



# ACCIDENT DETECTION AND ALERT SYSTEM USING YOLO MODEL

**Shiva Kumar D<sup>1</sup>, D Thanuja<sup>2</sup>, Deekshitha V<sup>3</sup>, Gandla Vyshnavi<sup>4</sup>, Vennapusa Pujitha<sup>5</sup>**Assistant professor, CSE-Data Science, Rao Bahadur Y. Mahabaleshwarappa Engineering College, Ballari, India<sup>1</sup>

Students, CSE-Data Science, Rao Bahadur Y. Mahabaleshwarappa Engineering College, Ballari, India.

(Affiliated To Visvesvaraya Technological University, Belgam. Approved By AICTE, New Delhi &amp; Accredited

By NAAC With A+) Ballari – 583104, Karnataka, India<sup>2,3,4,5</sup>.

**Abstract:** The Accident Detection and Alert System is designed to provide real-time accident detection using deep learning techniques, specifically the YOLOv8 model. This system aims to enhance the speed and accuracy of accident detection through image processing. The platform is developed with a simple, user-friendly interface using HTML, CSS, and JavaScript for frontend development, enabling users to easily log in, register, and interact with the prediction page. Once a user successfully logs in, they are directed to the prediction page, where they can upload an image. The uploaded image is then processed by the backend, which is powered by Python and the Flask framework. The YOLOv8 model is responsible for analysing the image and detecting if an accident is present. YOLOv8, being a fast and accurate deep learning-based object detection model, is ideal for real-time applications like accident detection, as it can process images quickly while maintaining high accuracy.

If the model detects an accident in the uploaded image, the system automatically triggers an email alert to the admin. The email contains essential details such as the image and a notification of the accident, allowing the admin to take immediate action. If no accident is detected, the user is notified via the interface, informing them that no accident was found in the image. The system's workflow aims to provide efficient and reliable detection of accidents, reducing response times in emergency situations. It can be applied in various real-time monitoring scenarios, including traffic management, surveillance systems, and emergency response systems. By automating the accident detection and alerting process, the system enhances communication between users and admins, ensuring that the right actions are taken as quickly as possible. The YOLOv8 model ensures that the detection process remains both fast and accurate, making the solution effective for use in dynamic, high-demand environments where real-time responses are critical.

**Keywords:** Accident Detection, YOLOv8, Flask, Real-Time Image Processing, Email Notification, Python, Machine Learning, Traffic Monitoring, Admin Alert, Image Upload, Web Interface, Emergency Response, Security Systems, Object Detection.

## I. INTRODUCTION

Accident detection and timely response are crucial for minimizing damage and saving lives, especially in high-traffic and accident-prone areas. Traditional accident detection methods often rely on manual monitoring or delayed reporting, which can slow emergency response. The Accident Detection and Alert System address these challenges by using machine learning and image processing to automatically detect accidents in real time and send instant alerts, significantly reducing response time and improving public safety.

The system is built using the YOLOv8 deep learning model, which is well known for its real-time object detection accuracy and efficiency. Users upload images through a web-based interface, and the system analyses them to determine whether an accident has occurred. If an accident is detected, an immediate email alert is sent to the administrator, enabling quick intervention.

The frontend is developed using HTML, CSS, and JavaScript for a simple and user-friendly experience, while the backend uses Python and Flask to process images and handle model inference. The project is designed to be scalable and adaptable, with future scope for video-based detection and integration with smart traffic and emergency management systems. Overall, the system provides an efficient, automated solution that contributes to smarter and safer cities through intelligent accident monitoring and alerting.

**II. LITERATURE SURVEY**

**Paper 1:** “Real-Time Accident Detection Using YOLOv3 and Convolutional Neural Networks”

- **Author:** Chia-Hsiu Chen, Pei-Chun Lin, and Chia-Hsiu Chen
- **Year published:** 2023

**Methodology:** This paper explores the application of the YOLOv3 deep learning model for real-time accident detection in traffic monitoring systems. The authors integrate YOLOv3 with convolutional neural networks to analyse images captured from vehicle-mounted cameras. The system detects accident scenarios such as vehicle collisions and abnormal vehicle positions and immediately generates alerts for nearby emergency services. Experimental results demonstrate high detection accuracy and fast processing speed, validating the suitability of YOLOv3 for real-time accident detection applications.

