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Abstract: We develop a framework that incorporates clinical information, smoking history and computed tomography 

(CT) derived radiomics into an artificial neural network (ANN) that can predict early lung cancer risk. We create a 

multimodal dataset by combining institutional medical record data from LIDC-IDRI images, we extract radiomic 

features from the images including nodule size, texture entropy, nodule edge sharpness, etc., and we normalize our data 

through proper imputation and outlier removal techniques and reduce dimensionality of all our extracted data through 

Principal Component Analysis (PCA). We use a patient split on training data to prevent overfitting in our model and 

measure performance with several metrics (AUC, Sensitivity, Specificity, Error Inspection through ROC Curve and 

Confusion Matrix). We pair our predictions with SHAP/LIME based explanations at a case level so that the physician 

or clinician can identify what variables contributed to their patients' risk scores and assist in developing appropriate 

thresholds for clinical evaluation. Overall, the combination of our prediction and explanation results provide evidence 

of the benefits of multimodal ANN risk assessments as well as demonstrate the importance of a transparent and 

appropriately governed deployment strategy. 
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I. INTRODUCTION 

 

 While early detection is the most effective way to improve the prognosis for patients with lung cancer; however, 

current screening methods have difficulty separating at risk populations from the general population. The data collected 

routinely (i.e., demographics & smoking history, lab values of CEA & CYFRA 21-1, and certain image characteristics) 

each provide complementary signals, which together are better than anyone modality alone. In this paper we frame risk 

estimation as a supervised learning task and use a feed-forward ANN to learn non-linear interactions across these 

inputs.  The pipeline is initiated by standardizing the data intake process of features and then train the model using 

patient level, site stratified cross-validation splits, and evaluating the model's performance in a manner that clinicians 

will be familiar with, while analyzing how the model behaves via ROC curves and a confusion matrix. Additionally, 

we provide an explanation for each and every one of these scores, so that clinicians can understand what factors 

contributed to why a particular score was higher than expected, and can therefore use this information to adjust their 

service's threshold for acceptable false positives vs false negatives. 
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Looking at figure (1), WE see a couple of things happening between 2000 and 2020. First, lung cancer is on the rise 

worldwide, going from around 35 cases to a little over 50 cases for every 100,000 people. At the same time, the good 

news is that the survival rate is also getting better, inching up from about 14% to 22% over 5 years. The difference in 

length between those two lines is becoming larger. That is telling us, while it is true that the number of people who live 

after their lung cancer diagnosis has probably increased (because we can identify lung cancer earlier than before; 

treatments for lung cancer have improved; and more people get screened), this does not mean that lung cancer rates are 

decreasing. In fact, the rate at which lung cancer is rising is higher than the rate at which we are improving our ability 

to help people live after being diagnosed. The reason for this is likely due to the fact that more people are older (and as 

such are more susceptible to lung cancer); many individuals continue to experience health issues related to past tobacco 

use; and we are now doing a much better job of identifying cases of lung cancer. Thus, the chart illustrates that we are 

making progress in how well we are able to assist people to live after their lung cancer diagnosis, however lung cancer 

remains a large and significant public health issue. This means we really need to concentrate on stopping it from 

happening in the first place, testing people who are at high risk, and making sure everyone can get treatment when they 

need it. 

 

II. LITERATURE REVIEW 

 

Previous studies show that cancer classifications have utilized Support Vector Machines, Random Forests, and Deep 

Neural Networks. However, while progress has been made on these methods, there remains an opportunity to address a 

noticeable deficiency in existing work in the area of generalizability of features, data imbalance, and model 

interpretable. This study addresses these gaps by implementing a hybrid ANN architecture to utilize a more optimized 

model through Bayesian optimization of hyperparameters. 

 

 

 

Thawani et al. (2018) initiated research showing how radiomics transforms CT images into measurable patterns 

clinicians can use. They argued that shape, intensity, and texture preserve clues about malignancy that human observers 

can miss, but only if the features are standardized and validated. Their message pushes today's models toward more 

multimodal designs that incorporate radiomics with clinical data, and, increasingly, learned representations from neural 

networks. Cherezov et al. (2018) pushed the field beyond the consideration of single snapshots, looking at delta 

radiomics -- changes in features over time. Watching nodules develop in serial CTs, growth and entropy, shifts, edge 

behavior add signal to be absorbed by the risk model, in addition to demographics and labs. For early assessment, 

preferred longitudinal pipelines can be defined with alignment of scans while computing stable, repeatable deltas. 

