IJARCCE ISSN (O) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :: Peer-reviewed & Refereed journal :< Vol. 14, Issue 12, December 2025
DOI: 10.17148/IJARCCE.2025.1412115

Artificial Neural Network-Driven
Predictive Modeling for
Early Lung Cancer Risk Assessment

Anshul Chaudhary!, Professor Pramod Sharma?
M. Tech Scholar, R.B.S. Engineering Technical Campus, Bichpuri, Agra!

Supervisor, R.B.S. Engineering Technical Campus, Bichpuri, Agra?

Abstract: We develop a framework that incorporates clinical information, smoking history and computed tomography
(CT) derived radiomics into an artificial neural network (ANN) that can predict early lung cancer risk. We create a
multimodal dataset by combining institutional medical record data from LIDC-IDRI images, we extract radiomic
features from the images including nodule size, texture entropy, nodule edge sharpness, etc., and we normalize our data
through proper imputation and outlier removal techniques and reduce dimensionality of all our extracted data through
Principal Component Analysis (PCA). We use a patient split on training data to prevent overfitting in our model and
measure performance with several metrics (AUC, Sensitivity, Specificity, Error Inspection through ROC Curve and
Confusion Matrix). We pair our predictions with SHAP/LIME based explanations at a case level so that the physician
or clinician can identify what variables contributed to their patients' risk scores and assist in developing appropriate
thresholds for clinical evaluation. Overall, the combination of our prediction and explanation results provide evidence
of the benefits of multimodal ANN risk assessments as well as demonstrate the importance of a transparent and
appropriately governed deployment strategy.
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I INTRODUCTION

While early detection is the most effective way to improve the prognosis for patients with lung cancer; however,
current screening methods have difficulty separating at risk populations from the general population. The data collected
routinely (i.e., demographics & smoking history, lab values of CEA & CYFRA 21-1, and certain image characteristics)
each provide complementary signals, which together are better than anyone modality alone. In this paper we frame risk
estimation as a supervised learning task and use a feed-forward ANN to learn non-linear interactions across these
inputs. The pipeline is initiated by standardizing the data intake process of features and then train the model using
patient level, site stratified cross-validation splits, and evaluating the model's performance in a manner that clinicians
will be familiar with, while analyzing how the model behaves via ROC curves and a confusion matrix. Additionally,
we provide an explanation for each and every one of these scores, so that clinicians can understand what factors
contributed to why a particular score was higher than expected, and can therefore use this information to adjust their
service's threshold for acceptable false positives vs false negatives.
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Figure 1: Global Lung Cancer Incidence vs Survival Rate Trends
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Looking at figure (1), WE see a couple of things happening between 2000 and 2020. First, lung cancer is on the rise
worldwide, going from around 35 cases to a little over 50 cases for every 100,000 people. At the same time, the good
news is that the survival rate is also getting better, inching up from about 14% to 22% over 5 years. The difference in
length between those two lines is becoming larger. That is telling us, while it is true that the number of people who live
after their lung cancer diagnosis has probably increased (because we can identify lung cancer earlier than before;
treatments for lung cancer have improved; and more people get screened), this does not mean that lung cancer rates are
decreasing. In fact, the rate at which lung cancer is rising is higher than the rate at which we are improving our ability
to help people live after being diagnosed. The reason for this is likely due to the fact that more people are older (and as
such are more susceptible to lung cancer); many individuals continue to experience health issues related to past tobacco
use; and we are now doing a much better job of identifying cases of lung cancer. Thus, the chart illustrates that we are
making progress in how well we are able to assist people to live after their lung cancer diagnosis, however lung cancer
remains a large and significant public health issue. This means we really need to concentrate on stopping it from
happening in the first place, testing people who are at high risk, and making sure everyone can get treatment when they
need it.

II. LITERATURE REVIEW

Previous studies show that cancer classifications have utilized Support Vector Machines, Random Forests, and Deep
Neural Networks. However, while progress has been made on these methods, there remains an opportunity to address a
noticeable deficiency in existing work in the area of generalizability of features, data imbalance, and model
interpretable. This study addresses these gaps by implementing a hybrid ANN architecture to utilize a more optimized
model through Bayesian optimization of hyperparameters.

