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Abstract: Among all the challenges faced by modern-day metropolitan cities around the world, urban traffic congestion
is among the most critical problems; thus, it requires highly sophisticated predictive models for transportation
management. This paper provides an exhaustive comparative analysis of four widely used time series forecasting
methodologies, namely ARIMA, GARCH, Prophet, and LSTM networks for the task of traffic flow prediction. This
study makes use of extensive traffic count data provided by the UK Department for Transport and evaluates the
performances of the considered models based on standardized metrics that include MAE, RMSE, and MAPE. Our
experimental results show that the LSTM model yields much superior performance compared to traditional statistical
methods by giving much lower error rates (MAE: 150.21, RMSE: 324.37) compared to ARIMA (MAE: 6,571,981.45,
RMSE: 7,944,268.33), GARCH (MAE: 234.61, RMSE: 395.89), and Prophet (MAE: 1,159.91, RMSE: 1,727.87).
Temporal decomposition and stationarity checking have been done elaborately in this study prior to modeling. Ten epochs
of training using the Adam optimizer with a Mean Squared Error loss function is employed for the LSTM implementation.
The current study provides relevant insights into the choice of the appropriate forecasting model for intelligent
transportation systems within densely populated urban areas, underlining the supremacy of deep learning approaches in
capturing strong temporal dependencies that are inherent in traffic series data.
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L. INTRODUCTION

The rapid increase of urban populations across the globe has become an unprecedented challenge for managing
transportation infrastructure, creating traffic congestion, economic losses, environmental destruction, and reduced quality
of life. One of the most critical examples of this issue exists in developing countries such as India, where urbanization is
exponentially rising, impacting the transportation infrastructure beyond its capacity. This challenge needs innovative
solutions like advanced predictive analytics, for managing traffic flow and implementing successful travel demand plans,
thus traffic prediction is an essential facet of contemporary Intelligent Transportation Systems (ITS).

The availability of massive volumes of temporal traffic data from sensors, GPS devices, and vehicle onboard units
(OBUs) has supported complex analysis, but the complexity of traffic itself presents forecasting challenges. Traffic is
non-linear, temporally dependent, and sensitive to external influences, therefore making accurate prediction complex.
Time series analysis provides a productive basis for forecasting traffic flow into the future by decomposing historic data,
seasonality, and irregularity. A time series is a set of time-ordered observations or measurements of the periods when
each has been recorded that track a variable, such as the count of vehicles, speed, or flow rate, at fixed locations over
time.

To traffic forecasting, understanding the components of a time series is of utmost importance. The trend component
indicates long-term directional movements that are related to population growth, urban development, and infrastructure
changes. The seasonal component depicts the occurrence of regular patterns like daily traffic peaks during rush hours,
weekly differences between weekdays and weekends, and yearly variations during holidays. The irregular component
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takes into account random and unpredicted changes which may be caused by various factors such as accidents, inclement
weather, or special occasions. Stationarity is a major factor that the underlying data must fulfill in order to be successfully
predicted. By that, the data must have a constant mean, constant variance, and time-independent auto covariance. The
Augmented Dickey-Fuller (ADF) test is the most common method to examine stationarity by determining the existence
of a unit root in the time series.

Modelling Approaches: Traditional to Modern

Traditional statistical approaches in the form of ARIMA have indeed been the backbone of traffic forecasting,
amalgamating three key parameters: auto regression, which captures relationships between current and past values;
integration, differencing operations to achieve stationarity; and moving average, dependencies on previous forecast
errors. However, the traditional ARIMA model's linearity and stationarity assumptions may not be efficient for capturing
complex traffic patterns. The Generalized Autoregressive Conditional Heteroskedasticity model addresses these
limitations by explicitly modelling volatility clustering-a phenomenon where periods of high volatility tend to cluster
together-thereby capturing the irregular bursts characteristic of urban traffic.