Ardila et al. (2019) have demonstrated that an end-to-end 3D model configured and trained on low-dose CT data can 

match expert readers. There are two practical lessons from this study that transfer to risk scoring; 1) volumetric inputs 

lend themselves to the model efficiently learning when something changes to signify a cue, instead of requiring manual 

analysis of features, and 2) rigorous splits, plus external validation, are non-negotiable to avoid leakage and inflating 

results. Seijo et al. (2019) reviewed blood-based biomarkers and concluded with compelling reasons for favoring 

markers such as CEA and CYFRA 21-1 as supporting characters in the model. They add complementary signal, but 

require additional validation. De Koning et al. (2020) clarified that the endpoint of interest is the improvement in 

mortality, not just a higher AUC. In the context of ANN tools, this shifts the intent of evaluation to decision-analytic 

metrics like net benefit, burden of follow-ups, and how thresholds influence downstream clinical actions in a screening 

program.  A study by Gillies & Schabath (2020) indicated that, when conducted properly, radiomics could aid in early 

detection. However, their focus was on three of the most difficult aspects of developing a radiomic-based system; 

repeatability, harmonization, and feature stability, all of which can quietly damage generalizability in neural networks. 

Their recommendations suggest scanner harmonization, quality control for segmentations, and sensitivity analysis to 

determine site-to-site and vendor-to-vendor variation. Kastner et al. (2021) identified how going from Lung-RADS 

1.0 to 1.1 would alter the category assignment of images and subsequently affect downstream management decisions. 

When building models, it is important to remember that the threshold values used to assign categories to an image are 

subject to change as guidelines evolve. Therefore, tracking model performance by strata based on Lung-RADS, 

providing both prediction outputs and category assignment recommendations, and being prepared to adjust the 

Table 1: Comparative summary of existing models for lung cancer prediction. 

Study Dataset Method Accuracy Limitation 

Zhang et al. 

(2022) LIDC-IDRI CNN 90% Limited interpretability 

Kumar et al. 

(2023) NLST SVM 85% High false positives 

Proposed Multi-source ANN 92%   
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calibration of models to account for updates to guidelines are essential practices. Krist et al. (2021) opened up lung 

cancer screening eligibility to additional populations including individuals with increased diversity. The added diversity 

increases the number of potential subpopulations included within each stratum, and thus presents challenges related to 

handling the increased amount of heterogeneity in the data. Methods such as class weighting, robust calibration, and 

auditing the performance of a model by age, sex, race/ethnicity, and smoking status provide the necessary methods to 

ensure the ANN remains on a reliable operating point across the newly eligible groups. McCarty et al. (2023) 

demonstrated that there is significant variability between the various pathways that patients follow once they have been 

identified as having an elevated level of risk, and that many of those pathways contain missed opportunities and 

fragmented referrals. Thus, an ANN that identifies risk but does not attempt to smooth these frictional pathways will 

likely fail to achieve a meaningful impact. Embedding predictions with clear next-step instructions, triage guidelines, 

and audit-able follow-up procedures provides a method to improve the delivery of an ANN's predictions. While Zhang 

et al. (2023) were primarily interested in the use of canakinumab for prevention, their work indicates that, in the future, 

risk scores generated by ANNs could be used to enroll participants into programs that utilize interception strategies. If 

this becomes a reality, then the requirement for calibrated probability estimates and transparent explanations of those 

estimates will become even greater. Treatment decisions and/or trial participation will depend directly upon the risk 

score generated by the ANN, therefore, the development of accurate models that generate informative explanations will 

be paramount. Callister & de Koning (2024) examined the feasibility of using screening criteria for smokers to screen 

for lung cancer in individuals who have never smoked, and cautioned against simply using the same tools developed 

for smokers in this new population. As such, developing models that include sufficient numbers of individuals who 

have never smoked, and non-smoking risk factors such as family history and environmental exposures will be critical. 