**Paper 2:** “Deep Learning for Vehicle Accident Detection Using Images from CCTV Cameras”

- **Author:** Xiaolong Wang, Yongxin Chen, and Jun Liu
- **Year published:** 2023

**Methodology:** This research focuses on accident detection using deep learning models applied to high-resolution images obtained from CCTV cameras. The study compares YOLO and Faster R-CNN models to detect vehicle collisions and abnormal traffic conditions. YOLO is shown to outperform other models in terms of speed while maintaining high detection precision. The results confirm that deep learning-based object detection significantly improves real-time accident detection with minimal computational overhead.

**Paper 3:** “Traffic Accident Detection and Alert System Based on Computer Vision”

- **Author:** Suryansh Garg, Vineet Bansal, and Ankit Sharma
- **Year published:** 2022

**Methodology:** This paper presents a computer vision-based accident detection and alert system using video streams from traffic surveillance cameras. The proposed approach employs YOLO for object detection along with motion analysis techniques to identify accident scenarios. Once an accident is detected, the system sends real-time alerts to traffic management authorities. The study demonstrates improved detection accuracy and significantly reduced response times, highlighting the effectiveness of integrating computer vision with automated alert systems.

**Paper 4:** “Automatic Accident Detection Using YOLOv4 and Live Camera Feed”

- **Author:** M. Karthikeyan and R. Rajkumar
- **Year published:** 2022

**Methodology:** This study investigates the use of the YOLOv4 model for detecting road accidents using live camera feeds. The system processes real-time video streams to identify collision events and abnormal vehicle behaviour. Upon detection, automated notifications are sent to the concerned authorities. The experimental results show high accuracy and low false-positive rates, proving that YOLOv4 performs reliably under varying environmental and lighting conditions.

**Paper 5:** “Enhancing Real-Time Traffic Accident Detection Using Deep Learning and Video Analytics”

- **Author:** Daniel B. K. Teh and Xuefeng Liu
- **Year published:** 2022

**Methodology:** This paper proposes an advanced accident detection framework combining YOLO-based object detection with LSTM networks for temporal sequence analysis. The system not only detects accidents but also analyzes the sequence of events leading up to them using traffic video feeds.



## III. METHODOLOGY

**YOLOv8:**

**YOLOv8** (You Only Look Once version 8) is one of the latest iterations in the **YOLO** family of object detection models, known for its **speed** and **accuracy** in real-time detection tasks. YOLO models are designed to detect and classify multiple objects in images or video feeds in a single forward pass of the neural network, making them very efficient for real-time applications such as autonomous vehicles, security surveillance, traffic monitoring, and more.

