
ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141188

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 484

Design and Implementation of an

AI-Powered Hybrid Detection Framework for

Real-Time Object and Face Analysis

Raghu Ramamoorthy1, Adithi S2, Antony J3, Ashika K4, and Basavaraj5

Department of Computer Science and Engineering, The Oxford College of Engineering,

Affiliated to Visvesvaraya Technological University, Belagavi, Karnataka, India1-5

Abstract: The implementation and design of a hybrid detection framework driven by AI that can analyse objects and

faces in real time using a single web-based system is introduced in this paper. The proposed architecture uses a dual-

model pipeline that combines the speedy object detection capabilities of You Only Look Once, version 7 with the facial

recognition accuracy of DeepFace. A full-stack Flask application serves as the foundation for secure user interaction,

camera management, and live data visualization. The framework facilitates multi-camera connectivity, dynamic object

selection, and instant user enrollment through interactive face capture. Effective object monitoring and human

identification in a range of environmental conditions are ensured by the detection and recognition modules operating

simultaneously on live video streams. All user credentials and logs are securely maintained using encrypted

authentication techniques and Structured Query Language Lite. Additionally, by allowing real-time updates of facial

datasets without server outages, the system improves scalability and flexibility. The experimental evaluation

demonstrates that the hybrid model consistently provides high recognition accuracy while maintaining low processing

delays, making it suitable for real-time applications such as automated attendance, intelligent monitoring, and security-

driven surveillance. Its combined structure allows the system to handle both object detection and identity recognition

within a single workflow, avoiding the limitations of using separate models. By merging these capabilities, the

framework delivers a balanced solution that improves reliability, strengthens security, and ensures smooth real-time

operation. Overall, the developed system creates an integrated platform that aligns efficiency, adaptability, and practical

usability for diverse AI-based environments.

Keywords: Hybrid Detection Framework, YOLOv7, DeepFace, Real-Time Recognition, AI-Driven Face Analysis

I. INTRODUCTION

Artificial Intelligence has transformed the field of computer vision, enabling systems to understand and process visual

information with a level of responsiveness that was not possible before. Technologies such as facial recognition and

object detection now form the foundation of many modern applications, including automated systems, security

monitoring, and interactive environments. Real-time video analysis requires frameworks that can interpret continuous

streams efficiently. Yet, most traditional solutions handle facial identification and object detection as separate tasks,

which limits their usefulness in scenarios where both are needed simultaneously. This gap has encouraged the

development of hybrid approaches that merge the two capabilities into one cohesive model [1], [9].

Advances in deep learning, especially through the You Only Look Once (YOLO) family, have greatly improved detection

accuracy and processing speed for real-time systems. YOLOv7 introduces enhanced feature extraction and optimized

layer aggregation, allowing it to perform faster and detect multiple classes with improved reliability compared to earlier

versions [6], [9]. DeepFace, on the other hand, offers strong facial recognition performance through its deep convolution-

based design, achieving accuracy levels close to human identification [8].

To provide safe storage and effective real-time analysis, the suggested framework uses a Flask-based architecture that

integrates YOLOv7, DeepFace, OpenCV, and Flask-SQLAlchemy [2], [5]. Five horizontally aligned layers make up the

System Architecture of the AI-Powered Hybrid Detection Framework (Figure 1), each of which is in charge of a different

functional process. The process begins at the Input Layer, where video streams from sources like USB devices, IP

cameras, and standard laptop webcams are received by the system. OpenCV, which is used primarily because it provides

dependable frame collection across a wide range of hardware types, is used to capture these feeds. Following collection,

the frames proceed as a continuous sequence, creating the raw visual data required for the subsequent steps [1], [4].

The Preprocessing Layer then cleans and modifies every frame. In this case, the pixel values are normalized, the color

representation is changed, and the image is resized to a standard format. By taking these actions, the models are better

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141188

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 485

able to interpret the data. At this point, a tiny buffering mechanism is also employed to ensure that the stream enters the

detection pipeline consistently and without unanticipated lags or missing frames [6], [10].

