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Abstract: The implementation and design of a hybrid detection framework driven by Al that can analyse objects and
faces in real time using a single web-based system is introduced in this paper. The proposed architecture uses a dual-
model pipeline that combines the speedy object detection capabilities of You Only Look Once, version 7 with the facial
recognition accuracy of DeepFace. A full-stack Flask application serves as the foundation for secure user interaction,
camera management, and live data visualization. The framework facilitates multi-camera connectivity, dynamic object
selection, and instant user enrollment through interactive face capture. Effective object monitoring and human
identification in a range of environmental conditions are ensured by the detection and recognition modules operating
simultaneously on live video streams. All user credentials and logs are securely maintained using encrypted
authentication techniques and Structured Query Language Lite. Additionally, by allowing real-time updates of facial
datasets without server outages, the system improves scalability and flexibility. The experimental evaluation
demonstrates that the hybrid model consistently provides high recognition accuracy while maintaining low processing
delays, making it suitable for real-time applications such as automated attendance, intelligent monitoring, and security-
driven surveillance. Its combined structure allows the system to handle both object detection and identity recognition
within a single workflow, avoiding the limitations of using separate models. By merging these capabilities, the
framework delivers a balanced solution that improves reliability, strengthens security, and ensures smooth real-time
operation. Overall, the developed system creates an integrated platform that aligns efficiency, adaptability, and practical
usability for diverse Al-based environments.
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I. INTRODUCTION

Artificial Intelligence has transformed the field of computer vision, enabling systems to understand and process visual
information with a level of responsiveness that was not possible before. Technologies such as facial recognition and
object detection now form the foundation of many modern applications, including automated systems, security
monitoring, and interactive environments. Real-time video analysis requires frameworks that can interpret continuous
streams efficiently. Yet, most traditional solutions handle facial identification and object detection as separate tasks,
which limits their usefulness in scenarios where both are needed simultaneously. This gap has encouraged the
development of hybrid approaches that merge the two capabilities into one cohesive model [1], [9].

Advances in deep learning, especially through the You Only Look Once (YOLO) family, have greatly improved detection
accuracy and processing speed for real-time systems. YOLOvV7 introduces enhanced feature extraction and optimized
layer aggregation, allowing it to perform faster and detect multiple classes with improved reliability compared to earlier
versions [6], [9]. DeepFace, on the other hand, offers strong facial recognition performance through its deep convolution-
based design, achieving accuracy levels close to human identification [8].

To provide safe storage and effective real-time analysis, the suggested framework uses a Flask-based architecture that
integrates YOLOV7, DeepFace, OpenCV, and Flask-SQLAIchemy [2], [5]. Five horizontally aligned layers make up the
System Architecture of the Al-Powered Hybrid Detection Framework (Figure 1), each of which is in charge of a different
functional process. The process begins at the Input Layer, where video streams from sources like USB devices, IP
cameras, and standard laptop webcams are received by the system. OpenCV, which is used primarily because it provides
dependable frame collection across a wide range of hardware types, is used to capture these feeds. Following collection,
the frames proceed as a continuous sequence, creating the raw visual data required for the subsequent steps [1], [4].
The Preprocessing Layer then cleans and modifies every frame. In this case, the pixel values are normalized, the color
representation is changed, and the image is resized to a standard format. By taking these actions, the models are better
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able to interpret the data. At this point, a tiny buffering mechanism is also employed to ensure that the stream enters the
detection pipeline consistently and without unanticipated lags or missing frames [6], [10].
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Figure 1: System Architecture of the Al-Powered Hybrid Detection Framework.

The framework's core component is the Hybrid Al Processing Layer. While DeepFace extracts facial features to
determine identity, YOLOV?7 is in charge of detecting objects or people in the frame. Both components operate at the
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same time, and their outputs are passed to the Backend and Data Management Layer. Flask organizes and manages tasks
such as user login, processing frame transmission, and detection log storage [2], [5].

The final layer, the Frontend Visualization interface, presents all results to the user. It supports secure sign-in, lets users
choose the camera source, and provides live monitoring and attendance summaries in an easy-to-understand format.
Together, these interconnected components form a robust and scalable system capable of delivering accurate, real-time
Al-driven detection and recognition.

II. LITERATURE SURVEY

Santos et al. [1] examined the implementation of YOLOvV7 for real-time object detection on a number of edge devices,
such as NVIDIA Jetson boards and Raspberry Pi. They concluded that near real-time detection on compact systems is
made possible by optimized quantization and hardware tuning after analyzing frame rates, energy consumption, and
performance trade-offs between YOLOV7 variants. This study demonstrates how hardware-aware model optimization
can maintain detection speed without sacrificing accuracy—a concept that is relevant to the efficiency objectives of the
suggested hybrid framework.

