

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471

Refereed journal

Vol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141136

AN OVERVIEW ON: AI FASHION HUB

Prof. Priya Farkade¹, Trupti Karemore², Shruti Ruikar³, Sakshi Kodmore⁴,

Bhagyshree Kohad⁵, Saloni Chitalkar⁶

Professor Department of Computer Science and Engineering (AIML), Nagarjuna Institute of Engineering Technology and Management, Nagpur, Maharashtra, India¹

UG Student, Department of Computer Science and Engineering (AIML), Nagarjuna Institute of Engineering Technology & Management, Nagpur, Maharashtra, India²⁻⁶

Abstract: The fashion industry is rapidly evolving with the integration of artificial intelligence (AI) technologies. The AI Fashion Hub project aims to provide users with a smart platform that recommends fashion outfits based on personal preferences, current trends, and visual inputs. By applying machine learning and image recognition techniques, the system analyzes clothing patterns, colors, and styles to deliver personalized outfit suggestions. The project demonstrates how AI can revolutionize fashion retail by enhancing user experience, promoting digital styling, and improving online shopping decisions.

Keywords: Artificial Intelligence, Fashion Recommendation, Machine Learning, Deep Learning, Image Recognition, Personalization.

I. INTRODUCTION

Fashion plays a crucial role in modern lifestyle, influencing how individuals express themselves. However, with the abundance of clothing options available online, users often face difficulty choosing suitable outfits. The AI Fashion Hub seeks to bridge this gap by leveraging artificial intelligence to offer personalized fashion recommendations.

This project combines computer vision, deep learning, and data analytics to build a system that recognizes clothing items and suggests complementary styles. The proposed system allows users to upload images or input preferences and then receives AI-generated recommendations aligned with current fashion trends. The goal is to simplify fashion choices and make digital shopping more engaging and efficient.

II. LITERATURE REVIEW

Previous research in the fashion recommendation domain has focused on various approaches:

Content-based filtering: Suggests items similar to the user's past choices based on visual or textual attributes.

Collaborative filtering: Recommends products based on preferences of similar users. Deep learning models: CNNs (Convolutional Neural Networks) have shown strong performance in clothing detection and classification.

Studies such as DeepFashion (Liu et al., 2016) and FashionNet (2017) have demonstrated how deep neural networks can identify apparel features from images. However, many systems lack personalization or realtime usability. The AI Fashion Hub aims to overcome these challenges by combining classification, recommendation, and interactive web integration.

III. METHODOLOGY

The methodology adopted for AI Fashion Hub follows a structured approach:

1) Data Collection

Fashion image datasets were collected from open-source platforms such as Kaggle and DeepFashion. Each image contained labels including clothing type, color, texture, and pattern.

2) Data Preprocessing

The images were cleaned, resized, normalized, and categorized. Duplicate and low-quality images were removed. The dataset was split into training, validation, and test sets.

3) Model Development

A Convolutional Neural Network (CNN) model was trained to classify and extract visual features from clothing images. A recommendation engine based on content-based and collaborative filtering techniques was then integrated to suggest similar or matching fashion items.

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471

Refereed journal

Vol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141136

4) System Design

The system was built using:

Frontend: HTML, CSS, JavaScript / React

Backend: Python (Flask/Django)

AI Frameworks: TensorFlow / Keras / PyTorch

Database: MySQL / MongoDB

5) Evaluation

Model accuracy and performance were evaluated using:

Precision, Recall, and F1-Score

Confusion matrix for classification accuracy

User satisfaction testing for recommendation quality

6) System Architecture

The AI Fashion Hub architecture includes:

- 1. **User Interface**: Allows users to upload images or enter preferences.
- 2. **AI Engine**: Processes inputs through trained CNN models for feature extraction.
- 3. **Recommendation Module**: Suggests outfits or accessories based on AI analysis.
- 4. **Database Layer:** Stores user data, product details, and image features.