Figure 1: System Architecture of the AI-Powered Hybrid Detection Framework.

 The framework's core component is the Hybrid AI Processing Layer. While DeepFace extracts facial features to

determine identity, YOLOv7 is in charge of detecting objects or people in the frame. Both components operate at the

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141188

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 486

same time, and their outputs are passed to the Backend and Data Management Layer. Flask organizes and manages tasks

such as user login, processing frame transmission, and detection log storage [2], [5].

The final layer, the Frontend Visualization interface, presents all results to the user. It supports secure sign-in, lets users

choose the camera source, and provides live monitoring and attendance summaries in an easy-to-understand format.

Together, these interconnected components form a robust and scalable system capable of delivering accurate, real-time

AI-driven detection and recognition.

II. LITERATURE SURVEY

Santos et al. [1] examined the implementation of YOLOv7 for real-time object detection on a number of edge devices,

such as NVIDIA Jetson boards and Raspberry Pi. They concluded that near real-time detection on compact systems is

made possible by optimized quantization and hardware tuning after analyzing frame rates, energy consumption, and

performance trade-offs between YOLOv7 variants. This study demonstrates how hardware-aware model optimization

can maintain detection speed without sacrificing accuracy—a concept that is relevant to the efficiency objectives of the

suggested hybrid framework.

Nimma et al. [2] created a Transformer–YOLOv8 attention-based architecture for intelligent video surveillance that can

identify several targets in intricate situations. Their model achieved greater precision under occlusion and cluttered

backgrounds by combining YOLO's convolutional backbone with transformer attention modules. Their method shows

how contextual self-attention can improve spatial awareness in real-time detection, which may help hybrid AI pipelines

improve multi-object monitoring.

Ennaama et al. [3] presented a hybrid model that combines MobileNetV3 and YOLOv7 to achieve high-speed detection

on embedded platforms. Their framework used effective convolutional layers and lightweight feature extraction to

optimize the trade-off between detection accuracy and computational cost. The design of resource-aware architectures

for real-time visual analysis is informed by the authors' demonstration that combining YOLOv7 with a compact

backbone improves energy efficiency.

Kusuma et al. [4] demonstrated a quantized YOLOv7 implementation for multi-object detection on smartphones with

an emphasis on classifying food in varying lighting conditions. They demonstrated how model quantization preserved

acceptable precision while drastically lowering file size and inference latency. Their findings highlight how quantization

and pruning can increase deep models' suitability for portable settings, which is in line with scalable deployment

techniques for hybrid detection systems.

Gnaneshwari et al. [5] examined real-time object detection with previous OpenCV implementations of YOLO,

emphasizing useful techniques for creating and visualizing bounding boxes. Their application illustrated the effects of

non-maximum suppression, color space tuning, and preprocessing on runtime and detection accuracy. The fundamental

engineering difficulties of integrating frame-by-frame detection are highlighted in this work, which is pertinent to

creating live video dashboards in Flask-based architectures.

Wang et al. [6] presented YOLOv7, a cutting-edge detector that uses reparameterization and Extended Layer Aggregation

Networks (E-ELAN), which is efficient. Their strategy achieved a higher mean average precision on the COCO dataset

while maintaining high inference speed. These architectural developments support the use of YOLOv7 as the primary

detector in real-time hybrid systems, where speed and accuracy must coexist in dynamic video environments.

Wen et al. [7] suggested a deep face recognition discriminative feature learning technique that combines center loss and

softmax to improve inter-class separability. The authors confirmed that embedding compactness increases recognition

reliability by demonstrating notable performance gains on common benchmarks. Their contribution gives the hybrid

pipeline's embedding-based facial identification models, like DeepFace, a theoretical foundation.

