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Abstract: This study investigates machine learning approaches for predicting COVID-19 hospitalization rates in San 

Francisco, utilizing public datasets from DataSF encompassing testing metrics, deaths, and demographics from March 

2020 to April 2024. The primary objective is to accurately predict daily patient counts in both Intensive Care Units and 

Medical-Surgical units through two distinct modeling tasks: point regression and long-horizon forecasting. For the point 

regression task, features were engineered from aggregated daily statistics, including lagged death counts and race-

disaggregated testing data. A comparative analysis of five regressors models- K-Nearest Neighbors (KNN), Decision 

Tree, Linear Support Vector Machine, Non-linear Support Vector Machine, and Multi-layered Perceptron- was conducted 

using k-fold cross validation.  

 

Preliminary results indicate that the K-Nearest Neighbors regressor significantly outperformed other models, achieving 

high R² scores of 0.97 for ICU and 0.98 for Med/Surg patient predictions, demonstrating its effectiveness in capturing 

complex, non-linear relationships within the temporal data. For multi-horizon forecasting, Long Short-Term Memory 

and Gated Recurrent Unit models were trained on 120 days of data to predict 120 days in the future. Though with some 

deviation from the true noise of the output, these models successfully capture broader trends, indicating that COVID-19 

hospitalization rates are predictable, to a degree. Overall, this research demonstrates the high efficacy of KNN for point-

in-time predictions and establishes a promising baseline for deep learning-based long-term forecasting of COVID-19.  

 

I. INTRODUCTION  

 

The COVID-19 pandemic has placed unprecedented strain on healthcare systems, with surges in ICU and general hospital 

admissions necessitating precise, forward-looking forecasts [1]. Hospitals faced sudden spikes in patient numbers, 

especially in intensive care units (ICUs) [2]. These unpredictable surges made it difficult to manage staffing, equipment, 

and beds [3]. Furthermore, COVID-19 overwhelmed hospital capacity and created shortages of healthcare personnel and 

infrastructure [4]. This led to some people with COVID-19 not getting the necessary treatment because of lack of doctors 

and hospitals [4]. Timely predictions of hospitalization trends allow healthcare systems to allocate resources and save 

lives [5].  

 

Most forecasting models have focused on national or state-level aggregate trends, which often fail to capture community-

specific dynamics [6]. Localized modeling, especially at the city or hospital level, can significantly improve 

responsiveness and relevance, as small-scale data typically reflects more actionable patterns [6]. Additionally, the 

prediction of hospital occupancy is useful to public health planners in order to plan in advance the number of personnel 

[7]. This will ensure that enough infrastructure is built and doctors are trained for the patients without overspending [7].  

  

Statistically, standard epidemiological models (e.g., SIR) and linear regressions have limited power in capturing the 

nonlinear, evolving nature of pandemic data [8]. Deep learning architectures like LSTM and GRU have begun to bridge 

this gap, but few studies systematically compare short-term point estimates with long-range forecasting, especially at the 

hospital level [9].  
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II. LITERATURE REVIEW 

  

Among a plethora of publications, our research highlights three key papers that consolidate the current research 

environment in understanding the presence of machine learning in COVID-19 optimization [10]. These include the 

background in understanding the pandemic, along with research on current applications to develop models [10]. One 

example is the work by Cheng et al. [11], who developed a random-forest model to predict whether hospitalized COVID-

19 patients would need to be transferred to the ICU within the next 24 hours. Their approach used high-frequency 

electronic health record data—such as vital signs and lab results—to spot early signs of deterioration [11]. The model 

achieved strong performance (AUC around 0.80) and could give hospital staff an early warning to prepare for critical 

care needs [11]. While the study focused on patient-level outcomes rather than overall hospital census, it showed how 

short-term forecasts can be practical and clinically useful during a crisis [11].  

  

Another stream of research emphasizes the importance of not just accurate predictions, but also interpretable models [12]. 

