
ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141170

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 381

AutoGrad

Miss. Raheen Rafique Bagwan1, Miss. Akansha Anil Sasane2,

Miss. Riya Chandrakant Chawate3, Miss. Rutuja Atul Kavitake4

Department of Computer Engineering,

Al- ameen Educational & Medical Foundation’s College of Engineering, Koregaon Bhima, Pune1-4

Abstract: In the era of rapidly expanding student populations and increasing academic work- loads, traditional methods

of evaluating handwritten answer sheets have become inef- ficient, inconsistent, and resource-intensive. AutoGrad

addresses these challenges by leveraging cutting-edge Generative AI to automate the assessment process with high ac-

curacy and scalability. The system integrates the Gemini model for Optical Character Recognition (OCR), effectively

digitizing diverse handwriting styles, and the LLaMA-7B language model for semantic answer evaluation.AutoGrad

introduces a novel Mixture-of-Experts (MoE) architecture to significantly reduce character recognition errors and uses

adaptive thresholding to fine-tune evaluation rigor based on question types. The solution further integrates a rule-based

and AI-driven hybrid evaluation engine, ensuring both factual correctness and semantic coherence in student answers.

With a Flask-based user interface, vector similarity matching, and a real-time feedback generation system, AutoGrad

offers an end-to-end, scalable solution for academic institutions.Empirical results from real-world deployments show a

reduction in grading time and a correlation with faculty evaluations. AutoGrad not only automates evaluation but en-

hances it—providing detailed feedback, promoting personalized learning, and supporting academic integrity at scale.

Keywords: Automated Grading, Generative AI(or LLM), Optical Character Recognition(OCR), Semantic Evaluation,

Scalable Assessment, Mixture-of-Experts(MoE), Distributed Processing

I. INTRODUCTION

Assessment is a fundamental pillar of the educational system, directly impacting the learning process, student

performance analysis, and academic progression. However, the traditional approach of manually evaluating handwritten

answer sheets is labor-intensive, time-consuming, and prone to human bias and inconsistency. As student enrollment

increases and academic institutions strive to maintain evaluation quality, the limitations of manual assessment have

become more pronounced.

To address these challenges, AutoGrad proposes an AI-driven automated grading system designed to evaluate

handwritten answer sheets with high accuracy, speed, and semantic understanding. Unlike conventional grading software

that is limited to struc- tured formats such as multiple-choice questions (MCQs) or typed responses, AutoGrad is tailored

for unstructured, handwritten responses, which are more common in theoretical and technical examinations

The system integrates state-of-the-art Generative AI models—namely the Gemini model for Optical Character

Recognition (OCR) and the LLaMA language model for semantic answer evaluation. The Gemini model, enhanced

through a Mixture-of-Experts (MoE) architecture, is optimized for various regional handwriting patterns, significantly

improving character recognition accuracy. Meanwhile, the LLaMA model ensures a deeper contextual understanding of

student responses, beyond mere keyword matching.

AutoGrad not only reduces the workload of educators but also ensures consistent and transparent evaluation, offering

actionable feedback for students. The system’s modular and scalable design enables easy deployment across academic

institutions, making it a practical solution for the evolving needs of modern education.

II. RELATED WORK

The field of Automated Grading has historically been limited to structured tasks like multiple-choice and programming,

struggling with the complexities of handwritten, subjective responses. Traditional methods, including conventional OCR

and Rule-Based Grading, fail to reliably handle diverse handwriting or achieve true semantic understanding. Existing

commercial solutions often lack the necessary scalability and transparency for large institutions. The "AutoGrad" project

tackles this by integrating cutting-edge Generative AI technologies. It uses the Gemini model with a Mixture-of-Experts

(MoE) architecture for highly accurate OCR and a fine-tuned LLaMA-7B model for deep contextual evaluation. This

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141170

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 382

approach moves beyond simple keyword checks, enabling the system to assess logical coherence and infer meaning, thus

providing a scalable and transparent solution for modern education.

III. METHODOLOGY

The AutoGrad system aims to revolutionize the process of academic assessment. It will combine the interpretative depth

of large language models, the pattern recognition strength of advanced OCR, and the operational flexibility of modular

system design to create an end-to-end solution for modern educational evaluation.