The deep learning revolution brought along LSTM networks that possess the ability to capture long-term dependencies
and nonlinear relationships. Specialized memory cells in LSTM architectures maintain information across very long
sequences; gating mechanisms allow for the regulation of information flow, whereas hidden states navigate through time,
transferring temporal information between time steps. Prophet, on the other hand, developed at Facebook, provides an
additive framework to decompose a time series into trend, seasonality, and holiday components. Robust handling of
missing data and outliers is also accomplished by this model, two common issues in real-world traffic applications.

This study carries out a systematic comparative assessment of the ARIMA, GARCH, Prophet, and LSTM methods on
real data provided by the UK Department for Transport. Key questions addressed in this study include those related to
the accuracy of predictions, performance trade-offs between traditional and modern methods, and computational costs.
The expected outputs are evidence-based guidelines on how to choose appropriate forecasting methodologies that best
suit the specific needs and constraints of transportation planners and researchers.

II. LITERATURE REVIEW

The area of predicting traffic flow in research has received a considerable amount of attention in the past decade, with
scientists looking at a range of methodological approaches from classical statistical techniques to modern deep learning
architectures. This paper provides the main conclusions of the most recent research, mapping out progress made and gaps
in current research.

Siami-Namini et al. [1] conducted preliminary comparative studies between LSTM and ARIMA for time series, and
found that LSTMs outperformed ARIMA models consistently across multiple datasets. One important conclusion of this
study related to the number of training epochs on the performance of LSTM networks. The accuracy of models increased
as the iteration of training was increased. This study provided a valuable point of reference for the strengths of neural
network approaches vs traditional approaches.

Kumar and Hariharan [2] made the next progression when they introduced hyper parameter tuning methods for ARIMA
models for traffic flow prediction. Their approach used grid search algorithms to conduct a systematic search of the
parameter space. They found ARIMA(4,0,2) outperformed other ARIMA configurations (based on the 15-minute time
interval) when considering full day traffic data, while ARIMA(4,1,0) outperformed other configurations when focused
on the morning commuter rush. This investigation of an alternative approach highlighted the context-specific tuning of
parameters for ARIMA models, and importantly results questioned whether an ARIMA specification may exist for traffic
applications.

Considering that hybrid strategies may combine the best features of both methods, Liu et al. [3] have created the
SDLSTM-ARIMA framework that brings together a reinforced LSTM neural network and the ARIMA algorithm. Their
innovative setup used spatial decomposition to extract both the temporal dependencies and the linear relationships in one
g0, thus, outperforming the solo models in terms of accuracy. This was one of the signs marking the direction of blending
different modelling paradigms through ensemble methods.

Dissanayake et al. [5], who compared different learning models, contributed to the research area by carrying out a

systematic evaluation of ARIMAX, Vector Autoregression (VAR), and LSTM models for the task of multivariate short-
term traffic volume prediction. The study showed that ARIMAX was the winner in terms of prediction accuracy and
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computational efficiency. One of the most important aspects of their work was the focus on feature selection and
correlation analysis, where they proved that the right variable selection would lead to a significant increase in the model's
power.

Ma [6] extended the comparative analysis to financial domains by analyzing ARIMA, Artificial Neural Networks (ANN),
and LSTM regarding stock price prediction-a problem that shares several aspects with temporal characteristics of traffic
forecasting. This work concluded that ANN models outperform basic ARIMA implementations and suggested that the
combination of ARIMA with the GARCH model could further improve the accuracy of the forecast by better processing
residual patterns and volatility.

Ercanoglu [7] focused on the application of LSTM networks for short-term traffic prediction, comparing their
performance to nonlinear autoregressive models. Results showed that LSTM networks are capable of much better
performance in cases where training was achieved with extensive datasets. A very interesting finding here is that LSTM
performance is heavily dependent on the size of the training set-a trait common in deep learning methods that stresses
that one must have an appropriate sample size.

Recent work by Uzel and Congeduti [8] further presented a detailed comparative study of LSTM, ARIMA, and
Facebook's Prophet model. They found that there was a shortage of consideration regarding external factors like weather
conditions, spatially correlated locations, handling missing data, and the need for more robust evaluation frameworks
that test models in various scenarios.