Taigman et al. [8] presented DeepFace, one of the first end-to-end deep learning frameworks for facial recognition that

uses a nine-layer convolutional network and 3D alignment. Their system validated deep CNNs as efficient identity

extractors by achieving accuracy on large datasets that was almost human-level. Modern facial recognition modules

incorporated into real-time AI systems for secure authentication are based on this seminal work.

Murat et al. [9] evaluated the architecture evolution, dataset performance, and computational efficiency of YOLO

versions v1 through v8 in a thorough review. They provided comparative insights for different hardware configurations,

emphasizing the trade-off between detection accuracy and inference latency. These results encourage to choose well-

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141188

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 487

informed models for adaptive detection frameworks that need to strike a balance between real-time precision and

resource consumption.

Arani et al. [10] examined the main architectures for real-time object detection, contrasting transformer-based and

anchor-based models with different visual domains. To deploy detectors in embedded and edge contexts, their analysis

revealed optimization trends and latency constraints. The paper's comprehensive analysis of architectural development

supports the idea that facial recognition and general object detection should be combined into a single intelligent, low-

latency system.

Table 1: Related work methodologies and challenges

References Methodology Points to be Observed in

the Related Work

Challenges

Santos et al. [1] Implemented YOLOv7 on

edge devices and analyzed

performance metrics like FPS,

CPU usage, and power

efficiency.

Demonstrated how

optimized YOLO models

can achieve real-time

detection on low-power

hardware.

Limited scalability across

diverse hardware and

reduced precision under

heavy load.

Nimma et al.[2] Combined YOLOv8 with

transformer attention modules

for enhanced surveillance

detection.

Showed improved

precision in complex,

crowded, or occluded

environments.

Higher computation due

to transformer integration

and limited edge

compatibility.

Ennaama et al.[3] Integrated YOLOv7 with

MobileNetV3 to balance

speed and accuracy on

embedded platforms.

Demonstrated efficient

trade-off between

performance and resource

use for mobile AI systems.

Model compression may

cause minor accuracy

degradation in high-

resolution inputs.

Kusuma et al. [4] Applied quantized YOLOv7

for food recognition on

mobile devices.

Validated quantization for

lightweight deployment

while maintaining

detection accuracy.

Performance depends on

dataset size and quality;

model fine-tuning needed

for generalization.

Gnaneshwari et al.[5] Implemented multi-object

detection using early YOLO

versions and OpenCV

visualization.

Provided foundational

implementation workflow

for object detection in real-

time frames.

Lacks advanced

optimization for speed

and accuracy in modern

use cases.

Wang et al. [6] Proposed YOLOv7 with E-

ELAN and reparameterization

for improved speed–accuracy

balance.

Introduced modern feature

aggregation and training

enhancements for real-

time systems.

Requires high-end GPU

support; model

complexity limits mobile

deployment.

Wen et al. [7] Developed centre -loss–based

discriminative feature

learning for deep face

recognition.

Enhanced feature

embedding compactness

improves recognition

reliability.

Sensitive to training data

imbalance and alignment

precision.

Taigman et al. [8] Built DeepFace with 3D

alignment and deep CNN

embedding for human-level

verification.

Established an early

foundation for end-to-end

deep face recognition

systems.

Demands large-scale

datasets and high

computation for real-time

inference.

Murat et al.[9] Reviewed YOLO family

models from v1–v8 with

performance and complexity

comparisons.

Provided evolution insight

for choosing appropriate

YOLO versions for

deployment.

Rapid YOLO updates

create version

inconsistency and

retraining needs.

Arani et al.[10] Surveyed anchor-based and

transformer-based detectors

across domains for real-time

vision.

Highlighted the

importance of latency–

accuracy trade-offs in edge

AI systems.

Integration complexity

and generalization across

varied datasets remain

key issues.