In pandemic settings, forecasts must be trusted by both clinicians and decision-makers [12]. Studies in this area have 

explored how techniques like SHAP values and visual analytics can highlight which factors drive predictions [13]. This 

includes whether they are related to case trends, testing patterns, or demographic information [13]. The transparency 

shows that forecasts inform policy decisions and clinical actions, rather than being treated as “black boxes” [13].  

  

A different but related line of research looks at how to best model the time-dependent patterns of COVID-19 spread [14]. 

Yang [14] compared long short-term memory (LSTM) networks, gated recurrent units (GRUs), and a hybrid LSTM-

GRU model to predict new and cumulative COVID-19 cases in Singapore. These sequence models were able to capture 

non-linear trends in case numbers, and in some cases, the hybrid approach outperformed single models [14]. Although 

their target was case counts rather than hospitalizations, the findings are directly relevant for forecasting hospitalization 

trends over longer time horizons [14].  

  

To fill this gap, our research introduces two complementary ML forecasting frameworks tailored to San Francisco [15]. 

San Francisco is a meaningful case study for COVID-19 hospitalization forecasting because of its distinct combination 

of characteristics that influence how the pandemic unfolds locally [15]. It was one of the first cities to implement proactive 

and strict health measures on its residents [15].  

 

III. MATERIALS & METHODOLOGY 

  

All COVID-19 data is retrieved from public records from San Francisco’s public database DataSF, which includes 

additional features on ecological health, migration patterns, and public safety. Four individual datasets are selected, 

corresponding to population death characteristics, cumulative testing results, testing results by racial classification, and 

patients per hospital unit type. Data is available on a daily resolution from January 2020 to June 2025, although many 

critical features are missing in intermediary days, requiring this study to leverage data from March 2020 to April 2024.   

  

Indeterminate COVID-19 tests are generally considered null data (Stoykova et al., 2022), and thus excluded for this 

study, particularly given the low proportion of samples they represent. Given the sparse presence of missing values, 

primarily found in the daily test results by racial classification for the ‘American Indian or Alaska Native’, ‘Hispanic or 

Latino’, and ‘Native Hawaiian or Other Pacific Islander’, a K-Nearest Neighbors imputation scheme was used to 

interpolate missing data. Additionally, the daily data is collated into an eight element list, corresponding to the eight 

racial classifications: ‘American Indian or Alaska Native’, ‘Black or African American’, ‘Hispanic or Latino’, ‘Native 

Hawaiian or Other Pacific Islander’, ‘White’, ‘Multi-racial’, and ‘Other’. While daily deaths align with the date of 

reporting, it serves as a lagging feature for the data, where deaths are more closely associated with existing carriers of 

COVID-19 (Jin et al., 2021). Thus, the reported daily deaths and reported cumulative deaths are lagged by 6 days (ie. 

March 30th, 2020 data is reported as March 23rd, 2020 data). The output labels consist of two distinct hospital units: 

Intensive Care Units and Medical/Surgical units. Specialized hospital unit designed to provide comprehensive and 

continuous care for critically ill patients requiring advanced life-support systems, such as mechanical ventilation or 

vasopressor support. ICUs have the highest nurse-to-patient ratios and access to specialized diagnostic and therapeutic 

technologies (Zakeri et al., 2024).   