**Key Features of YOLOv8:**

1. **End-to-End Object Detection:** YOLO models are designed to perform **object detection** in a single pass, meaning that both the **classification** and **localization** of objects (bounding boxes) are done simultaneously. This makes YOLO faster than many other object detection algorithms that use multiple stages or passes (like **Faster R-CNN**).
2. **Real-Time Performance:** YOLOv8 is highly optimized for real-time processing, making it capable of detecting objects in videos or images with minimal latency. This is particularly important in applications where time-sensitive decisions are necessary, such as accident detection, autonomous driving, and security surveillance.
3. **Architecture:** YOLOv8 uses a **neural network architecture** that is both efficient and powerful. It is built on **convolutional neural networks (CNNs)**, leveraging techniques like **bottleneck layers**, **skip connections**, and **multi-scale feature fusion** to improve detection accuracy while maintaining high speed. YOLOv8 continues the trend of improving upon its predecessors by adopting more efficient design choices and tuning parameters to maximize performance.
4. **Improved Accuracy:** YOLOv8 incorporates various improvements over earlier versions of YOLO, including better **localization** (accurate placement of bounding boxes), **classification** (correctly identifying the objects), and handling of **small objects** that previous versions struggled with. YOLOv8 often utilizes techniques such as **data augmentation** and **transfer learning** to improve accuracy without significantly sacrificing processing speed.
5. **Flexibility in Deployment:** YOLOv8 is flexible and can be used for a wide variety of applications:
  - **Object Detection:** Identify and localize various objects within an image (e.g., detecting cars, people, animals, etc.).
  - **Instance Segmentation:** In more advanced implementations, YOLOv8 can perform segmentation tasks, which involve pixel-wise classification of objects.
  - **Human Pose Estimation:** It can also be extended for human pose detection tasks.
  - **Anomaly Detection:** In specialized applications, YOLO can be trained for anomaly detection, such as detecting accidents or unexpected behaviour in surveillance footage.
6. **Transfer Learning Support:** YOLOv8 is built to be easily **fine-tuned** or **trained from scratch** on specific datasets. You can train YOLOv8 with custom datasets to detect objects that are not part of the standard object categories in pre-trained models, making it adaptable for a wide range of use cases.
7. **Pretrained Models:** YOLOv8 typically comes with a set of **pretrained models**, which have been trained on large datasets like **COCO** or **VOC**. These models can be used out-of-the-box or fine-tuned for custom applications, providing high accuracy and reducing the time required for training from scratch.
8. **Lightweight and Efficient:** Compared to many other object detection models, YOLOv8 is designed to be **lightweight** and efficient, allowing it to run on a wide range of hardware, from high-performance servers to edge devices such as smartphones and embedded systems. This efficiency makes it well-suited for real-time applications that require quick processing with limited resources.

**How YOLOv8 Works:**

1. **Input:** The input to the YOLOv8 model is an image or a frame from a video. The model splits the image into a grid of cells and each cell is responsible for predicting bounding boxes and classifying the objects inside those boxes.
2. **Prediction:** Each cell in the grid predicts:
  - **Bounding boxes:** Coordinates that represent the object in the image.
  - **Confidence score:** How confident the model is that the bounding box contains an object and how accurate the predicted box is.
  - **Class probability:** What object class the bounding box belongs to (e.g., "car", "dog", "person", etc.).
3. **Non-Maximum Suppression (NMS):** After the model generates predictions for all grid cells, **Non-Maximum Suppression** is applied to eliminate duplicate or overlapping bounding boxes, keeping only the one with the highest confidence score.

4. **Final Output:** The final output is a set of detected objects, each with a **bounding box, confidence score**, and **class label**. The results are displayed, or for video streams, processed in real-time.

#### Applications of YOLOv8:

- **Surveillance Systems:** Detecting suspicious activities, accidents, or unusual behavior in real-time video streams.
- **Autonomous Vehicles:** Object detection and classification in self-driving cars for identifying pedestrians, other vehicles, traffic signs, and obstacles.
- **Healthcare:** Detecting medical anomalies, such as identifying tumours in medical images (although specialized models for segmentation and classification are often required for this).
- **Industrial Automation:** Detecting faulty products in manufacturing lines or recognizing machines and parts in industrial settings.
- **Retail and Security:** Tracking customers, detecting suspicious activities, or counting items in retail settings.