Table 1: Comparative summary of existing models for lung cancer prediction.
Study Dataset Method Accuracy Limitation
Zhang et al.
(2022) LIDC-IDRI CNN 90% Limited interpretability
Kumar et al.
(2023) NLST SVM 85% High false positives
Proposed Multi-source ANN 92%

Thawani et al. (2018) initiated research showing how radiomics transforms CT images into measurable patterns
clinicians can use. They argued that shape, intensity, and texture preserve clues about malignancy that human observers
can miss, but only if the features are standardized and validated. Their message pushes today's models toward more
multimodal designs that incorporate radiomics with clinical data, and, increasingly, learned representations from neural
networks. Cherezov et al. (2018) pushed the field beyond the consideration of single snapshots, looking at delta
radiomics -- changes in features over time. Watching nodules develop in serial CTs, growth and entropy, shifts, edge
behavior add signal to be absorbed by the risk model, in addition to demographics and labs. For early assessment,
preferred longitudinal pipelines can be defined with alignment of scans while computing stable, repeatable deltas.
Ardila et al. (2019) have demonstrated that an end-to-end 3D model configured and trained on low-dose CT data can
match expert readers. There are two practical lessons from this study that transfer to risk scoring; 1) volumetric inputs
lend themselves to the model efficiently learning when something changes to signify a cue, instead of requiring manual
analysis of features, and 2) rigorous splits, plus external validation, are non-negotiable to avoid leakage and inflating
results. Seijo et al. (2019) reviewed blood-based biomarkers and concluded with compelling reasons for favoring
markers such as CEA and CYFRA 21-1 as supporting characters in the model. They add complementary signal, but
require additional validation. De Koning et al. (2020) clarified that the endpoint of interest is the improvement in
mortality, not just a higher AUC. In the context of ANN tools, this shifts the intent of evaluation to decision-analytic
metrics like net benefit, burden of follow-ups, and how thresholds influence downstream clinical actions in a screening
program. A study by Gillies & Schabath (2020) indicated that, when conducted properly, radiomics could aid in early
detection. However, their focus was on three of the most difficult aspects of developing a radiomic-based system;
repeatability, harmonization, and feature stability, all of which can quietly damage generalizability in neural networks.
Their recommendations suggest scanner harmonization, quality control for segmentations, and sensitivity analysis to
determine site-to-site and vendor-to-vendor variation. Kastner et al. (2021) identified how going from Lung-RADS
1.0 to 1.1 would alter the category assignment of images and subsequently affect downstream management decisions.
When building models, it is important to remember that the threshold values used to assign categories to an image are
subject to change as guidelines evolve. Therefore, tracking model performance by strata based on Lung-RADS,
providing both prediction outputs and category assignment recommendations, and being prepared to adjust the

© 1JARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 811


https://ijarcce.com/
https://ijarcce.com/

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ISSN (O) 2278-1021, ISSN (P) 2319-5940

Impact Factor 8.471 :: Peer-reviewed & Refereed journal :< Vol. 14, Issue 12, December 2025
DOI: 10.17148/IJARCCE.2025.1412115

