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Abstract: Financial markets generate large volumes of fast- moving data and require decisions to be taken in very short 

intervals. Human traders alone struggle to monitor all signals and react consistently without emotional bias. To address 

this challenge, this work presents an AI driven trading bot that combines Machine Learning (ML) for price forecasting 

with Reinforcement Learning (RL) for action selection. The system uses technical indicators, a Long Short-Term Memory 

(LSTM) network for short-term prediction and a Deep Q-Network (DQN) agent to learn profitable buy, sell and hold 

policies. The complete solution is deployed as a web application that provides real- time charts, portfolio analytics, 

sentiment summaries and AI- generated trading signals. Experimental evaluation indicates promising accuracy, low-

latency inference and improved profit consistency when compared with simple rule-based strategies. 
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I. INTRODUCTION 

 

Stock markets are highly dynamic and influenced by a combination of economic, political and psychological factors. 

Prices react to news, global events and investor sentiment, making short-term prediction difficult. Traditional approaches 

rely heavily on manual chart reading and heuristics, which can lead to delayed responses and inconsistent decisions. In 

parallel, advances in Artificial Intelligence (AI), especially ML and RL, have enabled systems that can learn patterns 

from historical data and adapt to changing environments. ML models can estimate the direction or magnitude of price 

movement, while RL agents can learn trading policies that maximize long-term returns. This project explores the 

integration of: • ML models for short-horizon price prediction, • RL (DQN) for trading decision-making, • Technical 

indicators for feature enrichment, • A web-based front-end for interactive analytics. The goal is not to replace human 

traders completely, but to provide a decision-support system that delivers data-driven, consistent and explainable 

suggestions. 

II. PROBLEM STATEMENT AND OBJECTIVE 

 

Financial markets generate massive volumes of real-time data, making it increasingly difficult for traders to analyze 

market behavior manually and make timely, profitable decisions. Traditional algorithmic trading relies on predefined 

rules or static strategies that often fail to adapt to rapidly changing market conditions, unpredictable price movements, 

and complex non-linear patterns. As a result, traders face challenges such as inconsistent performance, inability to 

generalize strategies across market regimes, and limited capability to learn from historical and live data interactions. 

There is a critical need for an intelligent, adaptive trading system capable of autonomously learning market dynamics, 

optimizing decision-making, and executing trades with minimal human intervention. By leveraging machine learning 

and reinforcement learning, such a system can continuously improve from market feedback, identify profitable 

opportunities, minimize risks, and enhance trading efficiency. 

Objectives: 

To design and develop an AI-driven trading bot capable of processing historical and real-time market data to support 

informed trading decisions. 

To implement machine learning and reinforcement learning models that can autonomously learn trading strategies and 

adapt to changing market conditions. 

To evaluate and optimize the bot’s decision-making performance using metrics such as accuracy, reward maximization, 

drawdown reduction, and risk-adjusted return. 

To enable automated trade execution through integration with brokerage APIs, ensuring minimal latency and high 

reliability. 

To provide real-time insights, predictive signals, and strategy recommendations that improve profitability while 

controlling exposure to market volatility and risk. 
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III. SCOPE 

 

This project aims to build a trading bot powered by AI, using machine learning and reinforcement learning techniques 

to improve decision-making in financial markets. It includes gathering historical and real-time market data, such as price 

movements, trading volume, and technical indicators from reliable financial data sources. The data will be cleaned and 

transformed to create predictive models that spot trends, generate trading signals, and forecast future price behavior. 

We will use reinforcement learning algorithms to help the bot learn trading strategies by interacting with a simulated 

or live market environment. This learning process enables the system to adjust its strategies based on feedback, which 

helps increase profits while reducing risk. The bot will support automated or semi-automated trade execution by 

integrating with trading or brokerage APIs, allowing it to place buy or sell orders based on model-driven decisions. 

We will evaluate performance through backtesting and measuring metrics like return on investment, Sharpe ratio, 

drawdown, and win-loss accuracy. The project also includes visualizing trading signals, performance reports, and market 

analytics through a user interface or dashboard for monitoring and validation. However, high-frequency trading 

infrastructure, regulatory compliance, and cross-market arbitrage are not part of the current project scope. 

 

IV. LITERATURE REVIEW 

 

[1] Zhang et al. developed a hybrid ML-based price forecasting model using LSTM networks integrated with 

sentiment analysis from financial news. Their approach improves short-term prediction accuracy and reduces lag effects, 

but suffers reduced reliability during abrupt market shocks and black-swan events. 