Nimma et al. [2] created a Transformer—YOLOVS8 attention-based architecture for intelligent video surveillance that can
identify several targets in intricate situations. Their model achieved greater precision under occlusion and cluttered
backgrounds by combining YOLO's convolutional backbone with transformer attention modules. Their method shows
how contextual self-attention can improve spatial awareness in real-time detection, which may help hybrid Al pipelines
improve multi-object monitoring.

Ennaama et al. [3] presented a hybrid model that combines MobileNetV3 and YOLOvV7 to achieve high-speed detection
on embedded platforms. Their framework used effective convolutional layers and lightweight feature extraction to
optimize the trade-off between detection accuracy and computational cost. The design of resource-aware architectures
for real-time visual analysis is informed by the authors' demonstration that combining YOLOv7 with a compact
backbone improves energy efficiency.

Kusuma et al. [4] demonstrated a quantized YOLOvV7 implementation for multi-object detection on smartphones with
an emphasis on classifying food in varying lighting conditions. They demonstrated how model quantization preserved
acceptable precision while drastically lowering file size and inference latency. Their findings highlight how quantization
and pruning can increase deep models' suitability for portable settings, which is in line with scalable deployment
techniques for hybrid detection systems.

Gnaneshwari et al. [5] examined real-time object detection with previous OpenCV implementations of YOLO,
emphasizing useful techniques for creating and visualizing bounding boxes. Their application illustrated the effects of
non-maximum suppression, color space tuning, and preprocessing on runtime and detection accuracy. The fundamental
engineering difficulties of integrating frame-by-frame detection are highlighted in this work, which is pertinent to
creating live video dashboards in Flask-based architectures.

Wang et al. [6] presented YOLOV7, a cutting-edge detector that uses reparameterization and Extended Layer Aggregation
Networks (E-ELAN), which is efficient. Their strategy achieved a higher mean average precision on the COCO dataset
while maintaining high inference speed. These architectural developments support the use of YOLOv7 as the primary
detector in real-time hybrid systems, where speed and accuracy must coexist in dynamic video environments.

Wen et al. [7] suggested a deep face recognition discriminative feature learning technique that combines center loss and
softmax to improve inter-class separability. The authors confirmed that embedding compactness increases recognition
reliability by demonstrating notable performance gains on common benchmarks. Their contribution gives the hybrid
pipeline's embedding-based facial identification models, like DeepFace, a theoretical foundation.

Taigman et al. [8] presented DeepFace, one of the first end-to-end deep learning frameworks for facial recognition that
uses a nine-layer convolutional network and 3D alignment. Their system validated deep CNNs as efficient identity
extractors by achieving accuracy on large datasets that was almost human-level. Modern facial recognition modules
incorporated into real-time Al systems for secure authentication are based on this seminal work.

Murat et al. [9] evaluated the architecture evolution, dataset performance, and computational efficiency of YOLO

versions v1 through v8 in a thorough review. They provided comparative insights for different hardware configurations,
emphasizing the trade-off between detection accuracy and inference latency. These results encourage to choose well-
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informed models for adaptive detection frameworks that need to strike a balance between real-time precision and

resource consumption.

Arani et al. [10] examined the main architectures for real-time object detection, contrasting transformer-based and
anchor-based models with different visual domains. To deploy detectors in embedded and edge contexts, their analysis
revealed optimization trends and latency constraints. The paper's comprehensive analysis of architectural development
supports the idea that facial recognition and general object detection should be combined into a single intelligent, low-

latency system.

Table 1: Related work methodologies and challenges

ferences Methodology Points to be Observed in  Challenges
the Related Work
Santos et al. [1] Implemented YOLOvV7 on Demonstrated how Limited scalability across

Nimma et al.[2]

Ennaama et al.[3]

Kusuma et al. [4]

Gnaneshwari et al.[5]

Wang et al. [6]

Wen et al. [7]

Taigman et al. [8]

Murat et al.[9]

Arani et al.[10]

edge devices and analyzed
performance metrics like FPS,
CPU usage, and power
efficiency.

Combined YOLOvVS with
transformer attention modules
for enhanced surveillance
detection.

Integrated YOLOv7 with
MobileNetV3 to balance
speed and accuracy on
embedded platforms.

Applied quantized YOLOv7
for food recognition on
mobile devices.

Implemented multi-object
detection using early YOLO
versions and OpenCV
visualization.

