision paper on anomaly detection for serverless systems, we systematically explore the

unique challenges posed by this paradigm, including the absence of persistent state, inconsistent monitoring granularity,

and the difficulty of correlating behaviors across distributed functions. We further examine a range of threats that

manifest as anomalies, from classical Denial- of-Service (DoS) attacks to serverless-specific threats such as Denial-of-

Wallet (DoW) and cold start amplification. Building on these observations, we articulate a research agenda for next-

generation detection frameworks that ad- dress the need for context-aware, multi-source data fusion, real-time,

lightweight, privacy-preserving, and edge-cloud adaptive capabilities.

Through the identification of key research directions and design principles, we aim to lay the foundation for the next

generation of anomaly detection in cloud-native, serverless ecosystems.

Keywords: Serverless Computing, Cloud Computing, Edge Computing, Function-as-a-service, Anomaly Detec- tion,

DoS, Data Fusion, System Monitoring, Observability.

I. INTRODUCTION

Over the past decade, serverless computing has emerged as a defining paradigm in cloud-native application development

[1], [2]. While traditional Infrastructure-as-a-Service (IaaS) and Platform-as-a- Service (PaaS) models offer varying

degrees of automa- tion in provisioning and scaling, serverless platforms go further by providing per-request automatic

provisioning, transparent scaling, and fine-grained billing based on ac- tual execution time [3], [4]. These advantages

eliminate the need for developers to manage runtime environments,instance lifecycles, or idle resource allocation. As a

re- sult, serverless computing has seen widespread adoption across a range of domains, including web services [5],

machine learning workflows [6]–[8], IoT backends [9], and high-throughput data processing pipelines [10], [11]. This

adoption has been facilitated by the development of a diverse ecosystem of serverless platforms, such as commercial

offerings AWS Lambda1, Google Cloud Functions2, and Azure Functions3, as well as open- source frameworks like

Apache OpenWhisk4 and Open- FaaS5, which offer developers increased flexibility in deployment and greater

operational control.

While serverless platforms offer simplified deploy- ment and automatic scalability, they also fundamentally reshape the

operational model of cloud applications. First, the ephemeral and stateless nature of the execu- tion model introduces

unique observability challenges. Empirical studies show that the majority of serverless functions are short-lived, often

completing within mil- liseconds to a few seconds [12]–[14]. This temporal brevity presents a fundamental mismatch

with traditional monitoring tools, which are designed for long-running, stateful services. Consequently, collecting

sufficient run- time telemetry for profiling or debugging becomes a significant challenge.

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141120

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 125

In this paper, we take a step back to examine the unique challenges and open questions surrounding anomaly

detection in serverless platforms. Rather than proposing a single detection mechanism, we present a systematic

exploration of the fundamental constraints that make anomaly detection in this domain uniquely difficult. We analyze

potential sources of anomalies and attack surfaces, including cold start misbehavior, control- plane bottlenecks,

unpredictable scheduling latencies, and workload-induced contention. Building on these ob- servations, we articulate a

vision for rethinking observ- ability and anomaly detection in serverless systems, one that emphasizes request-level

introspection, distributed event correlation, and adaptive telemetry. Our goal is to illuminate a space of design

opportunities and research directions toward robust, scalable, and practical anomaly detection solutions across the

spectrum of serverless computing, from centralized cloud environments to dis- tributed, resource-constrained edge

deployments. Organization. The remainder of this paper is organized as follows. In Section II, we present background

and motivation, highlighting the limitations of existing mon- itoring and anomaly detection approaches in the context of

serverless systems.

In Section III, we characterize the landscape of anomalies and attack surfaces specific to serverless platforms. In

Section IV, we outline a forward-looking vision for anomaly detection in server- less computing, identifying key

research directions and design considerations. Section V presents emerging op- portunities and outlines several

promising directions for future investigation. Section VI examines the practical obstacles to realizing this vision in real-

world deploy- ments, including telemetry limitations, data scarcity, gen- eralization barriers, deployment overhead, and

evolving threat models. Finally, Section VII concludes the paper by summarizing our key insights, reiterating our vision

for next-generation anomaly detection, and outlining its broader implications for robust serverless ecosystems.