  

General inpatient hospital ward that accommodates patients requiring routine monitoring, post-surgical recovery, or 

management of moderate illness. These units typically serve stable patients not requiring urgent monitoring, allowing for 

longer-term recovery (Saralegui-Gainza et al., 2025). In addition to the daily patient count, the percent of each unit type 

contributing data is included. The reporting percentages are directly correlated between the two unit types, and have a 

>98% daily reporting percentage of 93% of hospitals or more, with outlier days ranging from 17% to 92% of hospital 

https://ijarcce.com/
https://ijarcce.com/


ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE 

International Journal of Advanced Research in Computer and Communication Engineering 

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 12, December 2025 

DOI:  10.17148/IJARCCE.2025.1412125 

© IJARCCE                This work is licensed under a Creative Commons Attribution 4.0 International License                 903 

reporting. To preserve continuous temporal relationships in the label data, given that the days with low report rates fail 

to correspond to any patient count outliers, all days with patient reports are kept. The final raw dataset consists of thirteen 

features: new daily deaths, cumulative deaths, daily positive tests per race, daily negative tests per race, daily tests, total 

daily positive tests, total daily positive tests as a proportion of total tests, total daily negative tests, total daily 

indeterminate tests, cumulative tests, cumulative positive tests, cumulative negative tests, and cumulative indeterminate 

tests. Across the valid input days, all features and labels, with the exception of the daily test results by race, have their 

unscaled mean and standard deviation reported.  

  

Type  Characteristic  Mean  Std. Dev  

Feature  New Deaths  0.883  1.416  

Cumulative Deaths  788.347  430.947  

Total Positive Tests  179.556  355.407  

Total Positive Tests (%)  0.053  0.041  

Total Negative Tests  3281.886  2845.674  

Cumulative Positive Tests  146861.422  103719.556  

Cumulative Negative Tests  3073719.835  1663712.462  

Label  ICU Patients  14.128  12.364  

Med/Surg Patients  54.133  38.053  

Table 1: Overarching Data Review 

  

The research objective is delineated into cross-sectional regression and time series forecasting. While their methodologies 

general ly  remain consistent ,  a  more granular  overview are  provided in  the fol lowing sect ions.  

 

 
Fig. 1 Linear correlation heatmap including features and labels, where the values correspond to strength and direction 

of correlation. Generally, values >0.9 are considered collinear.    

 

The cross-sectional regression task involves isolating the features and labels by day, using the daily features to predict 

the daily labels. This is crucial for understanding a model’s ability to interpret feature relationships without being 

influenced by complex temporal dependencies. Due to feature data being absent from January 8th, 2024 onwards, the 

temporal points selected for analysis span from March 23rd, 2020 to January 7th, 2020. Given that many features are 

hypothesized to share proportional values (ie. Total Positive Tests and Total Positive Tests (%)), a linear correlation 

heatmap is created in Figure 1, where the “new_positive_tests” feature corresponds to the mean of the list of positive 
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tests per racial classification. The presence of collinear features independent of feature scale undermines statistically 

significant variables and reduces the regressor’s capability to learn patterns from the data (Daoud, 2017). By visual 

inspection, many features are collinear with each other. Most notably, the Cumulative Positive Tests, Cumulative 

Negative Tests, and Cumulative Deaths has a coefficient of nearly 1, indicating a near-perfect positive correlation. 

Additionally, while the mean Daily Positive and Daily Negative tests per race are multicollinear with the Total Daily 

Positive and Total Daily Negative tests, the former composite features are split into individual features per racial 

classification, thus nullifying any impact of multicollinearity. As such, the Cumulative Deaths and Cumulative Positive 

Tests features are removed from the regression dataset. To encode the data with some  seasonal indication, each datapoint 

included its month as a feature.  

  

Five distinct models are used for this task:  

K-Nearest Neighbors, Decision Tree, Multi-Layered Perceptron, Linear Support Vector Machine, and Support Vector 

Machine. An overview of each models is provided below:  

 

1. K-Nearest Neighbors (KNN): A non-parametric, instance-based learning algorithm that predicts target values 

based on the average (for regression) of the k most similar samples in feature space, using a chosen distance 

metric such as Euclidean distance.   

2. Decision Tree: A supervised learning model that splits the data based on feature thresholds to form a tree 

structure, where each leaf node represents a predicted output. Decision trees are interpretable and handle non-

linear relationships, but can overfit without regularization.   