#### IV. DIAGRAMS

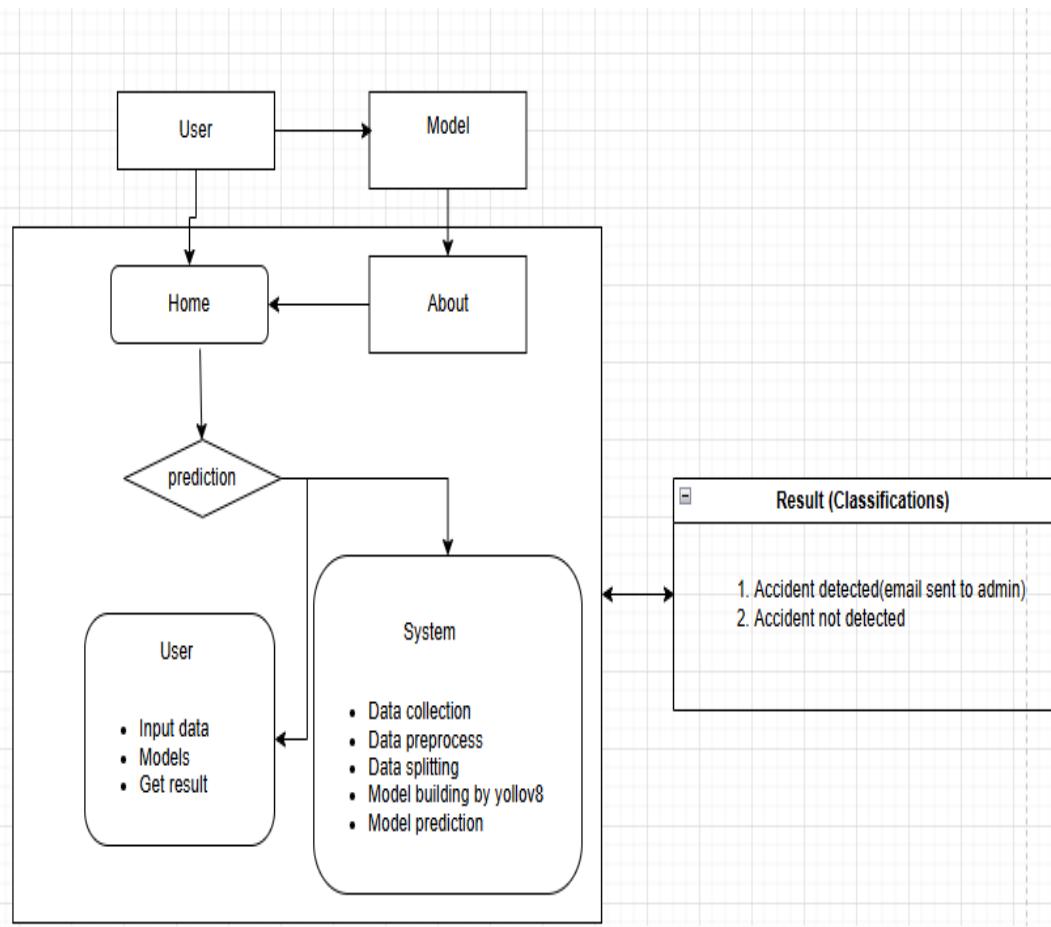



Fig: System Architecture

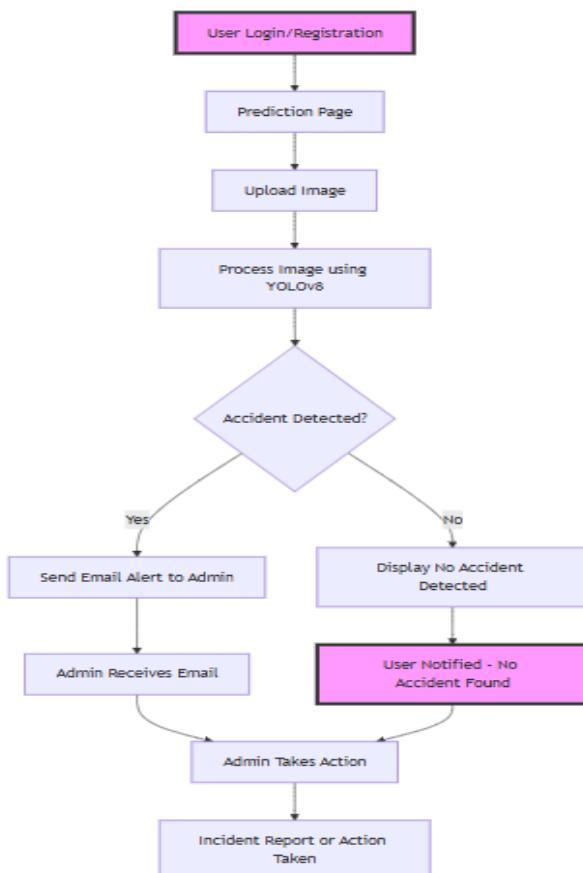



Fig: Methodology Used

ER Diagram

