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Abstract: Cardiac arrhythmia is a common cardiovascular disorder that results from abnormalities in the electrical 

conduction system of the heart, leading to irregular heartbeat patterns. Accurate and timely detection of arrhythmia is 

crucial for effective diagnosis and treatment, yet manual interpretation of electrocardiogram (ECG) signals remains a 

challenging and time-consuming process due to the complex, dynamic, and non-stationary nature of ECG data. This 

study proposes a robust automated deep learning framework for the classification of ECG signals into three clinically 

significant categories: cardiac arrhythmia (ARR), congestive heart failure (CHF), and normal sinus rhythm (NSR). 

ECG data were obtained from the publicly available MIT-BIH and BIDMC databases on PhysioNet and underwent a 

comprehensive preprocessing pipeline that included noise removal, normalization, and segmentation to ensure data 

quality and consistency. Two pretrained convolutional neural network architectures, ResNet-50 and AlexNet, were 

fine-tuned using transfer learning techniques to leverage their deep hierarchical feature extraction capabilities for ECG 

classification. The models were trained and validated using a stratified dataset, and their performance was assessed 

through a multi-class confusion matrix employing evaluation metrics such as accuracy, precision, recall, sensitivity, 

specificity, and F-measure. Experimental results demonstrated that the proposed deep learning model achieved 

outstanding performance with an overall classification accuracy of 99.2%, average sensitivity of 99.2%, specificity of 

99.6%, and precision, recall, and F-measure all at 99.2%. These results indicate that the model can effectively 

differentiate between normal and pathological cardiac conditions with high reliability. In conclusion, the proposed 

system offers a powerful and efficient tool for automated arrhythmia detection, significantly reducing diagnostic time 

and minimizing errors associated with manual ECG interpretation, thereby supporting clinicians in the rapid and 

accurate diagnosis of cardiac disorders. 
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I. INTRODUCTION 

 

Cardiac arrhythmia, a prevalent cardiovascular condition, arises from irregular electrical activity within the heart 

muscle, leading to abnormal heartbeat patterns. It remains one of the leading causes of morbidity and mortality 

worldwide, highlighting the need for early and accurate diagnosis. The electrocardiogram (ECG) is a vital noninvasive 

tool for monitoring the electrical activity of the heart and detecting such abnormalities. However, manual interpretation 

of ECG signals is often time-intensive, prone to human error, and limited by the variability of waveform patterns across 

individuals. Consequently, there is an increasing demand for automated, intelligent systems capable of assisting 

clinicians in accurately detecting and classifying cardiac arrhythmias. 

In recent years, deep learning has emerged as a powerful approach for analyzing biomedical signals, particularly ECG 

data, due to its ability to automatically extract complex temporal and morphological features. Transfer learning using 

pretrained convolutional neural networks (CNNs) such as AlexNet and ResNet50 enables efficient model training, even 

with limited medical datasets. Additionally, transforming one-dimensional ECG signals into two-dimensional time–

frequency representations using techniques like the Morse wavelet transform enhances feature richness and allows the 

model to better capture both temporal and spectral characteristics.[1-3] 

This study aims to develop an automated deep learning-based classification framework that leverages time–frequency 

representations of ECG signals for the accurate differentiation of arrhythmia (ARR), congestive heart failure (CHF), 
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and normal sinus rhythm (NSR). ECG data were collected from the MIT-BIH and BIDMC databases, preprocessed to 

remove noise and artifacts, and then converted into two-dimensional images suitable for CNN-based analysis. [4-5] 

 
Figure 1. Workflow of ECG Arrhythmia Detection System 

 

 