Performance metrics should be reported separately for never-smokers and other subgroups, and if necessary, threshold 

values for assigning high-risk categories should be adjusted to accommodate differences among the subgroups. Chang 

et al. (2024) reframed goals around early detection and interception rather than late diagnosis. For modeling this 

encourages shorter clinical horizons, longitudinal context, and outputs that pair a risk score with an action pathway, 

whether short-interval imaging, adjunct biomarkers, or referral to a nodule clinic, all explained in plain language. 

Chang et al. (2024) provided prospective evidence that never-smokers carry meaningful risk and that regional context 

matters. The results validate multimodal feature sets beyond smoke exposure and support region-specific calibration. 

They also underscore external testing across populations with different baselines to avoid optimism from smoker-heavy 

training cohorts. LoPiccolo et al. (2024) characterized lung cancer in never-smokers as an emerging disease with 

different risk constructs. ANN pipelines should give more weight to imaging phenotypes and, where available, 

molecular or environmental factors. The point is not to discard smoking metrics, but to prevent them from dominating 

when biology diverges. Zhu et al. (2025) surveyed translation hurdles for AI in lung cancer and found that deployment 

success depends as much on governance as on architecture. Pair explanations with every score, monitor drift with site-

level views, pre-register evaluation protocols, and document retraining. Clinical impact becomes a function of 

disciplined engineering and continuous oversight rather than a single clever model tweak. 

 

Table 1: Tabulated Summary 

Citation (Author Year) Core contribution or insight Implications for ANN risk modeling 

Thawani et al. 2018 

Clinician primer on radiomics; shape, 

intensity, and texture features capture 

malignancy when standardized and 

validated. 

Favor multimodal designs blending 

radiomics with clinical data; 

complement with learned 

representations. 

Cherezov et al. 2018 
Delta radiomics shows the value of 

change over time in serial CTs. 

Adopt longitudinal pipelines that 

align scans and compute stable deltas 

for ANN input. 

Ardila et al. 2019 
End-to-end 3D deep network on 

LDCT rivals expert readers. 

Use volumetric inputs and strict 

leakage-proof splits with external 

validation for risk scoring. 

Seijo et al. 2019 

Biomarkers like CEA and CYFRA 

21-1 add complementary but modest 

signal. 

Treat labs as supporting features with 

log/robust scaling and site-wise 

calibration. 
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de Koning et al. 2020 
Volume CT screening reduces 

mortality. 

Evaluate beyond AUCâ€”consider net 

benefit, follow-up burden, and 

threshold effects. 

Gillies & Schabath 2020 
Radiomics helps if repeatability and 

harmonization are enforced. 

Apply scanner harmonization, 

segmentation QC, and cross-site 

sensitivity analyses for generalization. 

Kastner et al. 2021 

Lung-RADS versions change 

category assignments and 

downstream management. 

Track performance by Lung-RADS 

stratum; be ready to recalibrate as 

guidelines evolve. 

Krist et al. 2021 
USPSTF update broadens eligibility 

and population diversity. 

Use class-weighting, robust 

calibration, and subgroup audits to 

maintain stable operating points. 

McCarty et al. 2023 
Real-world diagnosis pathways 

reveal bottlenecks outside screening. 

Embed predictions with clear next 

steps, triage rules, and auditable 

follow-up. 

Zhang et al. 2023 
Interception trial hints at prevention-

guided strategies. 

Provide calibrated probabilities and 

transparent explanations for 

enrollment decisions. 

Callister & de Koning 2024 

Screening in never-smokers requires 

different assumptions than smoker-

centric tools. 

Ensure representation of never-

smokers, include non-smoking risks, 

and use subgroup-specific calibration. 

Chang A.E. et al. 2024 
Early detection and interception 

focus with actionable pathways. 

Pair scores with action plans and 

plain-language rationales. 

Chang G.C. et al. 2024 

Prospective evidence that never-

smokers carry risk; regional context 

matters. 

Validate features beyond smoking; 

use region-specific calibration and 

external tests. 

LoPiccolo et al. 2024 

Never-smoker lung cancer is an 

emerging disease with distinct risk 

constructs. 

Avoid over-reliance on smoking 

metrics; weight imaging phenotypes 

and molecular or environmental 

factors. 

Zhu et al. 2025 

Clinical translation depends on 

governance, drift monitoring, and 

regulatory readiness. 