[2] Patel et al. introduced a reinforcement-learning trading agent using Deep Q-Networks (DQN) that adjusts trading 

positions dynamically based on reward signals. Backtesting on equity indices demonstrated improved cumulative returns, 

though the model occasionally overfitted volatile market segments. 

[3] Huang et al. proposed a PPO-based reinforcement-learning strategy for intraday trading that incorporates risk-

weighted rewards. Results show better drawdown control and stable convergence, but computational cost increases with 

high-frequency feature updates. 

[4] Mishra et al. designed an ensemble ML pipeline combining Random Forest, XGBoost, and SVM for trend 

classification and signal confirmation. Their bot reduced false trades by leveraging model consensus, although ensemble 

complexity led to slower inference times during live execution. 

[5] Khan et al. implemented a multi-agent RL framework where different agents specialize in market regimes such as 

bullish, bearish, and sideways. Regime-aware switching improved adaptability, yet agent coordination occasionally 

produced conflicting signals. 

[6] Ocampo et al. utilized evolutionary reinforcement learning to optimize hyperparameters and reward shaping 

automatically. The system enhanced long-term profitability and reduced manual tuning effort, but required extensive 

training periods and high compute resources. 

[7] Singh et al. developed a transformer-based market forecasting model feeding RL policies for trade execution. 

Transformers captured long-range dependencies in price series, boosting signal stability; however, inference latency 

posed challenges for near real-time execution. 

[8] Liu et al. proposed an anomaly-aware RL trading bot that identifies manipulated or abnormal market conditions 

before executing trades. Their results show reduced exposure during flash crashes, though early anomaly detection 

occasionally blocked profitable opportunities. 

[9] Ahmed & Roy integrated risk metrics such as Sharpe ratio and maximum drawdown directly into the RL reward 

function. The enhanced reward shaping produced balanced risk-return profiles, but risk-sensitive tuning reduced trade 

frequency and potential gains during high-momentum periods. 

[10] Nayak et al. conducted a comprehensive survey on ML- and RL-powered trading systems, outlining architectures, 

risk-control mechanisms, execution pipelines, and evaluation benchmarks. They highlighted research gaps including 

online learning under real-time market shifts and safe RL to mitigate catastrophic loss. 

 

4.1 Gaps or Areas for Improvement 

 

Despite significant advances in using machine learning and reinforcement learning for automated trading, several 

important gaps still exist. Current models often struggle to perform consistently during sudden market changes because 

they rely heavily on historical data and lack methods for stable online adaptation. This reliance often results in overfitting, 

where models identify past trends that do not hold up during real-time fluctuations. Reinforcement learning systems also 

face issues with reward structures that focus on profit while overlooking risk exposure, sensitivity to volatility, and control 

over drawdowns, which limits their effectiveness. 

Efficiency in execution is another challenge. Deep learning architectures introduce delays in processing that hinder real-

time trading. Additionally, the complex nature of these models makes them hard to understand, which complicates 
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regulatory compliance and reduces trust among analysts. Problems like data noise, manipulation, and anomalies are still 

not fully addressed, which weakens how well models can handle unusual or hostile market conditions. Generalizing 

strategies across different assets is also challenging, as those designed for one market often perform poorly in others, like 

forex or cryptocurrency. 

 

There are ongoing issues with evaluation due to fragmented datasets, differing assumptions about transaction costs, and 

a lack of standard performance measures. This makes it hard to draw comparisons. Overall, we need to improve dynamic 

learning, focus on risk-aware optimization, enhance robustness against noise, increase interpretability, and create unified 

evaluation standards to develop dependable and scalable trading automation. 

 

V. SYSTEM ARCHITECTURE 

 

The AI trading bot is implemented as a web-based system with separate front-end, back-end and model layers. The front-

end displays charts, predictions, sentiment and signals, while the back-end orchestrates data fetching, model execution 

and storage..  

 

This hierarchical training approach enhances model efficiency, significantly cuts down communication costs, and 

supports scalability far better than traditional flat federated or centralized methods. To ensure the authenticity Regarding 

the model's integrity updates, the system employs a blockchain layer where every update is validated and immutably 

recorded using smart contracts. A central authority is no longer necessary thanks to this decentralization, which also 

shields the system from malicious attacks or tampering that can jeopardize the accuracy of the model or the reliability of 

the data. Complementing blockchain is the Interplanetary File System (IPFS), used for decentralized storage of validated 

model updates, anomaly reports, and other critical system information. IPFS ensures fault tolerance, high availability, 

and rapid data retrieval, even if parts of the network fail, thereby reinforcing system robustness. A dedicated anomaly 

detection and self-healing layer continuously monitors network and device activities for abnormal patterns such as 

unauthorized access or malfunctioning nodes. When issues are detected, the system autonomously isolates compromised 

devices, initiates restorative actions like resets or reconfigurations, and reintegrates the devices once stability is achieved. 