II. METHODS 

2.1 Introduction 

Cardiovascular diseases (CVDs) are among the leading causes of mortality worldwide, with cardiac arrhythmias 

representing a significant subset of these conditions. These abnormalities in heart rhythm result from irregular electrical 

conduction within the myocardium. The electrocardiogram (ECG) remains the gold standard for diagnosing and 

monitoring cardiac rhythm disorders. However, the manual interpretation of ECG signals is both laborious and error-

prone due to the non-stationary nature and complex morphology of ECG waveforms. To address this limitation, 

researchers have increasingly explored machine learning and deep learning techniques to automate ECG classification 

and improve diagnostic efficiency.[3] 

Traditional machine learning methods depend heavily on manual feature extraction and selection, which may overlook 

critical signal information or increase computational complexity. In contrast, deep learning architectures—particularly 

convolutional neural networks (CNNs)—can automatically learn spatial and temporal features from raw or transformed 

data. Recent studies have demonstrated the effectiveness of transfer learning in biomedical signal analysis, where pre-

trained models are adapted for domain-specific tasks with limited datasets. This study leverages such techniques, 

employing the Morse wavelet transform to convert ECG signals into two-dimensional time–frequency representations 

for deep learning-based classification.[4-6] 

 
Figure 2. Example ECG Signals (ARR, CHF, NSR) 

 

2.2 Data Source 

This research utilized publicly available datasets from PhysioNet, including the MIT-BIH Arrhythmia Database, the 

MIT-BIH Normal Sinus Rhythm Database, and the BIDMC Congestive Heart Failure Database. The ECG signals were 

recorded from 162 participants—96 with arrhythmia, 30 with congestive heart failure, and 36 with normal sinus 

rhythm. Each signal was sampled at 128 Hz and contained 65,536 samples per recording. To ensure balanced data 

distribution, recordings were segmented into equal portions of 500 samples, producing 1,200 segments for each 
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class.[2] 

 

2.3 Time–Frequency Transformation Using Morse Wavelet 

The preprocessing pipeline involved signal normalization, segmentation, and artifact removal. Each ECG signal was 

partitioned into short, uniform segments to facilitate efficient feature extraction and prevent model degradation caused 

by long signal sequences. After segmentation, the dataset was evenly divided into training (80%) and validation (20%) 

subsets for model development.[7-9] 

 

 
Figure 3. Time–Frequency Representation (Morse Wavelet Scalogram) 

 

2.4 Deep Learning Models and Transfer Learning 

To enable CNN-based analysis, one-dimensional ECG signals were transformed into two-dimensional scalogram 

images using the generalized Morse wavelet. The Morse wavelet provides superior localization in both time and 

frequency domains and effectively captures transient features of non-stationary biomedical signals. Parameters were set 

as γ = 3, P² = 60, sampling frequency = 128 Hz, and voices per octave = 12. These configurations ensured the optimal 

balance between time and frequency resolution.[9-11] 

Transfer learning was applied using two pre-trained CNN architectures—AlexNet and ResNet50—originally trained on 

large-scale image datasets. The convolutional layers were retained for feature extraction, while the final fully connected 

layers were replaced with new layers adapted for three-class ECG classification.[12] The models were fine-tuned to 

optimize performance while preventing overfitting. AlexNet, characterized by its efficient architecture and low 

computational cost, was compared with the deeper ResNet50 model, which includes residual connections to overcome 

vanishing gradient issues.[13][14] 

 
Figure 4. Model Architecture Comparison (AlexNet vs ResNet50) 
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2.5 Hyperparameter Optimization 

The models were trained using the Adam optimizer with a learning rate of 0.0001, a batch size of 30, and 15 epochs. 

The ReLU activation function was employed to accelerate training convergence. Model performance was assessed on 

validation data at each epoch to ensure stability and prevent overfitting. 

 

2.6 Evaluation Metrics 

Performance metrics were derived from confusion matrices, including accuracy, sensitivity, specificity, precision, 

recall, and F1-score. These indicators were computed using the relationships between true positive, false positive, true 

negative, and false negative results. 