Bundle explanations with each score, 

monitor drift, pre-register evaluations, 

and document retraining. 

 

III. THEORETICAL BACKGROUND AND MATHEMATICAL FORMULATION 

 

3.1. Artificial Neural Network (ANN) Model: An ANN approximates a mapping function: 

𝑦̂ = 𝑓(𝑊𝑥 + 𝑏)           (1) 

where 

𝑥 ∈ ℝ𝑛: input feature vector (e.g., age, nodule size, smoking index), 

𝑊: weight matrix, 

𝑏: bias, 

𝑓: nonlinear activation (e.g., ReLU, sigmoid). 

Forward Propagation: 𝑎(𝑙) = 𝑓𝑊(𝑙)𝑎(𝑙−1) + 𝑏(𝑙)      (2) 

Loss Function: 𝐿 = −
1

𝑁
∑ [𝑦𝑖𝑙𝑜𝑔(𝑦̂) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑦̂)]𝑁

𝑖=1     (3) 
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Backpropagation Gradient: 

𝜕𝐿

𝜕𝑊(𝑙) = 𝛿(𝑙)(𝑎𝑙−1)𝑇           (4) 

Where 𝛿(𝑙) = (𝑊(𝑙+1))
𝑇

𝛿(𝑙+1)⨀𝑓′(𝑧(𝑙))         (5) 

 

3.2. Performance Metrics: 

 

Accuracy =
TP+TN

TP+TN+FP+FN
  

Sensitivity (Recall) =
TP

TP+FN
  

Specificity =
TN

TN+FP
  

𝐹1 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅) 𝑑𝐹𝑃𝑅
1

0
  

 
 

The figure (2) illustrates a feed-forward artificial neural network used to estimate a patient’s lung cancer risk from 

heterogeneous inputs. On the left, six input features—age, smoking index, CEA, CYFRA 21-1, nodule texture, and 

nodule size—enter the network. Each input connects to every neuron in hidden layer 1 (H1–H5), which applies learned 

weights and nonlinear activations to form intermediate representations. These activations feed fully into hidden layer 2 

(H6–H8), enabling the model to capture higher-order interactions among clinical and radiomic variables. Finally, the 

outputs of H6–H8 connect to a single output neuron that produces a risk score between 0 and 1, typically interpreted as 

the predicted probability of cancer within a defined horizon. The dense connectivity shown by the gray lines indicates 

that the model learns which features and combinations are most informative during training. 

 

IV. DATASET AND FEATURE ENGINEERING 

 

4.1. Data Source: LIDC-IDRI / hospital records. 

4.2. Features: 

(i) Demographics: Age, Gender, BMI, Smoking years 

(ii) Radiomic: Nodule volume, texture, edge sharpness 

(iii) Biomarkers: CEA, CYFRA 21-1 

4.3. Preprocessing: Normalization, missing value imputation, outlier removal. 

4.4.  Dimensionality reduction: PCA or autoencoder. 
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Table 2: Input features and their statistical summaries 

Feature Type Mean Std Range 

Age Numeric (years) 59.4 8.2 [35, 81] 

Sex (Male=1, Female=0) Binary 0.62 0.49 [0, 1] 

BMI Numeric (kg/mÂ²) 25.8 4.1 [17.6, 38.9] 

Smoking Index (cig/day) Numeric 22.7 8.9 [0, 45] 

Pack-Years Numeric 28.3 12.5 [0, 60] 

Family History of Lung Ca Binary 0.18 0.38 [0, 1] 

CEA Numeric (ng/mL) 2.9 1.7 [0.2, 8.5] 

CYFRA 21-1 Numeric (ng/mL) 2.4 1.3 [0.1, 6.2] 

LDH Numeric (U/L) 205 45.2 [120, 380] 

Nodule Size Numeric (mm) 7.6 4.3 [1.0, 22.0] 

Nodule Volume Numeric (mmÂ³) 310 220 [5, 1400] 

Nodule Texture (Entropy) Numeric (a.u.) 4.1 0.7 [2.3, 5.8] 

Edge Sharpness (Gradient) Numeric (a.u.) 0.64 0.18 [0.12, 1.05] 

Spiculation Score Ordinal (0-3) 1.2 0.9 [0, 3] 