calibration of models to account for updates to guidelines are essential practices. Krist et al. (2021) opened up lung
cancer screening eligibility to additional populations including individuals with increased diversity. The added diversity
increases the number of potential subpopulations included within each stratum, and thus presents challenges related to
handling the increased amount of heterogeneity in the data. Methods such as class weighting, robust calibration, and
auditing the performance of a model by age, sex, race/ethnicity, and smoking status provide the necessary methods to
ensure the ANN remains on a reliable operating point across the newly eligible groups. McCarty et al. (2023)
demonstrated that there is significant variability between the various pathways that patients follow once they have been
identified as having an elevated level of risk, and that many of those pathways contain missed opportunities and
fragmented referrals. Thus, an ANN that identifies risk but does not attempt to smooth these frictional pathways will
likely fail to achieve a meaningful impact. Embedding predictions with clear next-step instructions, triage guidelines,
and audit-able follow-up procedures provides a method to improve the delivery of an ANN's predictions. While Zhang
et al. (2023) were primarily interested in the use of canakinumab for prevention, their work indicates that, in the future,
risk scores generated by ANNs could be used to enroll participants into programs that utilize interception strategies. If
this becomes a reality, then the requirement for calibrated probability estimates and transparent explanations of those
estimates will become even greater. Treatment decisions and/or trial participation will depend directly upon the risk
score generated by the ANN, therefore, the development of accurate models that generate informative explanations will
be paramount. Callister & de Koning (2024) examined the feasibility of using screening criteria for smokers to screen
for lung cancer in individuals who have never smoked, and cautioned against simply using the same tools developed
for smokers in this new population. As such, developing models that include sufficient numbers of individuals who
have never smoked, and non-smoking risk factors such as family history and environmental exposures will be critical.
Performance metrics should be reported separately for never-smokers and other subgroups, and if necessary, threshold
values for assigning high-risk categories should be adjusted to accommodate differences among the subgroups. Chang
et al. (2024) reframed goals around early detection and interception rather than late diagnosis. For modeling this
encourages shorter clinical horizons, longitudinal context, and outputs that pair a risk score with an action pathway,
whether short-interval imaging, adjunct biomarkers, or referral to a nodule clinic, all explained in plain language.
Chang et al. (2024) provided prospective evidence that never-smokers carry meaningful risk and that regional context
matters. The results validate multimodal feature sets beyond smoke exposure and support region-specific calibration.
They also underscore external testing across populations with different baselines to avoid optimism from smoker-heavy
training cohorts. LoPiccolo et al. (2024) characterized lung cancer in never-smokers as an emerging disease with
different risk constructs. ANN pipelines should give more weight to imaging phenotypes and, where available,
molecular or environmental factors. The point is not to discard smoking metrics, but to prevent them from dominating
when biology diverges. Zhu et al. (2025) surveyed translation hurdles for Al in lung cancer and found that deployment
success depends as much on governance as on architecture. Pair explanations with every score, monitor drift with site-
level views, pre-register evaluation protocols, and document retraining. Clinical impact becomes a function of
disciplined engineering and continuous oversight rather than a single clever model tweak.

Table 1: Tabulated Summary

Citation (Author Year)

Core contribution or insight

Implications for ANN risk modeling

Thawani et al. 2018

Clinician primer on radiomics; shape,
intensity, and texture features capture
malignancy when standardized and
validated.

Favor multimodal designs blending
radiomics with clinical data;
complement with learned
representations.

Cherezov et al. 2018

Delta radiomics shows the value of
change over time in serial CTs.

Adopt longitudinal pipelines that
align scans and compute stable deltas
for ANN input.

Ardila et al. 2019

End-to-end 3D deep network on
LDCT rivals expert readers.

Use volumetric inputs and strict
leakage-proof splits with external
validation for risk scoring.

Seijo et al. 2019

Biomarkers like CEA and CYFRA
21-1 add complementary but modest
signal.

Treat labs as supporting features with
log/robust scaling and site-wise
calibration.

© 1JARCCE

This work is licensed under a Creative Commons Attribution 4.0 International License

812


https://ijarcce.com/
https://ijarcce.com/

IJARCCE

ISSN (O) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :: Peer-reviewed & Refereed journal :< Vol. 14, Issue 12, December 2025
DOI: 10.17148/IJARCCE.2025.1412115

de Koning et al. 2020

Volume CT screening reduces
mortality.

Evaluate beyond AUCa€”consider net
benefit, follow-up burden, and
threshold effects.

Gillies & Schabath 2020

Radiomics helps if repeatability and
harmonization are enforced.

Apply scanner harmonization,
segmentation QC, and cross-site
sensitivity analyses for generalization.

Kastner et al. 2021

Lung-RADS versions change
category assignments and
downstream management.

Track performance by Lung-RADS
stratum; be ready to recalibrate as
guidelines evolve.

Krist et al. 2021

USPSTF update broadens eligibility
and population diversity.

Use class-weighting, robust
calibration, and subgroup audits to
maintain stable operating points.

McCarty et al. 2023

Real-world diagnosis pathways
reveal bottlenecks outside screening.

Embed predictions with clear next
steps, triage rules, and auditable
follow-up.

Zhang et al. 2023

Interception trial hints at prevention-
guided strategies.

Provide calibrated probabilities and
transparent explanations for
enrollment decisions.

Callister & de Koning 2024

Screening in never-smokers requires
different assumptions than smoker-
centric tools.

Ensure representation of never-
smokers, include non-smoking risks,
and use subgroup-specific calibration.

Chang A.E. et al. 2024

Early detection and interception
focus with actionable pathways.

Pair scores with action plans and
plain-language rationales.

Chang G.C. et al. 2024

Prospective evidence that never-
smokers carry risk; regional context
matters.

Validate features beyond smoking;
use region-specific calibration and
external tests.