II. THEORETICAL BACKGROUND

Serverless computing represents a fundamental shift in how cloud applications are built and operated. By abstracting

away server management, resource provisioning, and scaling, serverless platforms such as AWS Lambda, Google Cloud

Functions, and Azure Functions allow developers to focus exclusively on writing event- driven functions. To

comprehend the operational mechanisms of a serverless platform, we first examine its architecture and the typical control

flow during function invocation. Figure 1a illustrates a generalized four-layer architecture. Figure 1b then illustrates

how this architecture is concretely realized within Apache Open Whisk.

In general, the 4-layer architecture of a serverless platform comprises the following components:

Coordination layer: Handles external interactions and exposes endpoints (e.g., REST APIs, SDKs) through which users

deploy and invoke functions.

Orchestration layer: Responsible for request rout- ing, scheduling, and load balancing. This layer includes components

such as the controller in Open- Whisk, which manages invocation dispatching.

Encapsulation layer: Manages compute resources, typically a pool of containers or lightweight VMs, that execute

functions in isolated environments.

Infrastructure layer: Supports low-level resource provisioning, network virtualization, and storage services, typically

abstracted by container runtimes and orchestration platforms such as Kubernetes.

When a function invocation is received, it first passes through the coordination layer, which includes the API gateway

(e.g., Nginx6 in OpenWhisk). The request is then forwarded to the controller in the orchestration layer, which temporarily

buffers the invocation and at- tempts to schedule it onto an available runtime in the encapsulation layer (e.g., an invoker

in OpenWhisk), responsible for provisioning or reusing a containerized environment to execute the function.

In serverless computing, a warm container refers to a pre-initialized container ready to handle incoming re- quests

immediately. In contrast, a cold start occurs when no warm container is available, requiring the system to provision a

new instance and initialize the runtime and dependencies.

To ensure efficient operation, serverless platforms also enforce runtime control mechanisms. Each function invocation

is subject to a timeout limit, which bounds its maximum execution duration to prevent indefinite re- source

consumption (e.g., Amazon lambda max timeout limit 15 mins). Additionally, most platforms apply rate limits, capping

the number of concurrent invocations per user account or region to ensure fair resource allocation and system stability.

Analyses of real-world function traces [12], [14] demonstrate that many serverless functions execute within just a few

milliseconds or seconds (notably, 85% of all tasks complete in under one minute [22]), and their invocation patterns

can be highly sporadic, i.e., exhibiting bursts of activity within a single minute followed by extended idle periods lasting

several minutes. This temporal volatility reflects the inherently short-lived and invocation-driven nature of serverless

workloads, a behavior we refer to as ephemeral [14]. Such behavior introduces unique challenges for traditional anomaly

detection methods, as discussed below.

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141120

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 126

III. LITERATURE SURVEY

In conventional cloud environments, applications are deployed on long-running virtual machines (VMs) or containers,

which persist over time and expose a rich set of resource and performance metrics, such as CPU utilization, memory

usage, disk I/O, and network through- put. These metrics are typically collected by monitoring agents, sidecar

containers, or telemetry tools such as Prometheus7, cAdvisor8, or Datadog9. For instance, Prometheus periodically

scrapes the /metrics endpoint (e.g., every 15 seconds) and stores the results in a time-series database for subsequent

analysis.

Anomaly detection in such environments often re- lies on statistical thresholding, time-series modeling, or supervised

machine learning techniques trained on historical telemetry data [23]–[27]. These approaches assume stable and

continuous execution environments, consistent data collection intervals, and persistent access to system-level signals.