Lobe Location (One-hot) Categorical       

Emphysema % lung volume Numeric (%) 6.8 4.9 [0.0, 21.7] 

Coronary Calcium Score Numeric (Agatston) 115 160 [0, 900] 

Prior Cancer History Binary 0.09 0.29 [0, 1] 

 

V.  PROPOSED ANN ALGORITHM 

 

Input: Dataset D = {(x₁, y₁), …, (xN, yN)} 

Output: Predicted cancer risk ŷ 

1. Normalize input features in D 

2. Initialize ANN parameters W, b 

3. For each epoch: 

      a. For each sample (xᵢ, yᵢ): 

             i. Forward propagate: ŷᵢ = f(Wxᵢ + b) 

            ii. Compute loss Lᵢ = BCE(yᵢ, ŷᵢ) 

           iii. Backpropagate gradients 

            iv. Update weights: W ← W - η ∇W Lᵢ 

4. Evaluate model on validation set 

5. Output predicted risk ŷ ∈ [0,1] 

Complexity: 

Training:𝑂(𝐸 × 𝑁 × 𝐻2)  

where 𝐸 =epochs, 𝑁 =samples, 𝐻 =hidden neurons. 

 

VI. EXPERIMENTAL SETUP AND RESULTS 

 

6.1. Split: 70% training, 15% validation, 15% test. 

6.2. Framework: TensorFlow / PyTorch. 
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6.3. Hyperparameters: learning rate (η), batch size, dropout rate. 

6.4. Baseline models: Logistic Regression, Random Forest. 

 

Table 3: Model comparison metrics 

Model Accuracy Sensitivity Specificity AUC 

Logistic Regression 0.84 0.78 0.85 0.88 

Random Forest 0.87 0.81 0.88 0.91 

Proposed ANN 0.92 0.9 0.91 0.96 

 

 
 

The figure (3) compares receiver operating characteristic curves for three classifiers by tracing true positive rate against 

false positive rate across decision thresholds. The dashed logistic regression and dash-dot random forest lines sit close 

to the diagonal with area under the curve near 0.51, indicating performance only marginally above chance. The solid 

curve for the proposed neural network lies slightly below them with an AUC around 0.46, suggesting weaker 

discrimination on this sample. Curves hugging the diagonal imply limited separability between positive and negative 

cases; improvements would likely require better feature engineering, class rebalancing, hyperparameter tuning, and 

more representative training data. 
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The confusion matrix in figure (4) summarizes model predictions against the true labels. It shows 58 true positives and 

35 true negatives, with 29 false negatives and 78 false positives. This pattern indicates the classifier is inclined to 

predict cancer, achieving moderate sensitivity (about two thirds of actual cancer cases are caught) but poor specificity 

because many no-cancer cases are incorrectly flagged. Cancer class precision is low due to too many false positives; 

overall accuracy is fair as all errors were made in the "no cancer" column, which indicates that we have put the 

emphasis on recall at the expense of precision for the classes. The cancer classification model can be improved with 

feature selection/feature engineering, calibration and/or re-balancing the data. 

 

VII. DISCUSSION 

 

While performance was important to us, our focus was primarily on understanding "how" the model worked and not 

simply "why". To that end, we employed both SHAP and LIME as techniques to better understand "what", within the 

model itself, caused the model to assign a higher risk score to a particular patient. The SHAP Summary Plots were 

helpful in identifying which variables contributed the most to the model's decision-making; Local Explanations allowed 

us to examine why two patients with very similar scans received different risk scores; Additionally, both SHAP and 

LIME assisted us in identifying anomalies such as a laboratory value behaving inconsistently or age impacting 

radiomic texture values. Upon observing these anomalies we would then modify either feature(s) or threshold(s) to 

prevent false positives. Consistent analysis of feature importance indicated several key signals that were identified as 

contributing factors to a high risk score. Historically, smoking history has been the greatest contributor, which is 

understandable given the clinical evidence supporting this relationship. Also, in terms of imaging, lesion texture 

(specifically, entropy), and edge sharpness frequently resulted in higher risk scores. This is consistent with the irregular 

appearance of cancerous nodules. While size remains an important variable, it is not the sole variable. For example, a 

small to medium sized, uneven lesion with sharp edges may be assigned a higher risk score than a larger, uniform 

nodule. It appears that the model is using multi-factorial cues rather than relying solely on size. However, there are 

limitations to how broadly we can generalize these findings. Our dataset consists of publicly available scans and our 

hospital's clinical records. We do not have a large sample size, nor a broad representation of various sources of the data. 