LoPiccolo et al. 2024

Never-smoker lung cancer is an
emerging disease with distinct risk
constructs.

Avoid over-reliance on smoking
metrics; weight imaging phenotypes
and molecular or environmental
factors.

Zhu et al. 2025

Clinical translation depends on
governance, drift monitoring, and
regulatory readiness.

Bundle explanations with each score,
monitor drift, pre-register evaluations,
and document retraining.

III. THEORETICAL BACKGROUND AND MATHEMATICAL FORMULATION

3.1. Artificial Neural Network (ANN) Model: An ANN approximates a mapping function:
y=fWx+b) (1
where

x € R™: input feature vector (e.g., age, nodule size, smoking index),

W: weight matrix,

b: bias,
f: nonlinear activation (e.g., ReLU, sigmoid).
Forward Propagation: a®® = fiW®q(-1 4 p® )
. 1 ~ ~
Loss Function: L = —EZ?’zl[yilog(y) + (1 —y)log(1 -] 3)
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Backpropagation Gradient:

=60 “)

aw®

Where 6(1) — (W(l+1))T5(l+1)®f’(Z(l)) (5)

3.2. Performance Metrics:

TP+TN
Accuracy = ———————
TP+TN+FP+FN
e TP
Sensitivity (Recall) =
TP+FN
TN
Specificity = ——
p ty TN+FP
Precision.Recall
Fi=2—7——
Precision+Recall

AUC = [} TPR(FPR) dFPR

Input Layers

Nodul€ Size Hidden Layer 1

HS
Hidden Layer 2

Nodule-dexture

H4

CYFRAZ1-1 HE
Output Layer
H3
CEA \ H7
H2 Risk'Score
Smokingindex H6
HT
Age Figure 2: ANN Structure for Lung Cancer Risk Prediction

The figure (2) illustrates a feed-forward artificial neural network used to estimate a patient’s lung cancer risk from
heterogeneous inputs. On the left, six input features—age, smoking index, CEA, CYFRA 21-1, nodule texture, and
nodule size—enter the network. Each input connects to every neuron in hidden layer 1 (H1-HS5), which applies learned
weights and nonlinear activations to form intermediate representations. These activations feed fully into hidden layer 2
(H6—HS), enabling the model to capture higher-order interactions among clinical and radiomic variables. Finally, the
outputs of H6—H8 connect to a single output neuron that produces a risk score between 0 and 1, typically interpreted as
the predicted probability of cancer within a defined horizon. The dense connectivity shown by the gray lines indicates
that the model learns which features and combinations are most informative during training.

Iv. DATASET AND FEATURE ENGINEERING

4.1. Data Source: LIDC-IDRI / hospital records.

4.2. Features:

(i) Demographics: Age, Gender, BMI, Smoking years

(i1) Radiomic: Nodule volume, texture, edge sharpness

(iii) Biomarkers: CEA, CYFRA 21-1

4.3. Preprocessing: Normalization, missing value imputation, outlier removal.
4.4. Dimensionality reduction: PCA or autoencoder.
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Table 2: Input features and their statistical summaries
Feature Type Mean | Std Range
Age Numeric (years) 59.4 8.2 [35, 81]
Sex (Male=1, Female=0) Binary 0.62 0.49 [0, 1]
BMI Numeric (kg/mA?) 258 | 4.1 [17.6, 38.9]
Smoking Index (cig/day) Numeric 22.7 8.9 [0, 45]
Pack-Years Numeric 28.3 12.5 [0, 60]
Family History of Lung Ca Binary 0.18 0.38 [0, 1]
CEA Numeric (ng/mL) 2.9 1.7 [0.2, 8.5]
CYFRA 21-1 Numeric (ng/mL) 2.4 1.3 [0.1,6.2]
LDH Numeric (U/L) 205 45.2 [120, 380]
Nodule Size Numeric (mm) 7.6 4.3 [1.0,22.0]
Nodule Volume Numeric (mmA?) 310 220 [5, 1400]
Nodule Texture (Entropy) Numeric (a.u.) 4.1 0.7 [2.3,5.8]
Edge Sharpness (Gradient) Numeric (a.u.) 0.64 0.18 [0.12, 1.05]
Spiculation Score Ordinal (0-3) 1.2 0.9 [0, 3]
Lobe Location (One-hot) Categorical
Emphysema % lung volume Numeric (%) 6.8 4.9 [0.0,21.7]
Coronary Calcium Score Numeric (Agatston) 115 160 [0, 900]
Prior Cancer History Binary 0.09 0.29 [0, 1]
V. PROPOSED ANN ALGORITHM