Proposed YOLOv7 with E-
ELAN and reparameterization
for improved speed—accuracy
balance.

Developed centre -loss—based

discriminative feature
learning for deep face
recognition.

Built DeepFace with 3D

alignment and deep CNN
embedding for human-level
verification.

Reviewed YOLO  family
models from v1-v8 with
performance and complexity
comparisons.

Surveyed anchor-based and
transformer-based  detectors

optimized YOLO models
can achieve real-time
detection on low-power
hardware.

Showed improved
precision in complex,
crowded, or occluded
environments.

Demonstrated efficient
trade-off between

performance and resource
use for mobile Al systems.
Validated quantization for

lightweight  deployment
while maintaining
detection accuracy.

Provided foundational

implementation workflow
for object detection in real-
time frames.

Introduced modern feature
aggregation and training

enhancements for real-
time systems.

Enhanced feature
embedding compactness
improves recognition
reliability.

Established an  early
foundation for end-to-end
deep face recognition
systems.

Provided evolution insight
for choosing appropriate

YOLO  versions  for
deployment.
Highlighted the

importance of latency—

diverse hardware and
reduced precision under
heavy load.

Higher computation due
to transformer integration
and limited edge
compatibility.

Model compression may
cause minor accuracy
degradation in  high-
resolution inputs.
Performance depends on
dataset size and quality;
model fine-tuning needed
for generalization.

Lacks advanced
optimization for speed
and accuracy in modern
use cases.

Requires high-end GPU

support; model
complexity limits mobile
deployment.

Sensitive to training data
imbalance and alignment
precision.

Demands large-scale
datasets and high
computation for real-time
inference.

Rapid YOLO updates
create version
inconsistency and
retraining needs.
Integration  complexity
and generalization across

across domains for real-time accuracy trade-offsinedge varied datasets remain
vision. Al systems. key issues.
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III. METHODOLOGY

The suggested system uses a hybrid artificial intelligence (Al) framework that combines face recognition and real-time
object detection into a single web application. In order to achieve low latency and high detection precision across multi-
camera inputs, the methodology focuses on optimizing the computational flow between deep learning models. Input
acquisition, preprocessing, Al processing, backend integration, and data storage with visualization are the five
interconnected layers that make up the architecture.

Camera
Selection

YOLOV7
Object
Detection

Face
Recognition

Logging &
Reporting

Figure 2: Methodology Flow of the Al-Powered Hybrid Detection Framework

3.1 Preprocessing and Input Acquisition

The system starts with live video input from a variety of sources, including IP-based mobile cameras, USB cameras, and
laptop webcams. OpenCV is used to capture frames, offering reliable real-time acquisition with little delay. To preserve
frame rate stability and guarantee compatibility with deep learning models, the incoming frames are resized, normalized,
and buffered. To enable concurrent multi-user operation via the Flask web framework, each stream is identified by a
distinct session ID.

3.2 Two Al Processing Engines

The two main subsystems that make up the hybrid Al processing layer are DeepFace for facial recognition and YOLOV7
for object detection. These subsystems work in parallel. YOLOv7 balances detection accuracy and inference speed by
using effective layer aggregation and reparameterization modules to identify multiple object classes in real time. When
a "person" is identified by YOLOvV7, the matching bounding box is sent to DeepFace, which carries out face detection
(MTCNN), embedding extraction (VGG-Face), and similarity comparison with previously stored facial embeddings. By
guaranteeing simultaneous object-level and identity-level recognition, this dual-model configuration improves system
responsiveness and accuracy.

3.3 Data Management and Backend Integration

The data exchange between the storage modules, the user interface, and AI models is managed by the Flask backend. It
offers berypt password hashing and Flask-Login for secure user authentication. We used Flask-Mail implement email-
based OTP verification to guarantee user authenticity. To synchronize the detection output with the frontend dashboard,
the backend also controls API routes like /start_stream, /enroll face, and /get logs. Every detection event is recorded by
logging mechanisms into CSV files (person_log.csv, object log.csv), and SQLite keeps track of user credentials and
session metadata.

3.4 User Interaction and Frontend Visualization

Users can view live detection streams, keep an eye on object and person logs, and perform real-time face enrollment
through the interactive frontend dashboard, which was created with HTML, CSS, and JavaScript (Fetch API). By taking
live face snapshots, administrators can add new users. DeepFace processes these snapshots instantly and adds them to
the embedding database. A camera selection module and a real-time attendance report generator are also included in the
dashboard, which makes it simple to monitor and manage several video feeds.
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3.5 Performance and Security Enhancement

By using Flask's dynamic secret key feature to isolate each login session and hash user credentials, security is ensured.
While DeepFace embeddings are cached for recurrent identities, YOLOvV7 inference is carried out on resized frames
(640x480) to minimize processing overhead. Multiple camera nodes or Al modules can be deployed across servers for
parallel execution thanks to the system's modular API structure, which enables horizontal scalability.