The proposed system follows a structured process consisting of the following steps:

1. Input and Submission

2. Central Processing

3. Preprocessing

4. Output and Storage

5. PDF Upload and Preprocessing

6. OCR Layer – Gemini Model with Mixture-of-Experts

IV. ALGORITHM USED

A. Gemini Model with Mixture-of-Experts (MoE): MoE enhances the Gemini model to perform Optical Character

Recognition (OCR). It accurately digitizes diverse handwriting styles by dynamically routing input to specialized sub-

networks based on writing features.

B. LLaMA-7B Language Model: This model is the engine for Semantic Answer Evaluation. It performs deep contextual

analysis to assess a student's response for coherence, completeness, correctness, and logical progression.

C. Vector Similarity Matching (ChromaDB): Student answers are converted into numerical vectors (embeddings) and

compared to model answers in a vector database. It uses Cosine Similarity to assign a score based on the conceptual

alignment of the student's answer.

D. YOLOv8 Object Detection Model: Used in the Preprocessing Module to perform Page Segmentation. It identifies and

isolates individual answer regions for specific questions before sending them to the OCR.

E. Rule-Based Evaluation: This component is used for Numeric / Objective answers. It applies predefined logic to check

for exact mathematical correctness or specific expected outputs, ensuring alignment with simple marking guidelines.

V. DATABASE DESIGN

The system uses a MongoDB database for securely storing all backend data. This NoSQL architecture allows for flexible,

scalable, and efficient data handling. Sensitive data such as file uploads and evaluations are encrypted using TLS/SSL

protocols to ensure privacy and security. The database maintains records of uploaded answer sheets, question metadata,

model answers, rubrics, and the resulting scores and feedback.

VI. SYSTEM ARCHITECTURE

System Architecture Design and Workflow Overview

AutoGrad’s end-to-end architecture is designed using a modular, scalable microser- vices paradigm. Each functional unit

runs as an independent service containerized using Docker and orchestrated using Kubernetes, allowing seamless

deployment, scaling, and fault isolation. The entire pipeline can be deployed on institutional servers or integrated into

cloud platforms such as AWS, Azure, or GCP based on organizational needs.

The workflow is as follows:

1. User Upload Interface: Faculty logs into a secure dashboard to upload answer sheets and question metadata.

2. Preprocessing Module: Uploaded PDFs are parsed, enhanced, segmented, and tagged.

3. Distributed OCR Engine: Gemini OCR instances run in parallel to digitize segmented answers.

4. Evaluation Pipeline: Each answer is evaluated in a distributed queue using NLP and LLM services.

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141170

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 383

5. Feedback and Scoring: Results are saved, rendered on dashboards, and made available for export and download.

AutoGrad uses asynchronous processing with task queues (e.g., Celery with Redis or RabbitMQ) to handle large batches

efficiently without blocking the user interface. This allows simultaneous grading of thousands of answer sheets without

performance degra- dation.

Scalability and Parallelism

Scalability is a core design goal of AutoGrad. The system includes:

-Horizontal Scalability: AutoGrad services are stateless, allowing horizontal scaling based on load. OCR, NLP, and LLM

components can run across multiple GPUs or TPUs in parallel.

-Batch Processing Engine: The platform supports scheduled batch evaluations, allowing nightly runs for large institutions

or real-time on-demand grading for small classes

-Load-Balanced Evaluation Nodes: Evaluation servers dynamically assign workloads to available resources based on

GPU availability, memory footprint, and active thread count.

By deploying evaluation, the system can handle spikes in demand such as exam seasons or admission tests.

Security and Data Privacy

In academic settings, security and privacy are critical. AutoGrad incorporates com- prehensive security protocols,

including:

-End-to-End Encryption: All file uploads, evaluations, and report downloads are en- crypted using TLS/SSL protocols.

-Role-Based Access Control (RBAC): Separate permission levels are defined for students, faculty, admins, and auditors.

Only authorized users can access specific parts of the data or evaluation reports.

-Audit Logging: Every action taken on the system—from sheet upload to final grade export—is logged and timestamped

for compliance and audit purposes.

-Data Retention Policies: Institutions can define how long student data is stored. Auto- Grad supports auto- deletion

policies and full compliance with data protection laws like GDPR and India’s DPDP Act.