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141188

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 488

III. METHODOLOGY

The suggested system uses a hybrid artificial intelligence (AI) framework that combines face recognition and real-time

object detection into a single web application. In order to achieve low latency and high detection precision across multi-

camera inputs, the methodology focuses on optimizing the computational flow between deep learning models. Input

acquisition, preprocessing, AI processing, backend integration, and data storage with visualization are the five

interconnected layers that make up the architecture.

Figure 2: Methodology Flow of the AI-Powered Hybrid Detection Framework

3.1 Preprocessing and Input Acquisition

The system starts with live video input from a variety of sources, including IP-based mobile cameras, USB cameras, and

laptop webcams. OpenCV is used to capture frames, offering reliable real-time acquisition with little delay. To preserve

frame rate stability and guarantee compatibility with deep learning models, the incoming frames are resized, normalized,

and buffered. To enable concurrent multi-user operation via the Flask web framework, each stream is identified by a

distinct session ID.

3.2 Two AI Processing Engines

The two main subsystems that make up the hybrid AI processing layer are DeepFace for facial recognition and YOLOv7

for object detection. These subsystems work in parallel. YOLOv7 balances detection accuracy and inference speed by

using effective layer aggregation and reparameterization modules to identify multiple object classes in real time. When

a "person" is identified by YOLOv7, the matching bounding box is sent to DeepFace, which carries out face detection

(MTCNN), embedding extraction (VGG-Face), and similarity comparison with previously stored facial embeddings. By

guaranteeing simultaneous object-level and identity-level recognition, this dual-model configuration improves system

responsiveness and accuracy.

3.3 Data Management and Backend Integration

The data exchange between the storage modules, the user interface, and AI models is managed by the Flask backend. It

offers bcrypt password hashing and Flask-Login for secure user authentication. We used Flask-Mail implement email-

based OTP verification to guarantee user authenticity. To synchronize the detection output with the frontend dashboard,

the backend also controls API routes like /start_stream, /enroll_face, and /get_logs. Every detection event is recorded by

logging mechanisms into CSV files (person_log.csv, object_log.csv), and SQLite keeps track of user credentials and

session metadata.

3.4 User Interaction and Frontend Visualization

Users can view live detection streams, keep an eye on object and person logs, and perform real-time face enrollment

through the interactive frontend dashboard, which was created with HTML, CSS, and JavaScript (Fetch API). By taking

live face snapshots, administrators can add new users. DeepFace processes these snapshots instantly and adds them to

the embedding database. A camera selection module and a real-time attendance report generator are also included in the

dashboard, which makes it simple to monitor and manage several video feeds.

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141188

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 489

3.5 Performance and Security Enhancement

By using Flask's dynamic secret key feature to isolate each login session and hash user credentials, security is ensured.

While DeepFace embeddings are cached for recurrent identities, YOLOv7 inference is carried out on resized frames

(640×480) to minimize processing overhead. Multiple camera nodes or AI modules can be deployed across servers for

parallel execution thanks to the system's modular API structure, which enables horizontal scalability.

The flow diagram illustrates the end-to-end process beginning with Input Acquisition, followed by Preprocessing,

YOLOv7 Object Detection, and DeepFace Recognition modules operating in tandem. Detected results are transmitted

through the Flask Backend for Data Storage and Visualization. The architecture emphasizes dual-path inference,

database synchronization, and real-time feedback between the backend and the frontend dashboard.

Algorithm Used: YOLOv7 Object Detection Algorithm

Step

No.

Algorithm Step Description / Equation

1 Frame Acquisition Capture an input frame I from the active camera stream and convert it

into a numerical tensor suitable for model inference.

2 Input Preprocessing Resize the frame to 640×640 normalize pixel values:

𝐼𝑛𝑜𝑟𝑚 =
𝐼

255.0

Apply letterboxing to maintain aspect ratio without distortion.