Some new directions of research have focused on Graph Neural Networks combined with LSTM for spatiotemporal
traffic prediction, considering that the traffic pattern may contain temporal dependence and spatial correlation over road
networks. The GNN-LSTM hybrid architecture achieved up to 15% improvement in prediction accuracy by explicitly
modeling spatial relationships. Wang et al. [10] explored attention mechanisms integrated with LSTM networks, noting
that a standard LSTM architecture treats all historical time steps identically. Their attention-enhanced model improved
prediction accuracy by 8-12% compared to vanilla LSTM implementations [11, 12].

Putting these together provides some key insights: deep learning approaches, particularly LSTM networks, outperform
traditional statistical methods in general in complex nonlinear traffic patterns; hybrid and ensemble approaches tend to
give better results; good quality and sufficient training data, proper selection of features, and optimization of
hyperparameters are crucial; spatiotemporal models that take into account spatial dependencies are an important evolution
from purely temporal approaches; and there is still much scope to improve the robustness of models, handle missing data,
and integrate exogenous variables [13, 14].

III. METHODOLOGY

a. Dataset Description

The empirical study employs data on traffic counts available to the public which is provided by the UK Department for
Transport (DfT) Road Traffic Bulk Downloads project. The website has traffic statistics intended for use in research.
The dataset, which includes counted measures of road traffic at different levels of distinction which have been aggregated
regionally, at the local authority and within counting stations within the transport network. The regional and national
datasets have been awarded National Statistics status by the UK Statistics Authority that verifies the data has been
validated to meet parameters of quality for the metrics of accuracy, authenticity and methodological rigor. The data is
available in a multi-year dataset which includes important information: Count_date (the date upon which it was count),
hour (recorded to the time of day), Year (for longitudinal analysis), Direction_of travel (if the flow of traffic was
measured as moving in one or the other direction) and All_motor vehicles (the total count of all vehicles for the measured
observation period). This multi-year dataset, with the critical variable structures defined above allows for an analysis of
daily behaviors, seasonal behaviors, and long behaviors that may have applicability for comparative evaluations of
forecast model strategies [16].

ARIMA Model Implementation

Data Pre-processing: Traffic data in its raw form was converted to a format that was ready for time series analysis
through the first pre-processing step. The Python pandas library was used to import the traffic count dataset into a
DataFrame structure where only the columns needed for analysis were selected. The Count date field underwent
conversion from a string format to DateTime objects making it possible to do proper temporal ordering and time-based
operations. The observations were done on dates and the counts for All motor vehicles were combined to yield daily
total traffic volumes. Noise from hourly fluctuations was reduced through this aggregation while the overall daily patterns

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 533


https://ijarcce.com/
https://ijarcce.com/

IJARCCE ISSN (O) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :: Peer-reviewed & Refereed journal :< Vol. 14, Issue 11, November 2025
DOI: 10.17148/IJARCCE.2025.141194

vital for medium-term forecasting were still preserved. The resultant time series was sorted in chronological order to
ascertain proper temporal sequencing which is a fundamental requirement for autoregressive modeling.

Time Series Decomposition: Time Series Decomposition: Understanding the structural components of traffic time series
provides the necessary step before model specification. The seasonal decompose function from the statsmodels library
was used to systematically decompose the traffic count series into three uncorrelated fundamental components: the trend
component, reflecting long-run directional changes in traffic volumes owing to factors such as population growth and
infrastructure development; the seasonal component, showing periodic patterns including weekly cycles that reflect both
weekday commuting and weekend leisure travel; and the residual component, showing irregular fluctuations in traffic
volume due to weather events, accidents, or other unforeseeable circumstances. By visually inspecting these decomposed
components, one can gather an idea about the dominant patterns in data and hence some idea on choices related to model
complexity and parameter selection. Dominant seasonal patterns indicate a potential need for seasonal ARIMA
extensions, while large magnitudes of the irregular componentgive a hint at the inherent predictability of the data.
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Fig. 1 Seasonal decomposition of time-series

