

Impact Factor 8.471

Refereed journal

Vol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141175

Deep Learning Based Real-Time Sign Language Recognition

Prof. Minal Patil¹,

Rhushabh Gaikwad², Rushikesh Ghogare³, Shekhar Khandale⁴, Roshan Avhad⁵

Professor, Computer Engineering, Indira College of Engineering and Management, Pune, India¹

Students, Computer Engineering, Indira College of Engineering and Management, Pune, India²

Students, Computer Engineering, Indira College of Engineering and Management, Pune, India³

Students, Computer Engineering, Indira College of Engineering and Management, Pune, India⁴

Students, Computer Engineering, Indira College of Engineering and Management, Pune, India⁵

Abstract: Sign language is a vital medium of communication for individuals with hearing and speech impairments, but the lack of knowledge among non-signers creates barriers. This project proposes a real-time sign language recognition system that can detect alphabets (A-Z) and numerics (0-9) from webcam video. The system combines modern deep learning techniques with web technologies to provide an accurate, fast, and user-friendly solution. The frontend uses WebRTC to capture video streams directly in a browser, making the system platform-independent and usable with any standard laptop or external camera. The backend uses FastAPI with WebSockets to enable real-time communication between the browser and the deep learning model, ensuring low-latency predictions.

The recognition model integrates EfficientNet (transfer learning) for feature extraction, combined with a CNN+RNN to capture spatial and temporal patterns. An attention mechanism enhances performance by focusing on the most informative frames, while a GRU classifier predicts the final alphabet or number with high accuracy. Training and validation are carried out using benchmark datasets along with self-collected samples to ensure adaptability in real-world conditions. The system prototype displays recognized signs as text beneath the video feed, with emphasis on accuracy, robustness, and real-time performance for applications in education, healthcare, and accessibility services.

Keywords: Sign Language Recognition, Real-Time Gesture Recognition, EfficientNet, CNN-GRU Hybrid Model, Attention Mechanism, Spatial-Temporal Feature Extraction, WebRTC, Low-Latency Inference

I. INTRODUCTION

Sign language is a powerful and expressive mode of communication primarily used by individuals with hearing and speech impairments. Unlike spoken languages, which rely on sound, sign language uses gestures, facial expressions, and hand movements to convey meaning. However, a communication gap persists between the hearing-impaired community and the rest of the population, as most people do not understand sign language fluently. This challenge motivates the development of technological solutions that can interpret sign language gestures in real time and translate them into text or speech.

In this project, we propose a real-time sign language recognition system based on deep learning techniques. The system captures live video using a webcam, processes hand gestures through neural network models, and displays the recognized alphabets or numerics on the screen. The core concept is to integrate computer vision, deep learning, and web technologies to create an assistive tool that bridges the communication gap between signers and non-signers.

The system uses a web-based frontend built with WebRTC for real-time video capture and a Python backend (FastAPI) for deep learning inference. The model architecture combines EfficientNet (for spatial features), CNN+RNN layers (for temporal analysis), an attention mechanism to focus on key frames, and a GRU (Gated Recurrent Unit) classifier for final prediction. The system is lightweight, fast, and easily accessible through any modern web browser.

Impact Factor 8.471

Refereed journal

Vol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141175

II. LITERATURE SURVEY

Sign Language Recognition (SLR) has evolved significantly in recent years, driven by advancements in computer vision and deep learning. Initially, recognition systems relied on hardware-based sensors such as gloves, accelerometers, and infrared devices to track finger positions and hand movements. While these methods provided accurate motion tracking, they were intrusive, costly, and impractical for daily communication. The focus has since shifted toward vision-based approaches using standard cameras, which are non-invasive and suitable for real-time applications.

Recent deep learning architectures have greatly improved the accuracy and efficiency of SLR systems. EfficientNet has been employed to extract rich spatial features from input frames, while hybrid CNN-RNN architectures capture temporal dependencies in gesture sequences. Attention mechanisms are used to highlight key frames and reduce redundancy, leading to enhanced recognition accuracy even under challenging lighting or background conditions [1].

Various transfer learning approaches have also been explored to optimize model performance. Pretrained models such as VGG16, VGG19, ResNet50, and MobileNetV2 have shown remarkable success in recognizing static hand gestures from Indian Sign Language (ISL). Among these, MobileNetV2 stands out for its compact size, reduced computation time, and high validation accuracy, demonstrating its suitability for lightweight, real-time systems [2].