Customization and Extensibility

Recognizing that different institutions, departments, and instructors may have unique grading styles, AutoGrad is built to

be fully customizable:

-Custom Rubric Editor: Faculty can define detailed rubrics using a visual interface—specifying keyword weightages,

logical components, required reasoning steps, or custom evaluation tags.

-Pluggable LLM Backend: While LLaMA-7B is the default LLM, institutions can swap in other open models like Mistral,

Claude, or even proprietary LLMs through a simple adapter module.

-Plugin Support: AutoGrad includes support for external plugins such as plagiarism detectors, diagram matchers (via

computer vision), or automated code checkers for pro- gramming exams.

This flexibility ensures that AutoGrad evolves alongside pedagogical and regulatory changes.

Diagram and Code-Based Answer Evaluation

Many technical subjects involve diagrams, flowcharts, and pseudocode. AutoGrad includes special handling for these

cases:

-Diagram Recognition**: Integrated computer vision modules detect flowcharts, state diagrams, circuit schematics, and

labeled figures. Using pretrained convolutional models (ResNet, EfficientNet), it compares student diagrams with

annotated model diagrams for accuracy, completeness, and labeling correctness.

-Code Block Grading: For programming-related answers, code snippets are extracted and passed through a custom-built

evaluator that checks:

- Syntax correctness

- Logic structure

- Output prediction

- Time-space complexity estimation

-Hybrid Content Evaluation: Answers with mixed content (e.g., theory + code or dia- gram + explanation) are processed

using composite pipelines that assign weighted scores to each segment.

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141170

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 384

Architecture

Architecture The architecture of AutoGrad is built on a scalable, modular pipeline that leverages Mixture-of-Experts

(MoE) layers to optimize performance in OCR and semantic evalua- tion. The diagram below illustrates the internal

working of the MoE layer used in both the Gemini OCR module and the LLM-based grading engine.

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141170

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 385

AutoGrad is an advanced AI-based grading system engineered to process, interpret, evaluate, and report on handwritten

academic responses with high precision and ef- ficiency. Its architecture is modular, scalable, and optimized for

performance using cutting-edge technologies such as Mixture-of-Experts (MoE) models, large language mod- els

(LLMs), and high-throughput distributed processing. The entire pipeline supports real-time and batch processing and has

been designed with flexibility, extensibility, and institutional integration in mind. The architecture of AutoGrad consists

of the following core components:

 • Input Layer

• Image Preprocessing

• MoE-Based OCR System (Gemini)

• Semantic Answer Evaluation (LLM + Vector Matching) Feedback and Reporting

• Scalability and Efficiency

Each of these components has been optimized for specialized tasks and communicates with the others via well-defined

APIs or message queues. Below is a detailed look into each component and its internal mechanisms.

Input Layer

The input layer serves as the entry point for document ingestion and processing. It is built using Flask, a lightweight web

framework for Python, which provides an intuitive and secure interface for faculty members and academic administrators.

Users interact with a web portal to upload scanned PDFs of handwritten answer sheets and corresponding question papers.

Each upload can be tagged with metadata such as exam name, subject code, assessment type (quiz, midterm, final), and

time window.

The system supports bulk uploads and drag-and-drop functionality. Backend valida- tions ensure the PDFs are not

corrupted and are scanned with adequate resolution for 22 OCR processing. Uploaded documents are stored in a versioned

object store, allowing rollback and traceability. The input layer also handles authentication and access control, using JWT

tokens or OAuth integrations with institutional login systems such as LDAP, Shibboleth, or Google Workspace.

Image Preprocessing

After receiving scanned answer sheets, AutoGrad performs a series of preprocessing steps to clean, normalize, and

prepare the images for OCR.

This module includes noise reduction using Gaussian and bilateral filters to remove scanner dust and image artifacts

adaptive thresholding and binarization to convert the image into a clean black-and-white format, improving contrast for

OCR alignment correc- tion and deskewing using Hough Line Transform and affine transformations page border removal

and margin trimming to focus only on relevant content areas.

The preprocessed images are then passed through a YOLOv8-based segmentation engine. YOLOv8 is a real-time object

detection model trained specifically on academic documents. It detects question-wise answer regions, tables, diagrams,

and handwritten math expressions. Each identified region is cropped and saved as an individual image patch.