3 Feature Extraction

(Backbone)
Pass 𝐼𝑛𝑜𝑟𝑚 through YOLOv7’s E-ELAN backbone to generate multi-scale

feature maps: 𝐹 = 𝑓𝜃(𝐼𝑛𝑜𝑟𝑚) where 𝑓𝜃 is the convolutional function with

parameters 𝜃

4 Feature Fusion

(Neck)
Fuse multi-scale features using Path Aggregation Network (PAN): 𝐹′ =

 𝑃𝐴𝑁(𝐹𝑠𝑚𝑎𝑙𝑙 , 𝐹𝑚𝑒𝑑𝑖𝑢𝑚, 𝐹𝑙𝑎𝑟𝑔𝑒)

5 Bounding Box &

Class Prediction

YOLOv7 predicts bounding box (x, y, w, h), objectness score o, and class

probability vector C: P = {(x, y, w, h), o, C}

6 Confidence Scoring Compute final confidence score using: S=o × max(C)
7 Non-Maximum

Suppression (NMS)
Remove overlapping detections using IoU thresholding: 𝐼𝑜𝑈(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|

8 Final Output Return the final filtered bounding boxes and class labels for the next

stage of processing.

IV. IMPLEMENTATION ENVIRONMENT

The suggested hybrid detection system was created and implemented in a stable computing environment that was tailored

for web deployment and deep learning. Python 3.10 was the main programming language is used for implementing

because of its broad support for AI and scientific libraries. The Flask micro-framework was used to develop the backend,

it allows for smooth communication between the web interface and the AI modules, real-time video streaming, and

lightweight server routing. In order to ensure flexibility and GPU acceleration, the models - DeepFace for face

recognition and YOLOv7 for object detection—were implemented using PyTorch and TensorFlow backends.

A workstation with an Intel Core i7 processor, 16 GB of RAM, and an NVIDIA GeForce RTX 3060 GPU (6 GB VRAM)

running Windows 11 (64-bit) was used to run the system. Real-time frame processing and effective parallel execution

of the dual-model inference pipeline were guaranteed by these hardware requirements. To ensure version stability,

Anaconda was used to manage all dependencies, including OpenCV, NumPy, Flask- SQLAlchemy, bcrypt, and Flask-

Mail, in a regulated virtual environment. Logs were kept in CSV format for modular access, and the database layer used

SQLite for lightweight, file-based data storage.

The system used HTML, CSS, and JavaScript (Fetch API) to render live camera feeds and dynamically update logs for

frontend visualization. Both local and IP-based cameras connected to the same network were tested and debugged in

order to confirm real-time synchronization and multi-source compatibility. Ultimately, this setup offered a reliable, high-

performing environment that successfully struck a balance between data security, computational speed, and user

interface responsiveness—all crucial for the realistic implementation of the AI-powered hybrid detection framework.

V. RESULTS

The system demonstrates a complete AI-powered hybrid detection framework that integrates YOLOv7 for object

detection and DeepFace for facial recognition in a secure, web-based environment. It allows users to log in, select camera

sources, monitor live detections, enroll new faces, and generate attendance reports in real time. The interface ensures

ease of use through Flask-based backend management and a responsive frontend dashboard.

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141188

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 490

Together, these images illustrate the step-by-step functioning — from login authentication to final attendance

visualization.

Figure 3: System’s login interface

The system's secure login interface, known as AI Sentinel Login, is shown in Figure 3.

Figure 4: Camera selection interface

Users are required to authenticate themselves using their password and email address, which is controlled by bcrypt

encryption and Flask-Login. This step makes sure that the detection dashboard and linked camera sources are only

accessible by verified users. It serves as the initial point of contact between users and the web-based hybrid detection

platform.

The page in Figure 4 lets users choose their favourite camera source while showing live previews from every device that

is available. The backend uses OpenCV to automatically detect both IP-based phone cameras and local webcams. Before

selecting a camera for monitoring or detection, the user can visually verify each feed. This design offers ease of switching

between devices and flexibility for multi-source integration.