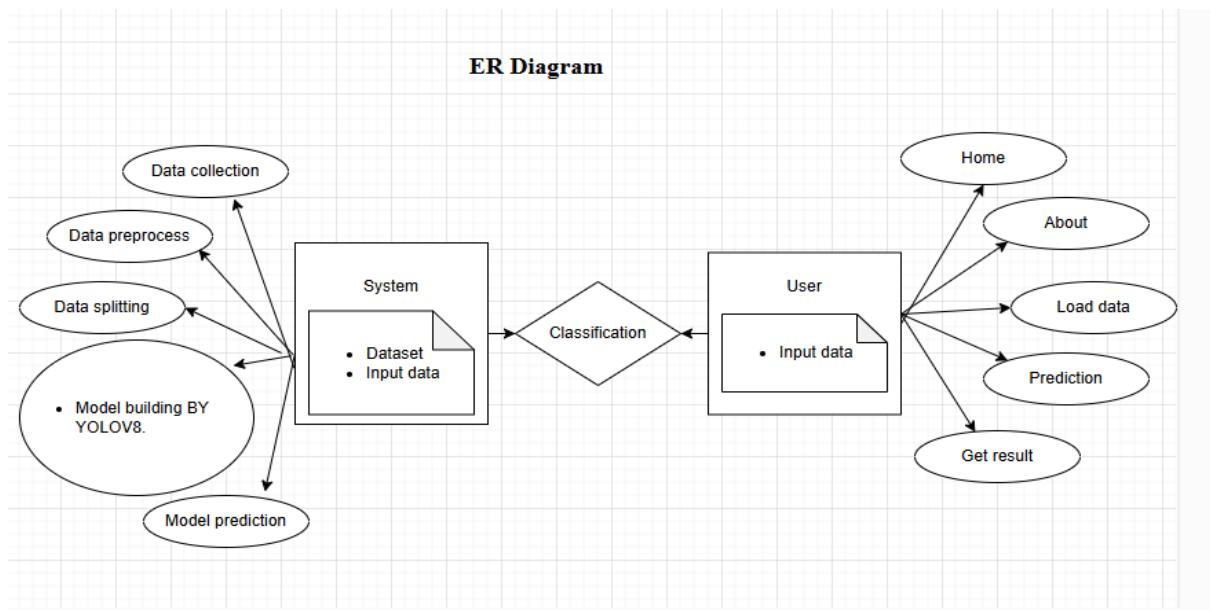



Fig: ER Diagram

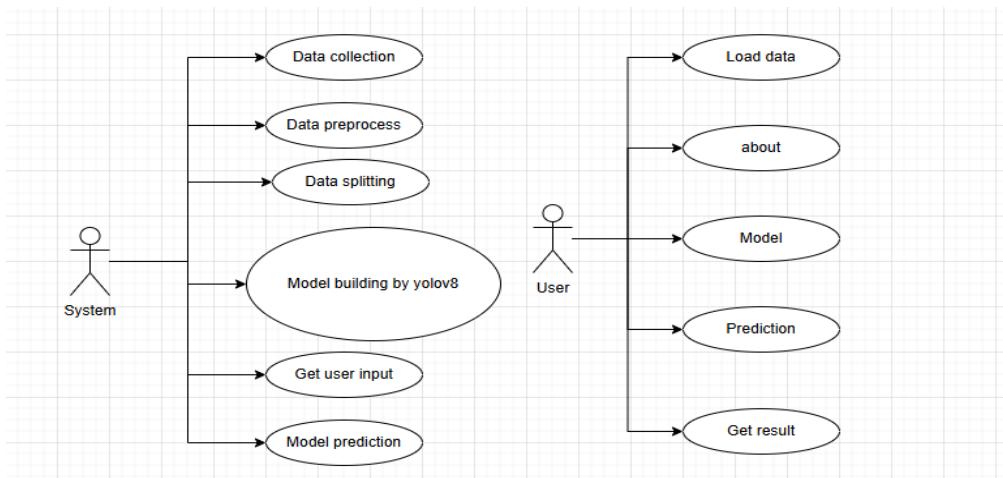



Fig: Use Case Diagram



Fig: Home Page

You have been logged out.

**Register**

Username