While observability tools such as Prometheus can be configured to scrape metrics from short-lived services, doing so

reliably at serverless timescales remains challenging. Serverless platforms abstract away the infrastructure layer, offering

no direct access to node-level metrics or runtime context. Even when metrics or logs are made available (e.g., via AWS

CloudWatch), they are typically delayed, coarse-grained, and insufficient for fine-grained anomaly detection in systems.

Consequently, traditional anomaly detection methods struggle in serverless environments, where execution is transient,

metric availability is sparse, and system-level visibility is limited.

In addition, serverless workloads are highly bursty and non-stationary [14], with functions triggered by external events

that can cause abrupt spikes in invocation rates. Cold starts introduce further variability in response times and are often

difficult to distinguish from genuine performance anomalies. Since scheduling, placement, and resource reuse are

entirely managed by the platform, developers lack both visibility into and control over the underlying orchestration

mechanisms. These constraints hinder the applicability of traditional detection signals, such as CPU saturation or

memory leaks, which may be absent or unobservable in a serverless context.

Motivation for rethinking anomaly detection. The unique characteristics of serverless computing motivate a

fundamental rethinking of how anomalies should be

detected and diagnosed. From the perspective of server- less application developers or providers (i.e., users who deploy

functions on a serverless platform), detection must shift from infrastructure-centric monitoring to a more request-centric

inference approach. Since direct observations of containers or hosts are typically hidden and only accessible to platform

operators, detection systems must instead rely on behavioral signatures – such as function invocation patterns (e.g.,

function A triggered after function B), response time fluctuations, cold start frequency, and inter-function delays. This

calls for lightweight, data-efficient, and context-aware techniques capable of extracting meaningful insights from

fragmented telemetry.

From the perspective of the platform operator, or in custom platforms where deeper instrumentation is possible (e.g.,

Open Whisk, Open FaaS), access to low- level resource metrics (e.g., CPU, memory, I/O) along- side unstructured logs

from internal components (e.g., controller traces, invoker logs, platform events) enables a more fine-grained view of

system behavior. This opens the opportunity to develop log-data fusion mechanisms that correlate function-level

behaviors with underlying infrastructure dynamics, thereby improving the accuracy and timeliness of anomaly detection.

In addition, the distributed and event-driven nature of serverless workloads, especially in cloud–edge deployments,

introduces significant complexity for anomaly detection. Functions may execute across heterogeneous nodes with

varying performance characteristics, network conditions, and geographic locations. Moreover, anomalies can arise not

just from isolated failures but from cascading issues across microservices, message queues, or third-party APIs (e.g.,

Mailgun API10). In such environments, centralized detection approaches are often infeasible due to high latency, limited

visibility, and scalability concerns. These realities call for detection mechanisms that are decentralized, capable of

operating close to the execution point, while remaining low-latency and adaptive to dynamic execution contexts.

In essence, the operational realities of serverless computing present a profound architectural mismatch for conventional

anomaly detection. This disconnect under- scores the urgent need for a new generation of detection methodologies, ones

inherently designed for ephemeral, opaque, and highly dynamic environments. Such methods must bridge the visibility

gaps for developers and provide robust, fine-grained insights for operators. In the following sections, we characterize the

unique challenges and emerging anomaly patterns in this space, and present a vision for developing more suitable,

scalable, and adaptive detection techniques aligned with the serverless paradigm.

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141120

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 127

IV. THREAT LANDSCAPE IN SERVERLESS COMPUTING

Anomalies, defined as observations deviating significantly from expected behavior and potentially indicating underlying

issues [28], can manifest in various forms within serverless systems. These include point anomalies (e.g., a single

invocation exhibiting abnormal latency), collective anomalies (e.g., a sequence of degraded executions), or contextual

anomalies (e.g., failures that occur only under specific workload conditions, such as peak traffic) [29]. In serverless

environments, such anomalies commonly appear as increased cold start latency, reduced throughput, elevated error rates,

or resource exhaustion, leading to degraded quality of service (QoS), violations of service-level agreements (SLAs),

denial of service, and, in some cases, system-wide interruptions or outages. The architectural principles of serverless

computing significantly reshape traditional system vulnerabilities and threat models [30], [31]. We categorize the

key threats and their manifestations into two primary areas:

(i) operational vulnerabilities, which arise from the inherent dynamics of serverless resource management and affect

availability and performance, and (ii) adversarial threats, which originate from malicious actors exploiting these

dynamics for financial, security, or service disruption goals.