3. Linear Support Vector Machine (Linear SVM): A linear model that seeks to find the optimal hyperplane that 

minimizes the maximum error between predicted and actual values, often optimized using a hinge-loss 

formulation adapted for regression.   

4. Support Vector Machine (SVM): A kernel-based model that generalizes the SVM approach to map inputs into 

higher-dimensional spaces, enabling non-linear regression via techniques such as the radial basis function 

kernel.  

5. Multi-Layer Perceptron (MLP): A fully connected feedforward neural network consisting of input, hidden, 

and output layers, where each neuron applies a learned weight and non-linear activation function to propagate 

signals through the network. MLPs are capable of modeling complex non-linear relationships.  

  

  To thoroughly evaluate model performance, three evaluation metrics are selected: R2, MAE, and RMSE.   

 
R² (Coefficient of Determination) indicates how well the variation in the dependent variable is explained by the model’s 

features. An R² value of 1.0 represents a perfect fit, where all observed variability is captured by the model, while values 

closer to zero indicate weaker explanatory abilities.  

  

 
Mean Absolute Error (MAE) quantifies the average magnitude of prediction errors without considering their direction. 

By treating over- and under-predictions equally, MAE provides an interpretation of model accuracy in the same units as 

the target variable, making it robust to large errors compared to squared-error-based metrics.  
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Root Mean Squared Error (RMSE) calculates the square root of the average squared differences between predicted and 

observed values. This metric over-emphasizes larger errors, making it sensitive to outliers. It is often used when large 

deviations from the true values are especially undesirable.  

Given the limited quantity of data points (1,386 days), a 5 fold cross-validation scheme is used.   

  

While the regression data includes 1,386 days, the daily hospitalization patients extend to 1,497 days, up to April 24th, 

2024. Given the period from January 8th, 2024 to the tail day (111 days) lacking complete auxiliary data, the optimal 

task for predicting all tail days at once is long-horizon forecasting. Thus, the aforementioned time series labels are set 

aside as the validation sample, while the time steps with complete labels serve as the training set. For this long horizon 

forecasting task, we use 120 input days of data to predict the next 120 days, a very challenging task given the uncertainty 

of predictions farther from the initial forecasted days. This creates a training set with 1,266 sequences. An initial 

visualization of the time series indicates significant volatility between days- noise that might impede the forecasting 

models’ abilities to learn temporal relationships in the data. Thus, we use an Exponential Weighted Moving Average 

(EWMA) algorithm to smooth the time series, thereby reducing daily fluctuations. The EWMA is applied over the 

forecasting labels, and takes the non-smoothed average of the current, and past two days’ data, to compute the new current 

value. Following label smoothing, the new daily hospitalization rates appear as follows in Figure YZ.   

  

 
Fig. 2 Raw versus 3-day EWMA-smoothed time series for two hospitalization unit types. 

  

Two conventional recurrency mechanisms, the LSTM and the GRU, are evaluated for the time series forecasting task. 

Their compositions are outlined accordingly. The Long Short-Term Memory (LSTM) is a recurrent neural network 

architecture designed to capture long-term dependencies in sequential data using gated cells—input, output, and forget 

gates—that regulate the flow of information over time. This architecture mitigates vanishing gradient problems common 

in standard RNNs (Hochreiter & Schmidhuber, 1997). The Gated Recurrent Unit (GRU) streamlined recurrent neural 

network that combines the forget and input gates into a single update gate, and uses a reset gate to control the influence 

of past states. GRUs have fewer parameters than LSTMs and often achieve comparable performance on time series tasks 

(Cho et al., 2014). While both models excel at shorter-horizon forecasting, long-horizon forecasting remains a prominent 

challenge.  