 

III. RESULTS 

 

Figure 5 presents the confusion matrix of the proposed ResNet50 model, illustrating its classification performance 

across three ECG signal categories: arrhythmia (ARR), congestive heart failure (CHF), and normal sinus rhythm 

(NSR). The matrix clearly demonstrates that the model achieved a high degree of accuracy, as indicated by the strong 

diagonal dominance where most samples are correctly classified. Specifically, 1,180 ARR, 1,185 CHF, and 1,187 NSR 

signals were accurately identified, with only a minimal number of misclassifications observed between the classes. The 

few instances of incorrect predictions—such as 10 ARR signals misclassified as CHF or NSR—are negligible, 

highlighting the effectiveness of the ResNet50 model in distinguishing between normal and pathological ECG patterns. 

This high consistency across all three classes reflects the model’s strong feature extraction and classification 

capabilities. 

 
Figure 5. Confusion Matrix - ResNet50 Model 

 

Figure 6 depicts the training and validation accuracy and loss curves over 15 epochs for the ResNet50 model. As 

shown, both the training and validation accuracy increase steadily with each epoch, ultimately reaching values above 

98%, while the corresponding loss values decrease progressively towards zero. The convergence of these curves 

indicates stable learning behavior and effective optimization during training. The close alignment between training and 

validation accuracy further confirms that the model generalizes well to unseen data without significant overfitting or 

underfitting. This demonstrates that the proposed preprocessing and fine-tuning strategy enabled the ResNet50 network 

to efficiently learn discriminative ECG signal features. 

The results visualized in Figures 5 and 6 collectively affirm the robustness and reliability of the proposed deep learning 

framework for automated ECG signal classification. The confusion matrix verifies excellent predictive accuracy across 

all cardiac conditions, while the accuracy/loss trends demonstrate consistent model convergence and high 

generalization performance. Together, these outcomes validate the suitability of the ResNet50-based model for 

practical clinical applications, where rapid and precise identification of cardiac arrhythmias is crucial. The high 
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classification accuracy achieved also suggests that such deep learning approaches can serve as valuable diagnostic 

tools, potentially reducing physicians’ workload and minimizing human error in ECG interpretation.[8] 

 

 
Figure 6. Training and Validation Accuracy/Loss Curves 

 

In addition to the quantitative performance illustrated in the confusion matrix and accuracy/loss plots, the results 

emphasize the practical significance of integrating deep learning models like ResNet50 into clinical workflows. The 

high precision, sensitivity, and specificity achieved indicate that the model can reliably detect subtle variations in ECG 

waveforms that may be overlooked during manual inspection. This capability is particularly valuable for early detection 

and continuous monitoring of cardiac abnormalities in real-time healthcare systems. Furthermore, the consistent 

convergence trends shown in Figure 6 demonstrate that the training process was well-regularized and free from 

instability or performance degradation, suggesting that the model can be effectively deployed across diverse patient 

datasets. Therefore, the proposed approach not only enhances diagnostic accuracy but also holds promise for scalable 

and efficient implementation in modern healthcare environments, supporting cardiologists in making faster, evidence-

based decisions.[12][14] 

 

IV. DISCUSSIONS 

 
Figure 7. Performance Metrics Comparison 
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Figure 7 illustrates the comparative performance of the two pretrained convolutional neural network models, AlexNet 

and ResNet50, based on key evaluation metrics—accuracy, sensitivity, and specificity. It is evident that both models 

demonstrated strong performance in classifying ECG signals into the three categories: arrhythmia (ARR), congestive 

heart failure (CHF), and normal sinus rhythm (NSR). However, the ResNet50 model consistently outperformed 

AlexNet across all metrics. Specifically, ResNet50 achieved an overall accuracy of approximately 99.2%, surpassing 

AlexNet’s 98.9%. Similarly, the sensitivity and specificity of ResNet50 were higher, indicating its superior ability to 

correctly identify both positive and negative cases. This improvement can be attributed to the deeper architecture and 

residual connections of ResNet50, which allow it to capture more complex ECG signal features and mitigate the 

vanishing gradient problem commonly encountered in deep networks. 