Segmentation is followed by semantic tagging, where each region is labeled with the corresponding question number,

page index, and positional coordinates. This facilitates question-wise processing and improves the evaluation accuracy.

In the backend, all image operations are performed using OpenCV and TorchVision pipelines, running on CUDA for

acceleration. This ensures preprocessing does not be- come a bottleneck even during peak loads.

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141170

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 386

MoE-Based OCR System (Gemini)

AutoGrad employs a state-of-the-art Gemini OCR engine, enhanced by a Mixture- of-Experts (MoE) architecture, to

digitize the handwritten content from answer regions. Traditional OCR systems often struggle with the diversity of

handwriting styles, regional scripts, and mathematical notation. The MoE-based approach addresses these challenges

with specialization and adaptability.

The OCR system comprises the following subcomponents: Gating Network: This neural controller analyzes incoming

handwriting samples and assigns routing scores to each expert model based on handwriting style features such as slant,

stroke density, and curvature. It is trained using reinforcement learning techniques for dynamic optimization.

Expert Models: Each expert is a transformer-based model fine-tuned on a specific handwriting style.

Examples include cursive writing expert, block lettering expert, math- focused expert, Devanagari-influenced script

expert, and multilingual expert for regional scripts.

Dynamic Routing: For each image patch, the gating network selects the top-k expert models. These experts process the

input in parallel. Their outputs are then combined using a learned aggregation function that assigns weighted scores to

each expert’s pre- diction.

Final Output Generation: The aggregated outputs are decoded into UTF-8 text us- ing a beam search decoder with

character-level attention, producing a highly accurate transcription of the handwritten content.

This architecture enables the system to deal with variations in writing style across different regions, age groups, and

educational levels. It also drastically reduces computa- tional overhead since only a subset of experts is active per input.

Semantic Answer Evaluation (LLM + Vector Matching)

Once the handwritten content is digitized, the next step is to evaluate the meaning, correctness, and completeness of each

answer. This is performed using a hybrid semantic engine that combines natural language understanding, keyword

analysis, vector similarity matching, and deep contextual reasoning.

The semantic evaluation pipeline consists of the following stages: Keyword Extraction and Vectorization: Using domain-

specific models fine-tuned with technical and academic corpora, the system extracts core concepts from the student’s

answer. Named entity recognition, noun phrase chunking, and topic modeling are performed using SpaCy and custom

transformers. The extracted concepts are vectorized using embeddings generated from a BERT-based encoder trained on

textbooks and lecture notes.

Model Answer Repository: Model answers and rubrics are stored in ChromaDB, a high-performance vector database.

Each model answer is encoded into vector space. Additional metadata includes associated marks, rubrics, keywords, and

answer structures.

Cosine Similarity Matching: The vectorized student answers are compared to model answers using cosine similarity. A

similarity score is generated that reflects conceptual alignment between the student’s response and the model expectation.

LLM-Based Contextual Grading: The same answer is passed to a fine-tuned LLaMA- 7B model. The LLM is guided

using question-specific prompts that include rubrics, expected logic flow, reasoning checkpoints, and common

misconceptions. The model evaluates each answer for structural coherence, logical flow, relevance, and completeness.

Score Aggregation: The cosine similarity score and the LLM’s grading output are combined using a rule- based or

learnable aggregation model. Final marks are calculated by mapping the combined score onto the rubric-defined mark

distribution.

This hybrid system ensures that grading is both objective and contextually nuanced. It handles factual, descriptive, and

analytical questions equally well, while being robust to variations in wording and answer structure.

Feedback and Reporting AutoGrad places significant emphasis on feedback, transparency, and reporting. The goal is not

only to score answers but to foster learning and institutional accountability. Student Feedback Interface: - -each answer

is color-coded based on accuracy (green for correct, amber for partial, red for incorrect) - tooltips and callouts explain

the reasoning behind deductions (e.g., missing definitions, incorrect diagrams, unsupported logic) - students receive

suggestions such as ”mention algorithm name” or ”state assumptions clearly” Faculty Dashboard: - question-level

analytics such as average scores, distribution curves, and standard deviations – heatmaps showing which concepts were

poorly understood across the class - AI-flagged irregularities including possible copy-paste patterns, duplicated logic, or

unnatural answer flow Admin Reporting: -PDF and CSV reports for every batch, customizable by date, subject, or class

- NBA- and NAAC-compliant formats for academic audits - support for anonymized exports for peer-review and

moderation. All feedback is version-controlled and stored in an institutional record system with access logs for audit

purposes.