Comprehensive reviews of over a hundred research studies on deep-learning-based sign language recognition reveal a common focus on CNN-based feature extraction and temporal modelling using RNN, LSTM, and GRU networks. These studies highlight key challenges such as dataset limitations, occlusion, signer dependency, and environmental variations, which hinder the generalization of models across diverse users and conditions [3].

For Indian Sign Language, CNN-based recognition systems have achieved impressive results, with models reaching up to 99.93% accuracy when tested on well-structured datasets. These systems demonstrate that deep CNNs can effectively recognize isolated alphabets and numeric gestures, setting a strong foundation for further development of dynamic and real-time recognition architectures [4].

Other research on regional sign languages, such as Nigerian and Kazakh Sign Language, has extended these findings. CNN-based systems have achieved around 95% accuracy for Nigerian Sign Language, whereas recent approaches using YOLOv8 combined with optimized 2DCNN models for Kazakh Sign Language achieved over 98% accuracy in continuous recognition. These results demonstrate that combining real-time object detection with temporal modelling can significantly improve performance and robustness in continuous video-based recognition [5] [6].

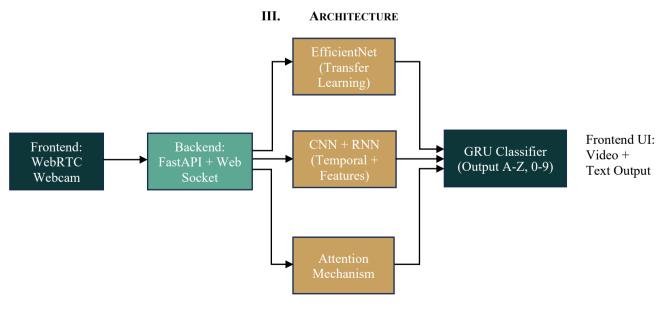


Fig. 1 System Architecture

Impact Factor 8.471

Refereed journal

Vol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141175

The architecture of the proposed system, titled Deep Learning Based Real-Time Sign Language Recognition, follows a modular and layered design integrating both web technologies and deep learning components to achieve efficient real-time inference.

The overall architecture is illustrated in Figure 1, consisting of five major components:

- A. Frontend (WebRTC Webcam)
- B. Backend (FastAPI with WebSocket)
- C. Deep Learning Modules (EfficientNet, CNN+RNN, and Attention Mechanism)
- D. GRU Classifier
- E. Frontend Output Interface (Video + Text Display)

A. Frontend: WebRTC Webcam

The frontend is a web-based interface implemented using WebRTC, allowing live video streaming directly through the browser. It captures hand gesture frames in real time from a webcam and sends them to the backend server via WebSocket protocol. This eliminates the need for any additional software installation, making the system platform independent and accessible through standard browsers.

B. Backend: FastAPI + WebSocket

The backend server, built using FastAPI, acts as the communication bridge between the frontend and the deep learning model. It establishes a persistent WebSocket connection for low-latency streaming of image frames. Each frame or sequence of frames received from the frontend is pre-processed, normalized, and forwarded to the model for prediction. The asynchronous handling capability of FastAPI ensures efficient real-time communication.

C. Deep Learning Model: EfficientNet, CNN+RNN, and Attention Mechanism

The model architecture is designed as a hybrid pipeline combining spatial, temporal, and contextual feature extraction:

• EfficientNet (Transfer Learning):

Extracts high-level spatial features from individual frames using pretrained weights, improving accuracy and reducing training time.

• CNN + RNN (Temporal + Feature Learning):

The CNN component captures short-term spatial dependencies, while the RNN component (using GRU units) models the temporal evolution of gestures across multiple frames.

• Attention Mechanism:

Dynamically assigns weights to key frames, enabling the network to focus on the most informative hand shapes and motions while suppressing irrelevant transitions.

These three modules work collaboratively to produce a rich, temporally-aware feature representation of the input video sequence.

D. GRU Classifier

The fused feature vector obtained from the above modules is passed through a GRU based classifier that predicts the corresponding sign label. The classifier outputs one of the 36 possible categories (A-Z alphabets and 0-9 numerics). The final output is accompanied by a confidence score to indicate prediction reliability.