This reduces downtime and enhances the network’s overall resilience. Finally, system administrators are supported by a 

user-friendly, web-based dashboard that provides real-time visualization of blockchain transactions, security threats, 

device performance, and mitigation efforts. This interface enables proactive management and transparent oversight, 

empowering administrators to maintain optimal system health and security. 

 

 

Figure 1.DQN-based reinforcement learning workflow for trading decisions 
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Fig. 2. System architecture of the AI-driven trading bot. 

 

 

VI. METHODOLOGY 

 

The proposed trading bot follows a layered methodology that starts with data collection and ends at real-time 

decision support. The main stages are shown conceptually .  

A. Overall Workflow  

B. Data Collection and Preprocessing  

Historical and live price data are obtained using online APIs such as Yahoo Finance. For each symbol, the following 

attributes are used:  

• Open, High, Low, Close (OHLC) prices,  

• Adjusted close price, • Trading volume,  

• Timestamp. 

Data preprocessing includes:  

• Handling missing records by interpolation or removal,  

• Filtering obvious outliers,  

• Applying scaling (e.g., Min–Max normalisation) for neural network inputs, 

C. Technical Indicator Computation  

Several technical indicators are computed to capture trend, momentum and volatility:  

• Simple Moving Average (SMA),  

• Exponential Moving Average (EMA),  

• Relative Strength Index (RSI),  

• Moving Average Convergence Divergence (MACD),  

• Bollinger Bands.  

These indicators are appended as additional features to the input vectors used by the ML and RL components, improving 

both interpretability and model performance 

 

6.1. Requirement Analysis and Problem Framing   

Define project goals, including target markets, asset classes, trading style, and risk thresholds. Decide if the system will 

operate independently or serve as a decision-support tool. Consider costs like brokerage fees, slippage tolerance, and 

liquidity constraints. Identify regulatory requirements and set limits to prevent unethical algorithmic practices. 

 

6.2. Data Acquisition and Preprocessing 

Gather historical time-series data such as OHLC prices, volumes, and volatility metrics from APIs. Obtain real-time data 

streams for ongoing analysis. Clean and standardize the data by normalizing, removing outliers, and handling missing 

values. Create rolling-window datasets to maintain temporal consistency and split them into training, validation, and 

forward-testing sets to lower overfitting. 

 

6.3. Feature Engineering and Signal Construction 

Generate indicators such as RSI, ATR, Bollinger Bands, MACD, momentum oscillators, and volatility clusters. Extract  
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sentiment indicators if relevant. Perform feature relevance analysis using mutual information, correlation matrices, or 

dimensionality reduction to remove redundancy. Create directional labels and trend classes for supervised learning. 

 

6.4. Machine Learning-Based Prediction Module 

Train models like LSTM, TCN, Gradient Boosting, or Random Forest to forecast price direction, volatility, or return size. 

Use rolling validation and optimize hyperparameters. Assess model stability and uncertainty to support risk-aware 

decision-making. Use prediction outputs as market signals or inputs for reinforcement learning. 

 

6.5. Reinforcement Learning Strategy Optimization 

Create a trading environment with defined states, actions, and rewards. Use RL algorithms like DQN, PPO, or SAC to 

learn the best buy/sell strategies. Include transaction costs, drawdown penalties, and risk-adjusted returns in reward 

functions. Train policies through episodic simulations and refine exploration strategies for flexibility. 

 

6.6. Backtesting and Performance Evaluation 

Test the ML-RL framework through multi-period backtesting to measure strength across various market conditions. Use 

metrics including cumulative return, Sharpe ratio, Sortino ratio, maximum drawdown, hit rate, and exposure time. 

Perform walk-forward analysis to check generalization to new data. 

 

6.7. Integration with Brokerage or Trading Execution APIs 

Connect the strategy to real or simulated trading environments through APIs, such as Zerodha Kite, Binance, or Alpaca. 

Add modules for order execution, position management, latency tracking, and real-time risk protection. Validate the 

execution pipeline using paper trading before controlled deployment. 