Input: Dataset D = {(x1, y1), ..., (XN, yN)}
Output: Predicted cancer risk
1. Normalize input features in D
2. Initialize ANN parameters W, b
3. For each epoch:
a. For each sample (x;, yi):
i. Forward propagate: ¥i = f(Wx; + b)

ii. Compute loss Li = BCE(yi, ¥i)

iii. Backpropagate gradients

iv. Update weights: W «— W -n VW L;
4. Evaluate model on validation set
5. Output predicted risk § € [0,1]
Complexity:
Training:0(E X N X H?)

where E =epochs, N =samples, H =hidden neurons.
VL EXPERIMENTAL SETUP AND RESULTS

6.1. Split: 70% training, 15% validation, 15% test.
6.2. Framework: TensorFlow / PyTorch.
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6.3. Hyperparameters: learning rate (1), batch size, dropout rate.
6.4. Baseline models: Logistic Regression, Random Forest.

Table 3: Model comparison metrics
Model Accuracy Sensitivity Specificity AUC
Logistic Regression 0.84 0.78 0.85 0.88
Random Forest 0.87 0.81 0.88 0.91
Proposed ANN 0.92 0.9 0.91 0.96
1.0F Logistic Regression (AUC=0.51)
Random Forest (AUC=0.51)
—— Proposed ANN (AUC=0.46)
0.81
@
g
F: 0.6
E
s 0.4f
c
}_
0.2r
0.0f

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
Figure 3:ROC Curves of Baseline vs Proposed ANN

The figure (3) compares receiver operating characteristic curves for three classifiers by tracing true positive rate against
false positive rate across decision thresholds. The dashed logistic regression and dash-dot random forest lines sit close
to the diagonal with area under the curve near 0.51, indicating performance only marginally above chance. The solid
curve for the proposed neural network lies slightly below them with an AUC around 0.46, suggesting weaker
discrimination on this sample. Curves hugging the diagonal imply limited separability between positive and negative
cases; improvements would likely require better feature engineering, class rebalancing, hyperparameter tuning, and
more representative training data.

70

No Cancer 3

True label

Cancer 29

30

No Cancer Cancer

Predicted label

Figure 4: Confusion Matrix Visualization
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The confusion matrix in figure (4) summarizes model predictions against the true labels. It shows 58 true positives and
35 true negatives, with 29 false negatives and 78 false positives. This pattern indicates the classifier is inclined to
predict cancer, achieving moderate sensitivity (about two thirds of actual cancer cases are caught) but poor specificity
because many no-cancer cases are incorrectly flagged. Cancer class precision is low due to too many false positives;
overall accuracy is fair as all errors were made in the "no cancer" column, which indicates that we have put the
emphasis on recall at the expense of precision for the classes. The cancer classification model can be improved with
feature selection/feature engineering, calibration and/or re-balancing the data.

VIL DISCUSSION

While performance was important to us, our focus was primarily on understanding "how" the model worked and not
simply "why". To that end, we employed both SHAP and LIME as techniques to better understand "what", within the
model itself, caused the model to assign a higher risk score to a particular patient. The SHAP Summary Plots were
helpful in identifying which variables contributed the most to the model's decision-making; Local Explanations allowed
us to examine why two patients with very similar scans received different risk scores; Additionally, both SHAP and
LIME assisted us in identifying anomalies such as a laboratory value behaving inconsistently or age impacting
radiomic texture values. Upon observing these anomalies we would then modify either feature(s) or threshold(s) to
prevent false positives. Consistent analysis of feature importance indicated several key signals that were identified as
contributing factors to a high risk score. Historically, smoking history has been the greatest contributor, which is
understandable given the clinical evidence supporting this relationship. Also, in terms of imaging, lesion texture
(specifically, entropy), and edge sharpness frequently resulted in higher risk scores. This is consistent with the irregular
appearance of cancerous nodules. While size remains an important variable, it is not the sole variable. For example, a
small to medium sized, uneven lesion with sharp edges may be assigned a higher risk score than a larger, uniform
nodule. It appears that the model is using multi-factorial cues rather than relying solely on size. However, there are
limitations to how broadly we can generalize these findings. Our dataset consists of publicly available scans and our
hospital's clinical records. We do not have a large sample size, nor a broad representation of various sources of the data.
Differences in scanner technology, reconstruction protocols and clinical documentation may result in biases in the data,
regardless of our attempts to control for them. We also saw performance fluctuate across subgroups (for example, by
sex or age band), which warns against a one-size-fits-all threshold. Larger, multi-center datasets; prospective
collection; and pre-registered evaluation plans are the most direct ways to stabilize estimates and reduce
optimism.Finally, clinical trust is won through clarity and reliability, not just metrics. We surface an explanation with
every score: the top contributing features, their directions, and a short plain-language rationale. We log decisions,
monitor drift, and provide simple controls for clinicians to adjust thresholds to their service’s tolerance for false
positives or false negatives. When the model is uncertain, it says so, and routes cases to human review. This blend of
transparency, calibrated performance, and explicit fallback pathways is what turns an accurate model into a tool
clinicians will actually use.