Figure 5: Real-time face/object detection

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141188

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 491

Figure 6: Attendance report interface

The primary detection dashboard, where real-time face and object recognition occurs, is depicted in Figure 5. In this

case, DeepFace tries to identify the person as "Unknown," while YOLOv7 detects a person and a cellphone. Confidence

scores are updated dynamically with live logs for both object events and attendance.

To add new faces to the database, the dashboard also has a "Capture Face for Enrollment" feature. The system-generated

daily attendance summary is shown in Figure 6.

Figure 7: Performance Comparison Between the Proposed Hybrid YOLOv7–DeepFace Framework and Existing

Object Detection Models.

It provides a list of known people along with their names and the timestamps of the live session’s recorded entries. To

keep a clear, validated attendance record, users who are unknown or unregistered are not allowed. The successful end-

to-end integration of database logging, detection, and recognition is demonstrated in this report. The graph (Figure 7)

contrasts four object detection models: YOLOv5, YOLOv7, YOLOv8, and the proposed Hybrid YOLOv7 + DeepFace

system, based on accuracy (%) and inference speed (FPS). The blue bars, which demonstrate a progressive improvement

from YOLOv5 to YOLOv8, show that the proposed hybrid model achieves the highest accuracy due to its integrated

facial recognition and optimized preprocessing pipeline. The orange bars that represent FPS show that both YOLOv8

and the hybrid model achieve better real-time performance, even though YOLOv5 is faster than YOLOv7. The proposed

hybrid system shows the efficient overall balance between detection speed and accuracy in applications where accuracy

and responsiveness are critical, like intelligent attendance, real-time monitoring, and surveillance.

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141188

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 492

Figure 8: Accuracy and Inference Speed Comparison of Object Detection Models

The line graph (Figure 8) compares four object detection strategies: YOLOv5, YOLOv7, YOLOv8, and the proposed

Hybrid YOLOv7 + DeepFace model based on accuracy and inference speed (FPS). The graph shows a steady

improvement in accuracy from YOLOv5 up to YOLOv8, with the proposed hybrid system reaching the highest accuracy

level, demonstrating its stronger detection capability. A similar upward pattern is observed in the FPS values, indicating

that the model not only performs more accurately but also delivers faster real-time processing compared to the others.

The simultaneous rise of both metrics highlights that the hybrid approach enhances detection quality without sacrificing

computational speed. This balanced performance makes it highly suitable for real-time surveillance and automated

attendance systems, where both precision and rapid response are critical.

VI. CONCLUSION

The proposed hybrid detection and attendance system integrates face recognition and object detection into a unified,

real-time web platform. By pairing YOLOv7 for fast multi-object detection with DeepFace for precise identity

recognition, the framework delivers quick inference while maintaining reliable person-based tracking. This dual-model

setup allows the system to perform effectively in modern environments such as smart surveillance, automated attendance

management, and secure access control. Results from live testing show that the combined pipeline offers noticeably

better accuracy and lower response time compared to traditional single-model solutions [1], [6], [9]. To enhance usability,

the system also includes an interactive dashboard supported by a Flask backend, enabling secure login, real-time

monitoring, and smooth navigation across all functional modules.

OTP-based verification, multi-camera compatibility, and hashed password storage are all features of the backend

infrastructure that guarantee security and flexibility in a variety of deployment scenarios. A significant benefit over static

recognition systems is the ability to instantly recognize new users without the need for model retraining, thanks to real-

time logging and dynamic updates to the face embedding repository (face database.pkl) [2], [5]. Thanks to effective

frame handling provided by OpenCV and NumPy, the system continuously maintains high inference speeds of up to 48

FPS and recognition accuracy above 95%. Future developments like transformer-based detectors, lightweight MobileNet

versions, cloud-assisted analytics, and IoT-driven automation for wider industrial and enterprise applications are also

possible thanks to its modular design.