The flow diagram illustrates the end-to-end process beginning with Input Acquisition, followed by Preprocessing,
YOLOvV7 Object Detection, and DeepFace Recognition modules operating in tandem. Detected results are transmitted
through the Flask Backend for Data Storage and Visualization. The architecture emphasizes dual-path inference,
database synchronization, and real-time feedback between the backend and the frontend dashboard.

Algorithm Used: YOLOvV7 Object Detection Algorithm
Step Algorithm Step Description / Equation

No.
1 Frame Acquisition Capture an input frame I from the active camera stream and convert it
into a numerical tensor suitable for model inference.
2 Input Preprocessing Resize the frame to 640x640 normalize pixel values:
Lnorm = ﬁ
Apply letterboxing to maintain aspect ratio without distortion.
3 Feature Extraction Pass I,,;m through YOLOv7’s E-ELAN backbone to generate multi-scale
(Backbone) feature maps: F = fy(I,0rm) Where fp is the convolutional function with
parameters 6
4 Feature Fusion Fuse multi-scale features using Path Aggregation Network (PAN): F' =
(NeCk) PAN(Fsmall: Fmedium: Flarge)
5 Bounding Box & YOLOV7 predicts bounding box (X, y, w, h), objectness score o, and class
Class Prediction probability vector C: P = {(x,y, w, h), o, C}
6 Confidence Scoring Compute final confidence score using: S=o X max(C)
7 Non-Maximum Remove overlapping detections using IoU thresholding: IoU (4, B) =
Suppression (NMS) 1AnB|
lau B
8 Final Output Return the final filtered bounding boxes and class labels for the next

stage of processing.

IV. IMPLEMENTATION ENVIRONMENT

The suggested hybrid detection system was created and implemented in a stable computing environment that was tailored
for web deployment and deep learning. Python 3.10 was the main programming language is used for implementing
because of its broad support for Al and scientific libraries. The Flask micro-framework was used to develop the backend,
it allows for smooth communication between the web interface and the Al modules, real-time video streaming, and
lightweight server routing. In order to ensure flexibility and GPU acceleration, the models - DeepFace for face
recognition and YOLOV7 for object detection—were implemented using PyTorch and TensorFlow backends.

A workstation with an Intel Core i7 processor, 16 GB of RAM, and an NVIDIA GeForce RTX 3060 GPU (6 GB VRAM)
running Windows 11 (64-bit) was used to run the system. Real-time frame processing and effective parallel execution
of the dual-model inference pipeline were guaranteed by these hardware requirements. To ensure version stability,
Anaconda was used to manage all dependencies, including OpenCV, NumPy, Flask- SQLAlchemy, berypt, and Flask-
Mail, in a regulated virtual environment. Logs were kept in CSV format for modular access, and the database layer used
SQLite for lightweight, file-based data storage.

The system used HTML, CSS, and JavaScript (Fetch API) to render live camera feeds and dynamically update logs for
frontend visualization. Both local and IP-based cameras connected to the same network were tested and debugged in
order to confirm real-time synchronization and multi-source compatibility. Ultimately, this setup offered a reliable, high-
performing environment that successfully struck a balance between data security, computational speed, and user
interface responsiveness—all crucial for the realistic implementation of the Al-powered hybrid detection framework.

V.  RESULTS

The system demonstrates a complete Al-powered hybrid detection framework that integrates YOLOv7 for object
detection and DeepFace for facial recognition in a secure, web-based environment. It allows users to log in, select camera
sources, monitor live detections, enroll new faces, and generate attendance reports in real time. The interface ensures
ease of use through Flask-based backend management and a responsive frontend dashboard.
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Together, these images illustrate the step-by-step functioning — from login authentication to final attendance
visualization.

Al Sentinel Login

Email

antonyjcsa2026@amail cam

Password

Don't have an account? Sign Up

Figure 3: System’s login interface

The system's secure login interface, known as Al Sentinel Login, is shown in Figure 3.

Select a Camera Source

Webcam 0 Phone Camera 1

Figure 4: Camera selection interface

Users are required to authenticate themselves using their password and email address, which is controlled by berypt
encryption and Flask-Login. This step makes sure that the detection dashboard and linked camera sources are only
accessible by verified users. It serves as the initial point of contact between users and the web-based hybrid detection
platform.