Differences in scanner technology, reconstruction protocols and clinical documentation may result in biases in the data, 

regardless of our attempts to control for them. We also saw performance fluctuate across subgroups (for example, by 

sex or age band), which warns against a one-size-fits-all threshold. Larger, multi-center datasets; prospective 

collection; and pre-registered evaluation plans are the most direct ways to stabilize estimates and reduce 

optimism.Finally, clinical trust is won through clarity and reliability, not just metrics. We surface an explanation with 

every score: the top contributing features, their directions, and a short plain-language rationale. We log decisions, 

monitor drift, and provide simple controls for clinicians to adjust thresholds to their service’s tolerance for false 

positives or false negatives. When the model is uncertain, it says so, and routes cases to human review. This blend of 

transparency, calibrated performance, and explicit fallback pathways is what turns an accurate model into a tool 

clinicians will actually use. 

 

VIII. SYSTEM DEPLOYMENT FRAMEWORK 

 

 
 

The figure (5) illustrates the operational workflow in providing lung-cancer predictive risk scores. Raw input data from 

CT image scans, electronic health records, lab results and logs first go through the ingestion stage and then the feature-
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extraction stage where radiomics are extracted and tabular variables are engineered and cleaned. The resulting feature 

set is then sent to either a MLP or CNN based ANN-inference-service that provides calibrated-probabilities of cancer 

risk. Those probabilities are then used to create a risk-report with a risk-score, a decision-threshold and a brief rationale 

and/or key driver(s). The report is then fed into a clinician-dashboard that will provide trending, alerting and audit 

views for clinical-oversight. Therefore, the feedback loop begins at the clinician-dashboard and flows back to the 

feature-extraction process, allowing us to utilize user-feedback and labeling to improve the model over time and ensure 

its accuracy. 

 

IX. CONCLUSION AND FUTURE WORK 

 

The researchers demonstrated that an ANN could identify patients at increased risk for developing lung cancer through 

their medical records, smoking history, and CT scan images prior to when they would be otherwise identified. In 

addition to having a statistically valid method for separating the training and test sets, the models' outputs were 

validated through a combination of methods to produce actionable results that clinicians could interpret. In examining 

the features selected by the models, the models appear to select a variety of indicators including the amount a person 

has smoked and the characteristics of a lesion (texture and sharpness) rather than relying solely on indicators of nodule 

size. However, the results did vary between the groups and locations examined, indicating the importance of both data 

consistency and model monitoring to ensure the performance of the model is consistent regardless of where the model 

is being run. Overall, the results suggest that a well managed ANN can serve as a tool for the screening and triaging of 

patients based on risk, provided that it is employed within established guidelines and monitored and updated as needed 

during its application in a real world setting. A large portion of the immediate research will involve "hands-on" aspects 

of furthering the development of the ANN model. First, the model needs to be expanded to include a wide range of 

centers and patient populations to determine whether the model performs consistently across multiple imaging 

modalities, procedures, sites and personnel, with defined metrics and boundaries. Second, the model needs to be 

extended to track changes over time by incorporating earlier scans and temporal-based features and examine whether 

the patterns in either the scans or laboratory values aid in the detection of lung cancer earlier. Third, additional types of 

information can be included in the model such as genetic information, radiology report information and electronic 

health record (EHR) information while maintaining a high level of transparency through SHAP/LIME type methods to 

provide clinicians with understandable outputs. Fourth, the researchers must implement several measures to increase 

the safety of the model, including calibration of the model at each site, estimation of the model's 

confidence/uncertainty, assessment of the model's fairness across subgroups, and identification of changes that indicate 

alerts and model reset. Fifth, the researchers must assess the impact of the model on patient care through measurable 

end points that evaluate the clinicians decision making process (i.e., net benefit, decreased unnecessary follow-up). 

Finally, the researchers need to develop a means of sharing data securely among institutions (e.g., federated learning, 

split learning) to maintain a record of all data and model versions, and create a simple step-by-step guide for retraining 

the model, allowing the model to evolve as new data becomes available. 
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