 

IV. RESULTS 

 

The both model configurations leverage 24 inputs across auxiliary features and the target variable, and output either one 

of the ICU or Medical/Surgical unit’s daily patients. Both contain a single recurrent mechanism with 64 hidden layers, 

and whose output is fed into a dense layer that outputs the 120-day horizon’s predictions. Two evaluation metrics are 

used for this task: MAE and RMSE. While these metrics are numerically equivalent to the metrics presented above, they 

differ in context of the forecasting task.   

One of the most important pieces of auxiliary information is the COVID-19 testing data per race, as different racial 

groups have conventionally been found to have different hospital access and admission rates (Olanlasi-Aliu et al., 2024) 

(Vasquez et al., 2024). Thus, the daily positive tests by racial classification are plotted in Figure 3.   

  

 
Fig. 3 Trend plot of the COVID-19 test results by race, where the left plot are the absolute positive tests on a 

logarithmic scale, and the right plot are the relative positive tests out of total daily tests. 
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Several clear trends emerge from plotting the data. Most notably, the absolute count of White and Asian American testers 

far exceeds the count of any other group, with the Hispanic and Latino population having the next highest daily positive 

tests. In conjunction with the relative positive test rate, that reveals that all racial demographics, while scattered, generally 

exhibited similar positive test rates. This aligns with San Francisco’s demographic data, where most individuals are either 

White or Asian (Census, 2020). Interestingly, the proportion of daily positive tests are best aligned from October 2021 

to May 2022, while other ranges show far more variability in positive test rate, particularly for the Multiracial category. 

One possible explanation could be due to the implementation of unified testing measures during this period of time, 

causing population statistics to be more similar than optional testing periods, where some non-response bias may occur. 

Additionally, the unsmoothed hospital admit rates by major, initially shown in Figure 2, are independently included in 

Figure 4.   

  

  

 
Fig. 4 Isolated, unsmoothed plot of average daily COVID-19 patient count by hospitalization type. 

  

This data reveals that, for a vast majority of the periods, Medical/Surgical units have a far higher capacity of 

hospitalization patients, due to their presence for most COVID-19 carriers who were considered low to medium priority 

patients (Leclerc et al., 2020), with the highest priority patients put into ICUs with far higher resource-per-patient 

capabilities (Janke et al., 2021). However, similar to the daily positive tests by race, there are spikes present around the 

January and June marks of every year, which directly correlates with the uptick in leisure in this period. Interestingly, 

while the trend persists from 2023 onwards in the COVID-19 Medical/Surgical unit hospitalizations, the trend is less 

apparent for ICU patients and all other racial groups. A possible explanation for this is the decreased usage of testing 

resources, as, while the absolute numbers generally tapered off during this period, the relative proportion of positive tests 

maintained relatively in-line with data throughout 2020. Additionally, regarding the hospitalization counts, as immunity 

begins developing within the population, coupled with the increase in COVID-19 vaccinations and general knowledge 

towards virus transmission (Moghadas et al., 2021), less individuals require high-intensity treatment, causing a 

deallocation of resources for the virus.   

 

Analyzing both ICU and Medical/Surgical prediction tasks, the K-Nearest Neighbors (KNN) regressor achieved the best 

performance. It produced R² values of 0.974 and 0.984. This indicates that the KNN was able to explain over 

97%variation in daily hospitalization using given features. Furthermore, the KNN shows the lowest MAE and RMSE for 

outputs, which indicates an excelling ability to provide accurate predictions while also showing smaller deviations from 

the observed values. This suggests that the underlying feature of a label relationship is well tied to a local, instance based 

learning approach. Here, the prediction is informed by closely related past observations. In the absence of strong temporal 

dependencies, the success of the KNN could be explained by it’s reliance on spatial similarity in feature space.   
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Table 2  

Objective  Model  R2  MAE  RMSE  

ICU  KNN  0.974  1.511  2.000  

Decision Tree  0.844  3.180  4.858  

 Linear  

SVM  

0.599  5.878  7.841  

SVM  0.8475  3.468  4.819  

Multi-layered Perceptron  0.808  4.018  5.426  

Medical/ 

Surgical  

KNN  0.984  3.707  4.898  

Decision Tree  0.815  10.376  16.511  

Linear  

SVM  

0.605  17.513  24.390  

SVM  0.855  9.894  14.710  

Multi-layered Perceptron  0.832  11.462  15.898  

  

  

 
Fig. 5 Regression plot highlighting cross-validated expected versus predicted discrepancies. 