Operational vulnerabilities: internal stressors to availability and performance

These threats primarily arise from the inherent characteristics of serverless platforms, such as unpredictable execution,

resource management complexities, and dependencies on shared backend services. Anomalies in this domain typically

reflect system inefficiencies or degradation.

Cold start latency amplification: The overhead of initializing new function instances (cold starts) can severely impact

perceived performance and violate Quality of Service (QoS) guarantees. Un- der bursty workloads, a surge of concurrent

cold starts may amplify latency across the system, especially for latency-sensitive functions or edge deployments [32],

[33].

Resource contention and noisy neighbor effects: Despite containerization and runtime isolation, serverless functions

often share underlying compute infrastructure (e.g., CPU, memory, I/O).

Orchestration delay and queuing collapse: Serverless platforms rely on orchestration layers (e.g., controllers, load

balancers, and schedulers) to manage invocation routing and instance life- cycle [18]. Centralized bottlenecks or

inefficient scheduling decisions, particularly under diurnal or regionally correlated bursts, can introduce significant

dispatch latency. In extreme cases, this may trigger queuing collapse, cascading timeouts, or systemic unresponsiveness.

Backend and dependency failures: Serverless functions frequently depend on external services, such as storage,

message brokers, databases, or third-party APIs. Failures or degraded performance in these dependencies propagate to

the function layer, manifesting as elevated error rates or long-tail latencies. Due to the decoupled nature of serverless

architectures, identifying root causes across service boundaries remains a persistent challenge.

Adversarial threats: external exploitation of server- less weaknesses.

Beyond system-internal sources of performance degradation, serverless platforms are increasingly vulnerable to

adversarial threats. Malicious actors exploit the architectural characteristics and operational dynamics of serverless

systems to induce service disruption, escalate costs, or evade detection. These threats often mirror or amplify benign

anomalies, blurring the boundary between fault and attack. As a result, anomaly detection mechanisms must account for

both accidental failures and deliberate manipulation of the control and data planes.

Denial-of-Service (DoS) and Denial-of- wallet (DoW) attacks: While serverless platforms auto-scale to absorb

traffic, a sustained high volume of requests targeting publicly exposed functions (e.g., via API Gateways) can still

saturate configured concurrency limits [36]. This can lead to legitimate requests being queued or dropped,

effectively denying service to legitimate users, especially if cold start overheads prevent rapid scaling. More subtly,

DoW attacks [31], [37] aim to silently drain tenant budgets by repeatedly invoking costly functions, e.g., inference for

machine learning (ML) models or data-intensive workflows. Even low-rate, persistent invocations can accumulate

substantial cost, succeeding without triggering rate limits or violating correctness constraints.

Trigger abuse and event injection: Serverless functions, by their event-driven nature, rely on di- verse activation

triggers like HTTP requests, object storage events, and message queues. Adversaries can exploit misconfigured,

publicly exposed, or weakly authenticated triggers to invoke functions out of context or with crafted payloads [30]. For

example, a malicious file uploaded to a monitored storage bucket could trigger sensitive data processing, or spoofed

webhooks/timers might initiate unintended execution. When functions are chained in workflows (e.g., AWS Step

Functions), such trigger abuse can cascade, amplifying the attack’s impact across dependent services.

effectively denying service to legitimate users, especially if cold start overheads prevent rapid scaling. More subtly,

DoW attacks [31], [37] aim to silently drain tenant budgets by repeatedly invoking costly functions, e.g., inference for

machine learning (ML) models or data-intensive workflows. Even low-rate, persistent invocations can accumulate

substantial cost, succeeding without triggering rate limits or violating correctness constraints.