The observed results highlight that fine-tuning of advanced deep learning architectures, such as ResNet50, can 

significantly enhance the automated classification of ECG signals compared to traditional CNN-based models like 

AlexNet. The marginal yet consistent performance gain of ResNet50 suggests that it is better suited for capturing 

intricate temporal and morphological variations within ECG signals, which are crucial for distinguishing between 

normal and abnormal cardiac rhythms. Additionally, the high sensitivity and specificity values confirm the model’s 

robustness and reliability for real-world clinical use, reducing the likelihood of false diagnoses. Overall, the 

comparative analysis validates the effectiveness of the proposed ResNet50-based framework as a more accurate and 

efficient solution for cardiac arrhythmia detection, paving the way for its integration into computer-aided diagnostic 

systems for cardiovascular healthcare.[8] 

 

CONCLUSIONS AND FUTURE ENHANCEMENTS 

 

This research presented an effective deep learning-based approach for the automatic classification of ECG signals into 

three clinically relevant categories: cardiac arrhythmia (ARR), congestive heart failure (CHF), and normal sinus rhythm 

(NSR). The study utilized ECG datasets from the MIT-BIH and BIDMC databases available on PhysioNet, which were 

preprocessed, normalized, and segmented to ensure high-quality data input. Two state-of-the-art pretrained 

convolutional neural network models—AlexNet and ResNet50—were fine-tuned and compared to evaluate their 

classification efficiency. The experimental outcomes revealed that the ResNet50 model achieved superior performance 

across all evaluation metrics, including an overall accuracy of 99.2%, sensitivity and precision of 99.2%, and 

specificity of 99.6%. The confusion matrix demonstrated minimal misclassifications, confirming the model’s reliability 

and robustness in differentiating between normal and pathological ECG patterns. 

The high accuracy and consistency of the ResNet50 model can be attributed to its deep residual connections, which 

enable effective feature extraction and prevent vanishing gradient issues during training. Furthermore, the convergence 

behavior of the training and validation accuracy/loss curves confirmed that the model generalized well without 

overfitting, indicating stable learning. The comparative analysis also showed that while AlexNet performed reasonably 

well, ResNet50 provided a notable performance improvement due to its ability to learn more complex temporal and 

morphological characteristics of ECG signals. Overall, the proposed model significantly reduces the need for manual 

interpretation, minimizes diagnostic errors, and offers a promising solution for clinical decision support systems. 

Therefore, this study provides a strong foundation for the application of deep learning in cardiac signal analysis, 

contributing to faster, more accurate, and reliable diagnosis of cardiovascular diseases. 

Despite the excellent results achieved in this work, there are several directions for future research and enhancement. 

First, expanding the dataset to include additional ECG recordings from various sources, different age groups, and 

patients with diverse cardiac conditions could improve the model’s generalization ability and adaptability to real-world 

clinical environments. Future studies could also explore the classification of a broader spectrum of arrhythmia subtypes 

to enhance diagnostic granularity. Moreover, integrating advanced deep learning architectures such as Vision 

Transformers (ViTs), hybrid CNN–RNN models, or attention-based networks could further improve temporal feature 

extraction and model interpretability. 

Another potential enhancement involves developing lightweight and optimized versions of the model for deployment 

on mobile and embedded platforms, enabling real-time ECG monitoring and early warning systems for patients at risk 

of cardiac events. Additionally, incorporating explainable AI (XAI) techniques could help visualize and interpret model 

decisions, thereby increasing clinical transparency and physician trust. Integration with Internet of Things (IoT) and 

cloud-based healthcare frameworks could further enable remote cardiac monitoring and continuous patient assessment. 

Finally, future research can focus on multi-modal learning approaches that combine ECG data with other physiological 

signals or patient metadata to build a more comprehensive and intelligent cardiac diagnostic system. Such 

developments will not only enhance diagnostic precision but also revolutionize personalized healthcare delivery in 

cardiology. 
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