  

On the other hand, the Multi-Layer Perceptron (MLP) achieved lower R² scores (0.808 for ICU and 0.832 for 

Medical/Surgical). It also had notably higher RMSE values, specifically in the Medical/Surgical task.  The reduced 

performance could have come from the small dataset and higher variety in hospitalization. In turn, this might have ruined 

the deep learning architecture that generally needs larger amounts of data. Without tuning and training these samples, the 

MLP could have been made to overfitting on noise rather than capturing a true signal. A clear performance gap also 

showed between the Linear Support Vector Machine (Linear SVM) and the non-linear kernel SVM. The non-linear SVM 

outperformed its linear counterpart in both tasks, which suggests that the relationship between features and hospitalization 

counts is not  linear. This finding is supported by RMSE differences; the linear SVM’s inability to model complex feature 

interactions led to larger errors. The kernel SVM’s handling of non-linearity allowed it to better capture subtler patterns.   

   

Table 3  

Objective  Model  MAE  RMSE  

ICU  GRU  4.620  4.928  

LSTM  3.653  3.991  

Medical/Surgical  GRU  13.175  16.490  

LSTM  7.694  9.407  
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Fig. 6 Forecast plot showing the forecasts for each model, ground truth, and historical data. 

 

For the long-horizon forecasting task, the Long Short-Term Memory (LSTM) network outperformed the Gated Recurrent 

Unit (GRU) in all cases. While ICU forecasting, the LSTM earned an MAE of 3.653 and RMSE of 3.991. This represents 

the smallest error margins among all models.  

The gap widened in the Medical/Surgical forecasts; LSTM’s  

MAE and RMSE (7.694 and 9.407) were lower than those of the GRU. These results show that the LSTM’s architecture 

was more effective in this 120-day prediction horizon. The GRU, albeit simpler, struggled to keep relevant information 

over extended sequences. This leads to greater drift in predictions further into the forecast window. 

  

It’s important to note that long-horizon forecasting is still inherently challenging. This is especially true in contexts of 

hospitalization rates and external factors like new viral variants, public health interventions, and behavioral changes. 

Even the best-performing models showed error growth over time, with later forecast segments diverging more from 

ground truth. Even then, both LSTM and GRU produced forecasts that clearly tracked the general seasonal and structural 

patterns present in the historical data. This shows a meaningful learning of underlying hospitalization dynamics.   

  

V. CONCLUSION  

 

This research evaluated two machine learning frameworks for predicting COVID-19 hospitalization rates in San 

Francisco. Using DataSF public datasets, the study approached the problem such that the K-Nearest Neighbors (KNN) 

regressor consistently achieved the highest accuracy, with R² values exceeding 0.97 for both ICU and Medical/Surgical 

units and the lowest MAE/RMSE across all models. Over 120-day forecasts, the Long Short-Term Memory (LSTM) 

network outperformed the Gated Recurrent Unit (GRU) in every scenario. It produced notably smaller errors. Overall, 

the findings showed that localized modeling can deliver accurate and actionable hospitalization predictions.   

  

While the models achieved strong predictive performance, the study faced several limitations. The dataset represented a 

single geographic region, which limited generalizability to other locations. Also, some feature categories, like race-

disaggregated testing data, contained missing values that required imputation. The forecasting models were trained on 

historical patterns.  Future work could extend this framework to multi-city or statewide datasets. Finally, adaptive or 

online learning approaches could allow models to update continuously as new data becomes available.   
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