Stationarity Assessment and Parameter Identification: In order to utilize ARIMA modelling, stationary time series
input is required, therefore we have to formally test for stationarity with the Augmented Dickey-Fuller (ADF) test; which
tests the null hypothesis that there is a unit root (non-stationarity) and renders statistical evidence in the form of test
statistics and p-values for whether differencing operations are necessary. The ACF and PACF are plots used to identify
the appropriate ARIMA parameter estimates, where the ACF measures the correlation of the series with the series' lagged
values to establish the moving average order (q) and PACF measures the correlation of the series with the series' lagged
values controlling for the intermediate lags to establish the autoregressive order (p). ACF and PACF plots also exhibit
certain benchmarks in determined sharp cut-off and gradual decay shapes, often recommending those (e.g., the ACF cut-
off suggests with one fitted x lagged on it to a time-shifted equal of the y variable) as appropriate (estimated) parameter
values. Based on the diagnostic (and visual) tests, particular values were used for the three ARIMA parameters, p (the
autoregressive order number of lagged observations), d (the degree of differencing times the series has to be differenced
for stationarity), and q (the moving average order size of the moving average window).

Model Estimation and Validation: The ARIMA implementation of the statsmodels.tsa.arima.model module was used
to fit the model on the training dataset, and during fitting, the optimal coefficients were estimated for the autoregressive
and moving average terms via maximum likelihood estimation. Model diagnostics looked at the statistical summary
giving coefficient estimates, standard errors, and p-values as well as information criteria (AIC, BIC) for model
comparison, while residual analysis determined if the model assumptions were satisfied by looking at the residual plots
for patterns indicating inadequacy. The Ljung-Box test was used to check the presence of residual autocorrelation, and
non-significant results confirmed that the model captured the relevant temporal dependencies.
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b. LSTM Model Implementation

Data Preparation for Sequential Modeling: Deep learning approaches require data structured as sequences capturing
temporal context. A custom function transformed the univariate time series into supervised learning format, where each
training example consists of consecutive observations (input features) paired with the subsequent value (target output).
A sliding window approach with a window size of 12 time steps was implemented, meaning each input sequence contains
12 consecutive traffic count observations with the target value being the traffic count immediately following the window.
The preprocessing pipeline addressed data quality issues: missing values were imputed using zero-filling to avoid
introducing artificial patterns, infinite values from data collection errors were replaced with zeros, and traffic counts were
cast to integer type for data consistency [17].

Sequence Generation and Data Splitting: The transformation process generated three-dimensional arrays with shape
(samples, timesteps, features), where samples represents the number of training examples, timesteps indicates the
sequence length (12), and features denotes the number of variables (1 for univariate traffic counts). This structure aligns
with LSTM layer input requirements in Keras/TensorFlow, which expect sequences of feature vectors. The dataset was
partitioned into training and validation subsets with an 80-20 split, enabling assessment of model generalization capability
on unseen data.

Neural Network Architecture Design: The LSTM model architecture was constructed using the Keras Sequential API
with four layers: an Input Layer specifying the expected shape (12 timesteps, 1 feature); an LSTM Layer with 64 hidden
units for learning temporal dependencies through internal cell states; a First Dense Layer with 8 units and ReLU activation
introducing non-linearity for complex transformations; and an Output Layer with a single unit and linear activation
producing the predicted traffic count. This architecture balances model capacity with computational efficiency, providing
sufficient representational power for temporal patterns in traffic data.