E. Frontend Output Interface

After prediction, the backend sends the recognized sign label back to the frontend interface via the same WebSocket channel. The recognized text is displayed immediately below the live video feed, providing users with visual feedback in real time. This feedback loop ensures smooth user interaction with minimal delay.

Impact Factor 8.471

Reer-reviewed & Refereed journal

Vol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141175

IV. CONCLUSION

The project "Deep Learning Based Real-Time Sign Language Recognition" aims to bridge the communication gap between the hearing-impaired community and the general population by developing an AI-based system that can interpret sign gestures in real time. During the Stage-I phase, the team successfully completed problem identification, requirement gathering, feasibility analysis, and system design. The architecture integrating WebRTC-based frontend, FastAPI backend, and hybrid deep learning model (EfficientNet + CNN + RNN + Attention + GRU) was designed and documented in detail.

The outcome of this phase includes a well-structured Software Requirement Specification (SRS), UML and architectural diagrams, and a 24-week project plan that defines deliverables and milestones. The feasibility study confirmed that the project is technically and operationally viable within the available hardware and software resources.

This stage establishes the groundwork for Stage-II, where the deep learning model will be implemented, trained, and integrated with the live video interface. The strong theoretical and design foundation achieved in Stage-I ensures smoother development, accurate model performance, and efficient deployment in the upcoming stages

V. FUTURE SCOPE

While the current phase focuses on design and planning, several key tasks are scheduled for the implementation phase and beyond:

A. Model Implementation and Training

- Develop and train the hybrid deep learning architecture using real and augmented sign datasets.
- Fine-tune EfficientNet and GRU layers to balance accuracy and speed for real time inference.

B. Real-Time System Integration

- Connect the WebRTC frontend with the FastAPI backend through WebSockets for low-latency frame streaming.
- Implement a responsive web interface for smooth camera control and output display.

C. Continuous Sign Recognition

- Extend from isolated alphabet/number recognition to continuous gesture interpretation for complete sentence translation.
- Employ advanced sequence modeling methods such as Transformers or Connectionist Temporal Classification (CTC).

D. Optimization and Deployment

- Apply model compression and quantization for faster inference on CPU and edge devices.
- Create a deployable web and mobile version with a user-friendly interface.

E. Voice Output and Multilingual Support

- Integrate text-to-speech modules to vocalize recognized signs.
- Provide multilingual support for translated text and speech output.

F. User Testing and Feedback Integration

- Conduct testing with real users, including hearing-impaired participants, to assess usability and accuracy.
- Use feedback to improve gesture clarity, interface accessibility, and model robustness.

G. Data Expansion and Generalization

- Continuously expand the dataset with varied lighting conditions, skin tones, and backgrounds.
- Implement domain adaptation to improve generalization across users.

Impact Factor 8.471

Refereed journal

Vol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141175

REFERENCES

- [1]. Yenisari, E., & Yavuz, S. (2025). "Deep Learning Based Sign Language Recognition Using Efficient Multi-Feature Attention Mechanism". *Digital Object Identifier 10.1109/ACCESS.2024. Doi Number*.
- [2]. Ingoley, S., & Bakal, J. (2025). "Efficient Models Based on Deep Learning Technique for Indian Sign Language". Procedia Computer Science, 258(2025) 318-331
- [3]. Abd Al-Latief, S. T., Yussof, S., Ahmad, A., & Khadim, S. (2024). "Deep Learning for Sign Language Recognition: A Comparative Review". *Journal of Smart Internet of Things (JSIoT), VOL 2024, No.01* | 77-116 | 2024 DOI:10.2478/jsiot-2024-0006.
- [4]. Chikkamath, S., Budiha, S.V., & S. R. Nirmala. et al. (2024). "Deep Learning based Indian Sign Language Recognition for People with Speech and Hearing Impairment". Conference Paper March 2024 DOI: 10.1109/InC460750.2024.10649094.
- [5]. Adewole, D. B., Adesugba, A., Agbelusi, O., & Olatunde, O. V. (2024). "Sign Language Recognition Using Deep Learning: Advancements and Challenges". INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING, MANAGEMENT & APPLIED SCIENCE (IJLTEMAS), ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue XII, December 2024.
- [6]. Zholshiyeva, L., et al. (2025). "Deep Learning-Based Continuous Sign Language Recognition". *Journal of Robotics and Control (JRC), Volume 6, Issue 3, 2025 ISSN: 2715-5072, DOI: 10.18196/jrc.v6i3.25881.*