REFERENCES

[1]. Santos, R. C. C. de M., Silva, M. C., and Oliveira, R. A. R. (2024). Performance analysis of YOLOv7 for real-

time object detection on edge hardware. IEEE Latin America Transactions, 22(10), 799–808.

[2]. Nimma, D., Al-Omari, O., Pradhan, R., Ulmas, Z., Krishna, R. V. V., El-Ebiary, T. Y. A. B., and Rao, V. S. (2025).

A transformer-enhanced YOLOv8 approach for real-time surveillance and object detection. Alexandria

Engineering Journal, 118, 482–495.

[3]. Ennaama, S., Silkan, H., Bentajer, A., and Tahiri, A. (2025). Real-time detection improvements using YOLOv7

combined with MobileNetv3. Engineering, Technology & Applied Science Research, 15(1), 19181–19187.

[4]. Kusuma, P. C. and Soewito, B. (2023). YOLOv7-based multi-object recognition on mobile platforms. Journal of

Applied Engineering and Technological Science, 5(1), 305–320.

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 11, November 2025

DOI: 10.17148/IJARCCE.2025.141188

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 493

[5]. Gnaneshwari, G., Ashritha, G., Srisaipriya, G., and Murthy, B. V. R. (2022). Object identification in images using

the YOLO framework. International Journal for Research in Applied Science & Engineering Technology, 11(6),

613–619.

[6]. Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M. (2022). YOLOv7: A trainable bag-of-freebies framework for

state-of-the-art real-time detection. arXiv:2207.02696.

[7]. Wen, Y., Zhang, K., Li, Z., and Qiao, Y. (2016). Discriminative feature learning for deep face recognition. In

ECCV Proceedings (pp. 499–515). Springer.

[8]. Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014). DeepFace: A step toward human-level face verification.

In CVPR Proceedings (pp. 1701–1708). IEEE.

[9]. Murat, A. A. and Kiran, M. S. (2025). Review of YOLO-based object detectors and applications. Heliyon, 11(2),

e26258.

[10]. Arani, E., Gowda, S., Mukherjee, R., Magdy, O., Kathiresan, S., and Zonooz, B. (2022). Survey of real-time

detection networks across multiple domains. arXiv:2208.10895.

[11]. Wang, M. and Deng, W. (2021). Survey on advances in deep face recognition. Neurocomputing, 429, 215–244.

[12]. Hou, A., Zhang, X., and Huang, Y. (2024). A broad review of YOLO-based detection models and practical uses.

Information Fusion, 98, Article 102084.

[13]. Zhao, H., Wang, J., and Yang, S. (2019). RegularFace: Exclusive regularization for improved face recognition.

In CVPR Proceedings (pp. 1136–1144). IEEE.

[14]. Kotthapalli, M., Ravipati, D., and Bhatia, R. (2025). A comprehensive overview of YOLO from version 1 to 11

highlighting innovations and challenges. arXiv:2508.02067.

[15]. Lee, J., Varghese, B., Woods, R., and Vandierendonck, H. (2021). Optimizing edge-based detection accuracy

through transprecise inference. arXiv:2105.08668.

[16]. Lyu, C., Zhang, W., Zhou, Y., and Zhang, S. (2022). RTMDet: An empirical investigation into real-time detector

design. arXiv:2212.07784.

[17]. Goel, R., Singh, A., and Kumar, P. (2021). Analysis of deep learning architectures for face recognition. Sensors,

21(15), 5068.

[18]. Alsharabi, H. (2023). Current trends, challenges, and advancements in real-time object detection. Journal of

Amran University, 12(1), 55–63.

[19]. Dhillon, N. and Verma, V. (2022). Survey of face recognition systems and architectural approaches.

arXiv:2201.02991.

[20]. Kang, M., Ting, C.-M., and Phan, R. (2023). CST-YOLO: An improved YOLOv7-Swin Transformer hybrid for

blood-cell detection. arXiv:2306.14590.

https://ijarcce.com/
https://ijarcce.com/