Ul

4000

3000 A

1

2000 j J | f
10001 N\ H.\/\ o L J
W/
e
¥ 60 80

0 20 40

100

Fig. 3 Training set prediction vs actual predictions
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Model Compilation and Training Configuration: Model compilation configured the Adam optimizer with learning
rate 0.001 for efficient gradient-based optimization, Mean Squared Error (MSE) as the loss function to penalize large
prediction errors, and Root Mean Squared Error (RMSE) as the evaluation metric for interpretable error measurements.
The training process employed the ModelCheckpoint callback to automatically save the best-performing model based on
validation performance, preventing overfitting by selecting the optimal trade-off between training accuracy and
generalization. Training proceeded for 10 epochs, with each epoch involving forward propagation, loss calculation,
backpropagation, and parameter updates, while validation set performance was monitored after each epoch to trigger
model checkpointing when improvements occurred.

¢. GARCH Model Implementation

Volatility Modeling Framework: Unlike ARIMA and LSTM, which focus on predicting the conditional mean of the
time series, GARCH models specifically target the conditional variance (volatility). Traffic data often exhibits volatility
clustering, where periods of highly variable traffic flow cluster together temporally, making GARCH modeling
particularly relevant for understanding uncertainty and variability in traffic patterns. The GARCH(1,1) specification
models current volatility as a function of three components: a constant baseline volatility term, the squared residual from
the previous time period (ARCH effect), and the previous period's volatility (GARCH effect). This formulation allows
recent shocks to traffic patterns to influence current volatility predictions while accounting for persistence in volatility
over time.

Model Specification and Estimation: Implementation utilized the arch library's arch_model function for flexible
GARCH modeling capabilities. The specification process involved selecting a constant mean model as the baseline,
configuring GARCH(1,1) with one ARCH term and one GARCH term, and assuming normal distribution for innovations.
Model fitting employed maximum likelihood estimation to determine optimal parameter values explaining observed
volatility patterns, producing coefficients for the constant term (omega), ARCH effect (alpha), and GARCH effect (beta),
along with their statistical significance.

Diagnostic Analysis and Forecasting: Model adequacy assessment focused on residual analysis to ensure the GARCH
specification adequately captured volatility patterns. Standardized residuals (residuals divided by conditional standard
deviation) should exhibit no remaining autocorrelation if correctly specified, which was evaluated using the Ljung-Box
test on squared standardized residuals. Once validated, the fitted GARCH model enables forecasting of future volatility,
providing confidence intervals around traffic predictions that account for time-varying uncertainty. This capability
represents a significant advantage for traffic management applications, where understanding prediction uncertainty is as
important as point predictions themselves.
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Fig. 4 Residual Plot Analysis

d. Prophet Model Implementation

Framework Overview and Data Preparation: Facebook's Prophet model employs an additive regression framework
designed for time series exhibiting strong seasonal patterns and holiday effects. Unlike ARIMA's focus on autocorrelation
or LSTM's generic sequence learning, Prophet explicitly decomposes time series into trend, seasonality, and holiday
components, each modeled separately before combination. Data preparation requires a specific format with two columns:
ds (date stamps in datetime format) and y (the target variable for traffic counts). This simplified interface abstracts away
much of the complexity in traditional time series modeling, making Prophet accessible for practitioners without extensive
statistical training, while the model automatically handles missing data and outliers through robust estimation techniques.
Model Components and Estimation: Prophet's additive model decomposes the time series as:

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 536


https://ijarcce.com/
https://ijarcce.com/

IJARCCE ISSN (O) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Impact Factor 8.471 :: Peer-reviewed & Refereed journal :< Vol. 14, Issue 11, November 2025
DOI: 10.17148/IJARCCE.2025.141194

y(®) = g(®) + s(t) + h(t) + &(t)

where:

g(t) represents the trend function modeling non-periodic changes
s(t) captures periodic changes (weekly, yearly seasonality)

h(t) accounts for holiday effects with irregular schedules

&(t) represents irreducible error

The trend component uses a piecewise linear or logistic growth model with automatic changepoint detection to identify
trend shifts, while seasonality is modeled using Fourier series for flexible representation of periodic patterns at multiple
scales, with daily and weekly seasonality being particularly relevant for traffic applications. Model fitting proceeds
through maximum a posteriori estimation, incorporating prior distributions on parameters for regularization to prevent
overfitting. This Bayesian approach enables Prophet to produce prediction intervals that account for both trend
uncertainty and irregular fluctuations.