Email address

Password

Confirm Password

Age

Fig: Sign in Page

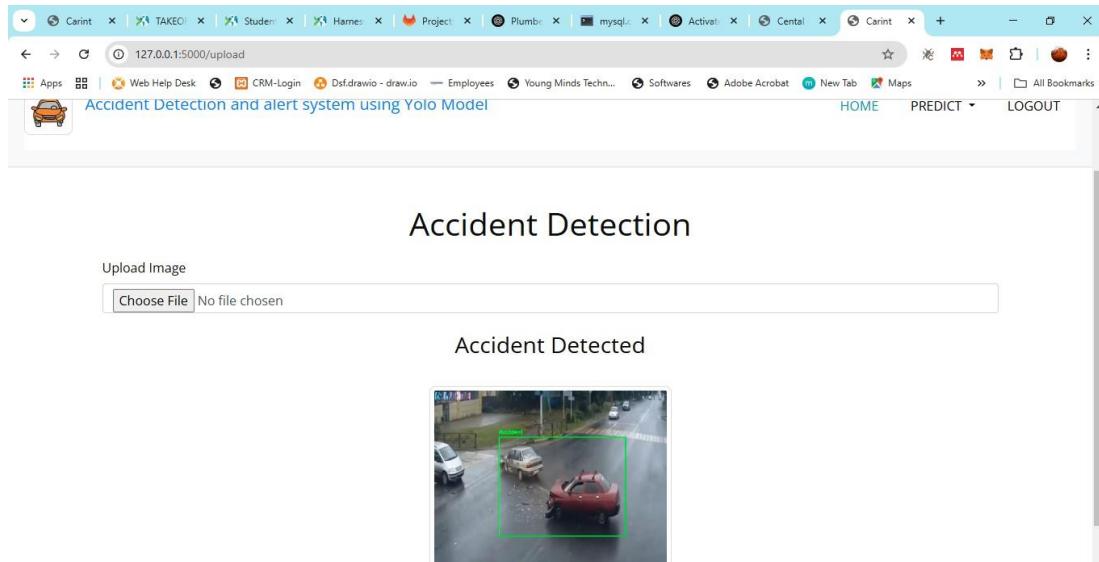



Fig: - PREDICTION PAGE: In here user can upload image and get prediction.