The page in Figure 4 lets users choose their favourite camera source while showing live previews from every device that
is available. The backend uses OpenCV to automatically detect both IP-based phone cameras and local webcams. Before
selecting a camera for monitoring or detection, the user can visually verify each feed. This design offers ease of switching
between devices and flexibility for multi-source integration.

YOLOVT Objact Detaction Enroll New Person

Liv Camera Fosd Porsce ¢ Attendunce

Figure 5: Real-time face/object detection
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Today's Attendance Report

Aeport for: 11,8/2025

Name Entry Time

anteny ZE25 11 08 1CAss?

Figure 6: Attendance report interface

The primary detection dashboard, where real-time face and object recognition occurs, is depicted in Figure 5. In this
case, DeepFace tries to identify the person as "Unknown," while YOLOV7 detects a person and a cellphone. Confidence
scores are updated dynamically with live logs for both object events and attendance.

To add new faces to the database, the dashboard also has a "Capture Face for Enrollment" feature. The system-generated
daily attendance summary is shown in Figure 6.

Performance Comparison of Object Detection Models
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Figure 7: Performance Comparison Between the Proposed Hybrid YOLOv7-DeepFace Framework and Existing
Object Detection Models.

It provides a list of known people along with their names and the timestamps of the live session’s recorded entries. To
keep a clear, validated attendance record, users who are unknown or unregistered are not allowed. The successful end-
to-end integration of database logging, detection, and recognition is demonstrated in this report. The graph (Figure 7)
contrasts four object detection models: YOLOvVS, YOLOv7, YOLOvVS, and the proposed Hybrid YOLOv7 + DeepFace
system, based on accuracy (%) and inference speed (FPS). The blue bars, which demonstrate a progressive improvement
from YOLOVS5 to YOLOVS, show that the proposed hybrid model achieves the highest accuracy due to its integrated
facial recognition and optimized preprocessing pipeline. The orange bars that represent FPS show that both YOLOVS
and the hybrid model achieve better real-time performance, even though YOLOVS is faster than YOLOv7. The proposed
hybrid system shows the efficient overall balance between detection speed and accuracy in applications where accuracy
and responsiveness are critical, like intelligent attendance, real-time monitoring, and surveillance.
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Line Graph: Accuracy and Inference Speed Comparison of Detection Models
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Figure 8: Accuracy and Inference Speed Comparison of Object Detection Models

The line graph (Figure 8) compares four object detection strategies: YOLOvVS, YOLOv7, YOLOVS, and the proposed
Hybrid YOLOvV7 + DeepFace model based on accuracy and inference speed (FPS). The graph shows a steady
improvement in accuracy from YOLOVS up to YOLOVS, with the proposed hybrid system reaching the highest accuracy
level, demonstrating its stronger detection capability. A similar upward pattern is observed in the FPS values, indicating
that the model not only performs more accurately but also delivers faster real-time processing compared to the others.
The simultaneous rise of both metrics highlights that the hybrid approach enhances detection quality without sacrificing
computational speed. This balanced performance makes it highly suitable for real-time surveillance and automated
attendance systems, where both precision and rapid response are critical.

VI. CONCLUSION

The proposed hybrid detection and attendance system integrates face recognition and object detection into a unified,
real-time web platform. By pairing YOLOvV7 for fast multi-object detection with DeepFace for precise identity
recognition, the framework delivers quick inference while maintaining reliable person-based tracking. This dual-model
setup allows the system to perform effectively in modern environments such as smart surveillance, automated attendance
management, and secure access control. Results from live testing show that the combined pipeline offers noticeably
better accuracy and lower response time compared to traditional single-model solutions [1], [6], [9]. To enhance usability,
the system also includes an interactive dashboard supported by a Flask backend, enabling secure login, real-time
monitoring, and smooth navigation across all functional modules.

OTP-based verification, multi-camera compatibility, and hashed password storage are all features of the backend
infrastructure that guarantee security and flexibility in a variety of deployment scenarios. A significant benefit over static
recognition systems is the ability to instantly recognize new users without the need for model retraining, thanks to real-
time logging and dynamic updates to the face embedding repository (face database.pkl) [2], [S]. Thanks to effective
frame handling provided by OpenCV and NumPy, the system continuously maintains high inference speeds of up to 48
FPS and recognition accuracy above 95%. Future developments like transformer-based detectors, lightweight MobileNet
versions, cloud-assisted analytics, and loT-driven automation for wider industrial and enterprise applications are also
possible thanks to its modular design.
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