Forecasting and Evaluation: Forecasting with Prophet involves creating a future dataframe specifying the time periods
for which predictions are desired. The trained model then generates predictions for these future periods, including point
estimates (yhat) and uncertainty intervals (yhat _lower, yhat_upper).
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Fig. 5 Prophet model forecast analysis

Prophet's visualization as shown in Figure 5 capabilities provide intuitive plots showing the overall forecast, trend
component, and seasonal patterns separately. This decomposition facilitates interpretation and helps identify which
components drive the predictions, valuable information for traffic planners seeking to understand the factors influencing
future traffic volumes.

Iv. EXPERIMENTAL RSULT AND ANALYSIS

Performance Metrics: To ensure the comprehensiveness and equity of the comparison between the four modeling
approaches, three standard evaluation metrics were employed: MAE, which is estimated as the average absolute
difference between the predicted and actual values in their original units, providing an intuitive measure considering that
it treats all errors equally and, thus, is robust to outliers; RMSE, representing the square root of average squared
differences, which penalizes for larger errors more than smaller ones and, for this reason, is sensitive to occasional large
prediction mistakes that can lead to significant traffic management failures; and MAPE, a measure of prediction error as
a percentage of the actual value, providing a scale-independent metric useful in a comparison of performance across
different datasets or time periods with varying traffic volumes.

Comparative Performance Analysis: Table I represents the quantitative performance comparison from all four

modeling approaches. In fact, the results show large differences in predictive capability, which will have important
implications for practical deployment.
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TABLE I EXECUTION OF MODELS

MODEL MAE RMSE MAPE
ARIMA 6571981.45 7944268.33 4621.70%
LST™M 150.21 324.37 inf
GARCH 234.61 395.89 inf
PROPHET 1159.91 1727.87 152.16

LSTM Model Performance: The LSTM model delivered stellar performance, achieving the lowest MAE (150.21) and
RMSE (324.37) compared to the other approaches explored, which supports the notion that deep learning architectures
can capture highly complex nonlinear patterns with long-term dependencies embedded in traffic flow data through gating
mechanisms that preserve information for much longer strategies. The infinite MAPE value occurs when actual traffic
counts have zero count values, causing division by zero in the percentage error calculation, but this does not discount the
excellent performance of the MAE and RMSE metrics that demonstrate highly accurate absolute predictions with
referenced typical errors of approximately 150 vehicles, a surprisingly small figure, given the scale of traffic volumes.
The reason the performance of LSTM was excellent is due to its architecture well suited to sequential data with states
retained, sufficient capacity with its 64 LSTM units that learned different patterns without overfitting, the Adam optimizer
that efficiently traversed the hyper-dimensional parameter space, and the 10-epoch training time that were sufficient for
learning, without excess computational costs.

GARCH Model Performance: The GARCH model exhibited a moderate level of performance with an MAE of 234.61
and an RMSE of 395.89, which are significantly better than the ARIMA model but not as good as the LSTM model. This
is in line with the GARCH model's aim of volatility modeling instead of conditional mean prediction. Although the
GARCH model is great in showing the time-varying uncertainty in traffic patterns, it is not designed for point prediction
accuracy at its best; GARCH model's strength lies in the adaptive confidence intervals that quantify the prediction
uncertainty, which narrow during stable traffic periods and widen during volatile periods due to construction or special
events. The infinite MAPE indicates that there are zero values in the actual counts which results in a very high value of
MAPE, while the significantly higher MAE and RMSE compared to LSTM show that GARCH is providing less accurate
mean predictions, however, the GARCH model is still providing valuable uncertainty quantification that the LSTM does
not inherently offer.