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141120

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 128

Evasion and obfuscation tactics: The ephemeral and stateless nature of serverless functions can be exploited by

attackers to evade detection and forensic analysis. Malicious logic can be segmented across multiple invocations or

injected via environ- ment variables, making it harder to identify a com- plete attack signature in any single event [38],

[39]. Due to asynchronous logging pipelines or sampling in highly concurrent environments, rapid-invocation attacks or

quick bursts of malicious activity might escape full visibility in the platform’s telemetry.

V. CONCLUSION

Serverless computing is rapidly transforming cloud application development, offering immense scalability and

simplified deployment through automatic scaling and fine-grained billing. In these dynamic, event-driven environments,

even brief disruptions, such as latency spikes, execution failures, or unexpected cost anomalies, can severely impact user

experience and operational effi- ciency. As a result, anomaly detection becomes essential for continuously monitoring

system behavior, identifying deviations from expected norms, and enabling timely mitigation of emerging issues.

However, the intrinsic characteristics of server- less platforms pose significant challenges to effective anomaly

detection. In this vision paper, we meticulously identified these specific challenges, including the ab- sence of persistent

contexts, abstracted runtimes, event correlation difficulties, and monitoring granularity gaps. We also explored the full

spectrum of operational vul- nerabilities and novel adversarial threats, from Denial of Service and Denial-of-Wallet

attacks to more sophisti- cated exploits such as cold start amplification.

Building on these insights, we articulated a com- pelling vision for next-generation anomaly detection frameworks.

Our proposed research agenda centers on techniques that are context-aware, leverage multi-source data fusion, operate

in real-time, prioritize privacy, and adapt to edge–cloud deployments.

REFERENCES

[1]. Y. Nam, P. Trirat, T. Kim, Y. Lee, and J.-G. Lee, “Context- aware deep time-series decomposition for anomaly

detection in businesses,” in Joint European Conference on Machine Learning and Knowledge Discovery in

Databases, pp. 330–345, Springer, 2023.

[2]. J. Forough, M. Bhuyan, and E. Elmroth, “Detection of VSI-DDoS Attacks on the Edge: A Sequential Modeling

Approach,” in Proceedings of the 16th International Conference on Availability, Reliability and Security, ARES

’21, (New York, NY, USA), Association for Computing Machinery, 2021.

[3]. N. Jha, S. Lin, S. Jayaraman, K. Frohling, C. Constantinides, and D. Patel, “Llm assisted anomaly detection

service for site reliability engineers: Enhancing cloud infrastructure resilience,” 2025.

[4]. Y. Lee, J. Kim, and P. Kang, “Lanobert: System log anomaly detection based on bert masked language model,”

Applied Soft Computing, vol. 146, p. 110689, 2023.

[5]. S. Chen and H. Liao, “Bert-log: Anomaly detection for system logs based on pre-trained language model,”

Applied Artificial Intelligence, vol. 36, no. 1, p. 2145642, 2022.

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141120

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 129

[6]. S. Fang, X. Pan, S. Xiang, and C. Pan, “Meta-msnet:Meta- learning based multi-source data fusion for traffic

flow predic- tion,” IEEE Signal Processing Letters, vol. 28, pp. 6–10, 2020.

[7]. E. Bareinboim and J. Pearl, “Causal inference and the data-fusion problem,” Proceedings of the National Academy

of Sciences, vol. 113, no. 27, pp. 7345–7352, 2016.

[8]. A. Makarenko, A. Brooks, T. Kaupp, H. Durrant-Whyte, and Dellaert, “Decentralised data fusion: A graphical

model ap- proach,” in 2009 12th International Conference on Information Fusion, pp. 545–554, IEEE, 2009.

[9]. D. Koller and N. Friedman, Probabilistic graphical models:principles and techniques. MIT press, 2009.

[10]. R. Dwivedi, D. Dave, H. Naik, S. Singhal, R. Omer, P. Patel.

https://ijarcce.com/
https://ijarcce.com/