Scalability and Efficiency

AutoGrad is engineered for high throughput and responsiveness, suitable for institu- tions evaluating thousands of

students simultaneously. Key strategies include:

MoE Parallelization: Since only a few expert paths are activated per input, MoE architectures reduce both latency and

energy consumption. GPU threads are allocated only where needed. Distributed Processing Queue: AutoGrad uses Celery

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141170

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 387

and Redis to distribute tasks across multiple worker nodes. Each OCR, evaluation, or report generation task runs

independently and can be retried in case of failure.

Asynchronous Processing: All backend services use non-blocking I/O and asynchronous HTTP requests (via FastAPI

workers) to ensure a responsive frontend. Containerized Deployment: Each service is deployed in a Docker container

and man- aged using Kubernetes Services auto-scale based on CPU and GPU utilization metrics, ensuring uninterrupted

service even during peak exam seasons.

 High Availability: Services are deployed across availability zones with load balancing and failover strategies. A

centralized logging and monitoring system based on Prometheus and Grafana provides real-time visibility into system

health.

VII. RESULT AND ANALYSIS

The results are presented based on three core functional areas: Image Processing (OCR), Grading Accuracy (LLM), and

Efficiency.

Accuracy Results:

Image & Text Quality: 93%

Grading Accuracy: 80%

Operational Efficiency: 15%

 VIII. FUTURE SCOPE

The AutoGrad system will be upgraded with dedicated deep learning models (e.g., CNNs for handwriting, few-shot

LLMs for evaluation), real-time adaptive grading APIs driven by human feedback, and cross-platform integration

capabilities for seamless deployment within existing academic ecosystems (LMS/SIS).

 IX.CONCLUSION

The AutoGrad system represents a significant step forward in the field of automated academic evaluation. By integrating

advanced Optical Character Recognition (OCR), deep learning-based handwriting analysis, and semantic grading via

large language mod- els (LLMs), the system effectively addresses the inefficiencies and inconsistencies associ- ated with

traditional manual assessment methods.The use of Mixture-of-Experts (MoE) architecture allows AutoGrad to

dynamically select specialized models for different types of handwriting and answer structures, enhancing accuracy and

scalability.

Moreover, the semantic grading engine, powered by vector similarity and fine-tuned LLMs, ensures fair and context-

aware evaluation, even when student answers deviate from the standard pattern but are conceptually correct.Through the

implementation of MongoDB, the sys- tem achieves a flexible, scalable, and efficient backend that supports rapid data

retrieval, analysis, and report generation.

AutoGrad not only saves valuable faculty time but also delivers faster and more transparent feedback to students,

promoting a better learning experience.

REFERENCES

[1]. A. Khan and M. Matskin,“Cost modelling and optimization for cloud: agraph- based

approach,”JournalofCloudComputing,vol.13,no.1,2024.[Online]. - https://doi.org/10.1186/s13677-024-00709-6

[2]. C. Anantaram, G. Nagaraja, and K. Narayanan, “Verification of accuracy in rule-based systems for automated

grading,”Data Knowledge Engineering,vol.10,pp. 115–138, 2019.

[3]. Google Deep Mind,“Gemini1.5ProTechnicalReport,”2023.[Online]. – https://deepmind.google/gemini

[4]. H. Aldriye and A. Alkhalaf, “Automated grading systems for programming assignments: A literature review,

”International Journal of Advanced Computer Science and Applications,vol.10,no.3,pp.1–8,2019.

[5]. M. Messer, N. C. C. Brown, and K. M. Smith,“A systematic review of automated grading and feedback tools in

programming education,”ACM Transaction son Computing Education,vol.24,no.2,pp.1–43,2024.

[6]. Z. Yangetal.,“CC-OCR:A comprehensive and challenging bench mark for evaluating large multi modal models in

literacy tasks,”Proc.ofCVPR,2024.[Online]. - https://arxiv.org/abs/2412.02210

https://ijarcce.com/
https://ijarcce.com/