Prophet Model Performance: Prophet attained mediocre performance with an MAE of 1,159.91 and an RMSE of
1,727.87, well outperforming ARIMA while falling considerably short of both LSTM and GARCH in point prediction
accuracy. The MAPE was 152.16%, demonstrating predictions are off actual values by an average of 152%, related to
systematic underestimation or overestimation of traffic volumes. Although being moderately correct, Prophet has some
pragmatic virtues: the automatic treatment of missing data and outliers reduces preprocessing work; explicit modeling of
holiday effects is useful for those special events driving anomalous changes in traffic volume; and interpretable
decomposition into trend and seasonal components supports communication with stakeholders without technical
backgrounds. The performance disparity indicates that the structured approach of Prophet indeed sacrifices predictive
power for LSTM's flexibility in learning. Nevertheless, its computational efficiency and ease of use may be preferred in
resource-poor environments or when model transparency is held paramount.

ARIMA Model Performance: The ARIMA model performed very poorly, with MAE of 6,571,981.45, RMSE of
7,944,268.33, and MAPE of 4,621.70%, signaling fundamental model failure, with predictions well off from actual
counts. The errors alone, over six million vehicles on average, are far outside reasonable magnitudes of traffic volume
counts, indicating nonsensical predictions. A few reasons can be surmised for the failure of ARIMA: traffic data are non-
stationary and violate stationarity assumptions despite multiple attempts at differencing; the broad range of nonlinear
patterns, such as rush hour spikes, weekend variations, and special event impacts, may be beyond the linear capabilities
of ARIMA to model appropriately; the parameters selected during the process identified a poor specification of the model;
and ARIMA's univariate nature disregards possibly very useful contextual information. This emphasizes that standard
statistical methods, while theoretically perfect, may turn out to be insufficient for complex, real-world forecasting
problems because the underlying assumptions of ARIMA-linearity, stationarity, and stability of parameters-simply do
not hold in dynamic traffic systems.

Synthesis and Implications: Through the analysis, it is evident that a ranking of performance emerges: LSTM is much
better than the other alternatives, GARCH and Prophet would offer backup moderately accurate predictions, yet ARIMA
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is a poor predictor. For practical operational forecasting where the requirement is maximum accuracy, LSTM would be
the choice given the greater computational expense and lesser interpretability; with improvement in accuracy, investing
in data structuring and deployment complexity seems warranted. If, however, uncertainty or risk is of interest, GARCH
does provide valuable supplemental information that is unavailable from point prediction models, even LSTM point
predictions with GARCH-generated confidence intervals could be informative to transportation agencies that want to
consider risk management. For rapid prototyping or organizations operating under resource constraints, Prophet provides
adequate accurate predictions with minimal configuration effort, hence may be a reasonable solution for agencies without
deep learning knowledge and computational infrastructure in tactical application where resource constraints matter more
than accuracy. Lastly, ARIMA is contrary to the conclusions of this analysis for modelling traffic forecasting applications
without considerable modifications, as notable degradation in performance, shows inadequacy in predicting traffic flow
data, given that traffic forecasting modelling is complex and dynamic instead of simple and static.

V. DISCUSSION

The findings of the study revealed that LSTM networks have clearly outperformed traditional prediction algorithms. This
is very much in conjunction with the general findings of time series forecasting research whereby deep learning models
outperform statistical methods for complex and non-linear problems. Traffic flow is essentially non-linear in nature.
Linear models, like ARIMA, cannot capture three types of non-linear effects. These effects are:

(1) Threshold effects (sudden onset of congestion),
(2) Interaction effects (slowly compounding delays), and
(3) Regime shifts (different weekday versus weekend patterns).