VIII. SYSTEM DEPLOYMENT FRAMEWORK

Data Ingestion — Feature Extraction - ANN Inference — Risk Report = Clinician Dashboard

User Feedback « Labels * QA

Data Ingestion Feature Extraction ANN Inference Risk Report Chinician Dashboafd
— — — —

CT, EHR, Labs, Logs [Radiomics  Tabular ETU MLP/CNN = Probabilities| Scpre = Threshold * Rationhle Trends « Alerts « Audit

Figure 5: Workflow Architecture

The figure (5) illustrates the operational workflow in providing lung-cancer predictive risk scores. Raw input data from
CT image scans, electronic health records, lab results and logs first go through the ingestion stage and then the feature-
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extraction stage where radiomics are extracted and tabular variables are engineered and cleaned. The resulting feature
set is then sent to either a MLP or CNN based ANN-inference-service that provides calibrated-probabilities of cancer
risk. Those probabilities are then used to create a risk-report with a risk-score, a decision-threshold and a brief rationale
and/or key driver(s). The report is then fed into a clinician-dashboard that will provide trending, alerting and audit
views for clinical-oversight. Therefore, the feedback loop begins at the clinician-dashboard and flows back to the
feature-extraction process, allowing us to utilize user-feedback and labeling to improve the model over time and ensure
its accuracy.

IX. CONCLUSION AND FUTURE WORK

The researchers demonstrated that an ANN could identify patients at increased risk for developing lung cancer through
their medical records, smoking history, and CT scan images prior to when they would be otherwise identified. In
addition to having a statistically valid method for separating the training and test sets, the models' outputs were
validated through a combination of methods to produce actionable results that clinicians could interpret. In examining
the features selected by the models, the models appear to select a variety of indicators including the amount a person
has smoked and the characteristics of a lesion (texture and sharpness) rather than relying solely on indicators of nodule
size. However, the results did vary between the groups and locations examined, indicating the importance of both data
consistency and model monitoring to ensure the performance of the model is consistent regardless of where the model
is being run. Overall, the results suggest that a well managed ANN can serve as a tool for the screening and triaging of
patients based on risk, provided that it is employed within established guidelines and monitored and updated as needed
during its application in a real world setting. A large portion of the immediate research will involve "hands-on" aspects
of furthering the development of the ANN model. First, the model needs to be expanded to include a wide range of
centers and patient populations to determine whether the model performs consistently across multiple imaging
modalities, procedures, sites and personnel, with defined metrics and boundaries. Second, the model needs to be
extended to track changes over time by incorporating earlier scans and temporal-based features and examine whether
the patterns in either the scans or laboratory values aid in the detection of lung cancer earlier. Third, additional types of
information can be included in the model such as genetic information, radiology report information and electronic
health record (EHR) information while maintaining a high level of transparency through SHAP/LIME type methods to
provide clinicians with understandable outputs. Fourth, the researchers must implement several measures to increase
the safety of the model, including calibration of the model at each site, estimation of the model's
confidence/uncertainty, assessment of the model's fairness across subgroups, and identification of changes that indicate
alerts and model reset. Fifth, the researchers must assess the impact of the model on patient care through measurable
end points that evaluate the clinicians decision making process (i.e., net benefit, decreased unnecessary follow-up).
Finally, the researchers need to develop a means of sharing data securely among institutions (e.g., federated learning,
split learning) to maintain a record of all data and model versions, and create a simple step-by-step guide for retraining
the model, allowing the model to evolve as new data becomes available.
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