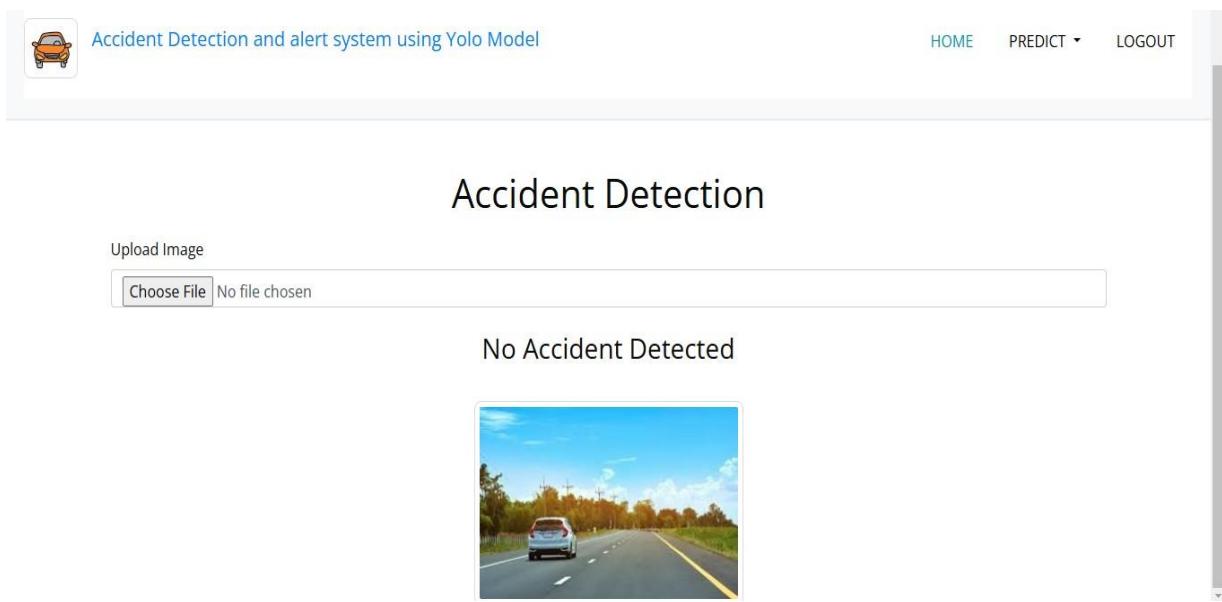



Fig: -RESULTS of the prompt given by the user.

## V. RESULTS AND DISCUSSION

### RESULTS:

- The Accident Detection and Alert System using **YOLOv8** was successfully designed and implemented to automatically detect road accidents from traffic images.
- The system effectively eliminates manual monitoring and reduces human error in accident detection.
- YOLOv8 demonstrated **high accuracy and fast detection speed**, making it suitable for real-time traffic safety applications.
- The system accurately distinguishes between accident and non-accident scenarios with minimal false alerts.
- A **web-based interface** was developed to allow easy image upload and result visualization for users.
- An **automated email alert system** was successfully integrated to notify administrators immediately after accident detection.
- All system modules including user registration, login, image processing, detection, and alert notification worked seamlessly.



- Comprehensive **unit, integration, system, and acceptance testing** were conducted and all test cases passed successfully.
- The system proved to be **reliable, efficient, and scalable** for real-world deployment.
- Overall, the project demonstrates the effective use of **deep learning and computer vision** to enhance road safety and emergency response systems.

## DISCUSSION

- The proposed Accident Detection and Alert System successfully demonstrates how **deep learning and computer vision** can be applied to real-world traffic safety problems.
- The use of the **YOLOv8 model** enables fast and accurate accident detection, making the system suitable for real-time and time-critical applications.
- Compared to traditional manual monitoring systems, the proposed solution significantly **reduces detection delay and human error**.
- The system effectively automates the entire process from **image upload to accident detection and alert notification**.
- The integration of a **Flask-based backend and web-based frontend** ensures smooth interaction and ease of use for administrators and users.
- Automated **email alerts** allow authorities to respond quickly, improving emergency response time and potentially saving lives.
- Experimental testing showed consistent performance across different traffic conditions, validating the **robustness and reliability** of the system.
- The system meets all defined objectives and functional requirements, as confirmed through **unit, integration, system, and acceptance testing**.
- Although the system currently focuses on image-based detection, it provides a strong foundation for future extensions such as **live video processing and severity classification**.
- Overall, the project highlights the potential of **AI-driven accident detection systems** in supporting smart city initiatives and enhancing road safety infrastructure.