IV. RESULT AND DISCUSSION

Result

The AI Fashion Hub system was successfully implemented using Python for AI modeling

and a web-based interface for user interaction. The platform integrated three major modules:

- 1. **Image Scanner & Dataset Integration:** A fashion image scanner powered by a Convolutional Neural Network (CNN) was trained using a dataset of over 5,000 fashion images collected from online sources. The model achieved **an accuracy of 92.4%** in classifying apparel into categories such as tops, bottoms, footwear, and accessories.
- 2. Recommendation Engine: A hybrid recommendation model combining content-based filtering (using visual similarity features) and collaborative filtering (using user preferences and feedback) provided personalized outfit suggestions. The recommendation accuracy, evaluated using Mean Average Precision (MAP), reached 89.6%.
- 3. Virtual Try-On Interface: The virtual try-on feature enabled users to visualize selected apparel on a 3D human model. Feedback from 30 test users indicated a user satisfaction rate of 91% for the system's visualization clarity and realism.

Discussion

- 1. **Improved Accuracy:** The CNN-based model demonstrated strong classification performance, particularly for visually distinctive clothing types (e.g., footwear, jackets). However, slight misclassification occurred in overlapping categories such as "tops" and "dresses."
- 2. **User-Centric Recommendations:** The hybrid recommendation system proved effective in suggesting relevant fashion items, balancing both user preference and item similarity. The feedback system allowed continuous learning and improvement of recommendations.
- 3. **Virtual Try-On Impact:** The inclusion of the 3D try-on module significantly enhanced user engagement and confidence in product selection. This aligns with the growing trend of integrating augmented reality (AR) in e-commerce platforms.
- 4. **Limitations:** The system's performance depends on high-quality images and a diverse dataset. Further improvement can be achieved by expanding the dataset size and incorporating multiangle clothing images.
- 5. Future Scope: Integrating natural language processing (NLP) for style description understanding and GANs (Generative Adversarial Networks) for generating new fashion designs could enhance system creativity and personalization.

V. CONCLUSION

The AI Fashion Hub project successfully demonstrates the integration of artificial intelligence and fashion technology to revolutionize the shopping experience. By leveraging machine learning algorithms, image recognition, and data analytics, the system efficiently analyzes user preferences, body measurements, and fashion trends to provide personalized clothing recommendations. The inclusion of a scanner module enhances accuracy in size detection, ensuring a better fit and reducing returns.

This project highlights how AI can bridge the gap between consumers and fashion industries by offering smart, datadriven, and sustainable fashion solutions. It not only improves user convenience but also supports retailers in

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471

Refereed journal

Vol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141136

understanding consumer behavior and optimizing inventory.

In conclusion, **AI Fashion Hub** serves as an innovative platform that brings **automation**, **personalization**, and **intelligence** to the fashion world. Future enhancements could include **virtual try-on features**, **augmented reality fitting rooms**, and **integration with online retail platforms** to make fashion more accessible, inclusive, and tech-driven.

REFERENCES

- [1]. DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations Z.
- [2]. Liu et al., CVPR 2016
- [3]. Recommending Outfits From Personal Closet P. Tangseng et al., ICCV Workshops 2017
- [4]. Learning Type-Aware Embeddings for Fashion Compatibility M. I. Vasileva et al., ECCV 2018
- [5]. Translation-based Neural Fashion Compatibility Modeling (TransNFCM) X. Yang et al., 2019
- [6]. Learning to Match on Graph for Fashion Compatibility X. Yang et al., AAAI 2020
- [7]. Graph / Hypergraph neural network approaches for outfit scoring several papers explored GNNs/HGNNs and multimodal fusion for compatibility and set ranking (common themes in 2021–2022).
- [8]. Wang, L., Li, X., & Kaur, GAI-Based Fashion Recommendation Systems Using CNN and GAN Models. International Journal of Computer Applications, 183(27), 25-31 (2021)...
- [9]. Zhang, Y., & Zhou, JDeep Learning for Fashion Image Recognition and Recommendation. IEEE Access, 10, 11234-11249. (2022).
- [10]. Abdulrahman, R., & Chen, Y. Artificial Intelligence in Fashion Industry: A Review of Applications and Challenges. Journal of Fashion Technology & Textile Engineering, 11(2), 45-56. (2023).
- [11]. Study of AI-Driven Fashion Recommender Systems (survey) S. Shirkhani et al., SN Computer Science (2023)
- [12]. Fashion Recommendation: Outfit Compatibility using GNN (arXiv, 2024)