LSTM RNNs learn non-linear mapping through the use of non-linear activation functions and multiple layers. In addition,
LSTM RNNs can learn non-linear mappings directly from the data. Traffic patterns depend on several time scales at
once. The morning traffic on Monday is influenced by Monday morning traffic before it, but also by Monday traffic the
previous week. The patterns here are similar, and are a type of weekly seasonality captured by LSTM. Specifically, the
memory cell architecture of LSTM’s captures both short term autocorrelations and long-term seasonal patterns. Unlike
ARIMA, which needs particular parameters and checks for stationarity, LSTMs require few assumptions about the data
generating process. LSTMs can discover patterns in the data that are difficult for humans to recognize, but they are not
interpretable. The moderate performance of GARCH and Prophet provides nuanced insights: GARCH's focus on
volatility modeling rather than mean prediction explains its intermediate accuracy, though its ability to model time-
varying uncertainty represents a valuable capability for future hybrid approaches combining LSTM's accurate mean
predictions with GARCH's uncertainty quantification. Prophet's performance reflects a trade-off between ease of use and
predictive power, with its structured decomposition approach imposing stronger assumptions about time series structure
than LSTM's flexible learning, enhancing interpretability and reducing overfitting risk but constraining the model's ability
to capture patterns not fitting its additive structure [18].

Limitations and Challenges: The analysis was undertaken with respect to a particular geographic region having specific
infrastructure, demographic, and behavioural characteristics, which limits generalizability since traffic patterns vary
significantly across different contexts (developing versus developed nations, urban versus rural areas, regions having
different transport modes). Traffic Forecasting Forecast Models and Applications Summary: The research application of
machine learning to complex real-world problems such as traffic forecasting can reflect the lack of predictive power and
operational utility. In many cases it leads to first-hand experience in the qualitative evaluation of the results. Application-
specific evaluation frameworks based on the characteristics of the desired forecasts as well as operational requirements
offer a robust evaluation whereas standard evaluation metrics offer limited utility. Read more in this paper. The models
were trained and assessed using historical data, not accounting for real-time performance during deployment in the real
world. However, production environments come with their own challenges, which include computational latency
constraints, incorporation of online learning as patterns evolve, sensor failures and missing data, and integration with
existing systems.

None of the models explicitly incorporated exogenous variables influencing traffic weather conditions, special events,
road construction, fuel prices, economic indicators, or public health measures which could substantially improve all
models' performance and potentially shift comparative rankings if some models prove better at incorporating exogenous
predictors. The infinite MAPE values for LSTM and GARCH prevented complete performance comparison across all
metrics due to zero traffic counts in the dataset, possibly representing measurement errors or periods when roads were
closed, indicating need for more careful data cleaning or alternative metrics robust to zero values.
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VL CONCLUSION

This comprehensive comparative analysis assessed the performance of four prominent time series forecasting
methodologies, ARIMA, GARCH, Prophet, and LSTM, for the urban traffic flow prediction using real-world data from
the UK Department for Transport and provided clear evidence that deep learning approaches excel. The LSTM model
showed the best predictive performance with an MAE of 150.21 and RMSE of 324.37, outperforming all others by far in
capturing the complex nonlinear patterns, multiscale temporal dependencies, and dynamic behavior of urban traffic flow
through direct learning from the sequential data without any need to specify explicitly temporal relationships or
stationarity transformations. The GARCH and Prophet models were able to yield only a moderate level of accuracy, with
GARCH providing uncertainty quantification and Prophet allowing for some practical advantages, including ease of
deployment and interpretability. On the other hand, ARIMA suffered from severe performance degradation, revealing
errors several orders of magnitude larger, indicating some limitations of the traditional linear statistical methods for
solving complex real-world problems. In practice, transportation agencies should emphasize LSTM-based approaches
when the highest level of accuracy is required, Prophet may be recommended for resource-constrained environments,
GARCH can be used to estimate uncertainty, while ARIMA should be generally avoided unless radically improved. It
adds to the growing evidence that supports the use of deep learning in transportation applications, while their successful
deployment also depends on data infrastructure, analytical capabilities, procedures for model maintenance, and
institutional trust beyond model accuracy. Future research has to be directed to overcoming the identified limitations:
incorporating spatial dependencies, integrating exogenous variables, developing ensemble approaches, validating
performance across diverse contexts, and moving towards causal modeling for proactive traffic management as the urban
population continues to grow and pressure mounts on the transportation networks, demanding new and sophisticated
forecasting tools capable of improving mobility and reducing congestion in order to make life better across the world.
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