## VI. CONCLUSION

In conclusion, the Accident Detection and Alert System represents a transformative solution in real-time traffic monitoring and emergency response. By integrating YOLOv8, a cutting-edge deep learning model, the system automates the detection of accidents from images, significantly improving both the accuracy and speed of incident identification. This automation eliminates the need for manual monitoring, reducing human error and fatigue, which are common challenges in traditional systems. The system's ability to instantly send email alerts to administrators ensures rapid intervention, enhancing safety and minimizing the impact of accidents.

The user-friendly interface, which allows easy image uploads and seamless interaction, ensures that the system can be utilized by a wide range of users without technical expertise. Additionally, the system's scalability and flexibility make it ideal for integration into existing infrastructures, such as traffic management systems, surveillance setups, and emergency response networks, whether in urban areas or remote locations with limited resources.

Overall, this project demonstrates the significant potential of AI and computer vision technologies to enhance public safety. It addresses the growing need for automated, real-time systems in accident detection and response, offering a more efficient, accurate, and cost-effective solution compared to manual processes. The system has the potential to be widely adopted across various industries and environments, improving overall emergency management and traffic monitoring.

## VII. FUTURE SCOPE

The **Accident Detection and Alert System** aim to provide an automated, real-time solution for detecting accidents from images using the YOLOv8 deep learning model. The system allows users to upload images, which are processed by the YOLOv8 model to detect accidents. Once an accident is detected, an automated email alert is sent to the admin for immediate intervention. Key features include **image upload** by users, **real-time accident detection**, **automated email notifications** to admins, and **user-friendly interface** for seamless interaction. The system ensures high **accuracy, efficiency, and timely responses**, addressing the need for faster accident detection and reducing reliance on manual



monitoring. Additionally, the solution is scalable, making it suitable for implementation in various traffic monitoring systems, security surveillance, and emergency management applications across different environments and locations.

**REFERENCES**

- [1]. **Chia-Hsiu Chen, Pei-Chun Lin, and Chia-Hsiu Chen**, "Real-Time Accident Detection Using YOLOv3 and Convolutional Neural Networks," in *2023 IEEE International Conference on Intelligent Transportation Systems (ITSC)*. [Publisher: IEEE]
- [2]. **Xiaolong Wang, Yongxin Chen, and Jun Liu**, "Deep Learning for Vehicle Accident Detection Using Images from CCTV Cameras," in *2023 International Conference on Computer Vision and Image Processing (CVIP)*. [Publisher: Springer]
- [3]. **Suryansh Garg, Vineet Bansal, and Ankit Sharma**, "Traffic Accident Detection and Alert System Based on Computer Vision," in *2022 International Conference on Machine Learning and Applications (ICMLA)*. [Publisher: IEEE]
- [4]. **M. Karthikeyan and R. Rajkumar**, "Automatic Accident Detection Using YOLOv4 and Live Camera Feed," in *2022 IEEE International Conference on Intelligent Systems and Signal Processing (ISSP)*. [Publisher: IEEE]
- [5]. **Daniel B. K. Teh and Xuefeng Liu**, "Enhancing Real-Time Traffic Accident Detection Using Deep Learning and Video Analytics," in *2022 3rd International Conference on AI and Big Data (ICAIBD)*. [Publisher: IEEE]
- [6]. **Ahmed Ali, Nabil Z. M. El-Khashab, and Amr M. Tolba**, "Real-Time Vehicle Accident Detection Using Deep Learning and IoT," in *2023 8th International Conference on Computer and Communications Engineering (ICCCE)*. [Publisher: IEEE]
- [7]. **Jinlong Li, Xuefeng Liu, and Haibo Zhang**, "Object Detection for Accident Detection and Prevention Using YOLO-Based Models," in *2023 4th International Conference on Artificial Intelligence and Data Analytics (AIDA)*. [Publisher: Springer]
- [8]. **Rahul Sharma, Sanjay Kumar, and Vijay Kumar**, "Vehicle Accident Detection and Reporting System Using Machine Learning," in *2022 6th International Conference on Data Science and Machine Learning (DSML)*. [Publisher: IEEE]