 

6.8. Visualization, Monitoring, and Continuous Improvement 

Create dashboards to track live signals, execution logs, portfolio growth, and risk indicators. Set up alert systems for 

issues like excessive drawdown or latency spikes. Retrain and enhance models regularly to keep up with changing market 

conditions and remain competitive. 

 

VII. IMPLEMENATION ENVIRONMENT  

 

The environment for the AI trading bot is set up to handle data reliably, train models at scale, create quality 

visualizations, and integrate machine learning workflows efficiently. We use Python as the main programming language 

because of its wide range of scientific computing libraries and strong support for data analytics and machine learning. 

Key libraries like NumPy and Pandas help us manage, transform, and preprocess large amounts of historical market data. 

SciPy provides statistical operations and feature calculations needed for analyzing financial time series. We develop 

machine learning models using frameworks like Scikit-Learn for traditional predictive models, and TensorFlow or 

PyTorch for deep learning when needed. These frameworks offer GPU acceleration for quicker experimentation. We 

generate visualizations with Matplotlib, Seaborn, and Plotly to create analytical charts, candlestick patterns, and trend 

visualizations during explorations and model evaluations. We manage the coding environment with Jupyter Notebook 

and Google Colab, allowing for iterative experimentation, inline graph rendering, and straightforward documentation of 

data and modeling processes. 

 

For acquiring and storing data, the environment connects to external financial APIs such as Alpha Vantage, Yahoo 

Finance, or Binance based on the market type. It uses structured formats like CSV, Parquet, or SQL databases for long-

term storage. We maintain version control using Git and GitHub to track code changes, store experimental results, and 

collaborate effectively as we scale the project. The operating system usually consists of Windows or Linux machines, 

with a preference for Linux in deployment scenarios because it works better with GPU workflows and executes tasks 

automatically. We use Python virtual environments or Conda to ensure consistent dependencies and avoid package 

conflicts during model testing. The reinforcement learning part is built using libraries like Stable Baselines, Gym, or 

custom simulation setups. This allows the bot to learn adaptive trading strategies through interactions based on historical 

market conditions. These setups enable the configuration of positions, trade actions, holding periods, and transaction fees 

to ensure realistic policy behavior. 

 

We deploy and test the trading logic using controlled backtesting frameworks instead of live execution. This approach 

focuses on research and evaluation rather than automation in production. Backtesting tools like Backtrader or custom 

evaluation scripts simulate live trading scenarios with historical data. This lets us evaluate multiple strategies through 

different market phases while tracking metrics like cumulative returns, Sharpe ratio, drawdowns, and trade-level accuracy. 

We monitor model performance using dashboards created with Streamlit or Jupyter visualization tools, which enable 
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ongoing inspection of prediction trends, signal reliability, and model sensitivity. Throughout the process, logging systems 

keep track of decisions made by the system, data issues, and model outputs to aid debugging and ongoing improvements. 

Overall, the environment provides a solid foundation for data engineering, developing learning algorithms, strategic 

assessment, and visualization, ensuring that the trading bot can be continuously improved for more accurate predictions, 

better decision-making support, and dependable performance assessments without direct market deployment. 

 

VIII. MODULES 

 

8.1 Market Data Acquisition Module 

 

Collects historical and real-time financial market data from APIs. It manages data frequency such as daily, hourly, or 

minute-level. It also stores raw market streams for further processing. 

8.2 Data Cleaning & Preprocessing Module   

Handles missing values and fills gaps in time series. It removes anomalies, normalizes price data, and prepares datasets 

to ensure consistency across market conditions. 

8.3 Feature Engineering & Indicator Generation Module   

Generates technical indicators like moving averages, RSI, MACD, Bollinger Bands, volume signals, and volatility 

indexes. It also creates feature vectors to improve predictive learning. 

8.4 Exploratory Data Analytics Module   

Performs statistical analysis and trend exploration. This helps understand correlations, market behaviors, and patterns 

that influence model design and signal selection. 

8.5 Machine Learning Prediction Module   

Trains machine learning models to forecast short-term price direction or the likelihood of upward or downward movement. 

It provides predictive outputs for decision-making.  

8.6 AI-Based Strategy Decision Module   

Turns predictive outputs and market insights into actionable buy, hold, or sell recommendations. This is based on defined 

rules, thresholds, confidence scores, and risk factors. 

8.7 Backtesting & Simulation Module   

Simulates strategy performance on historical data. It evaluates accuracy, profitability, Sharpe ratio, drawdown, and risk-

adjusted returns across different market phases. 

8.8 Risk Management & Constraint Module   

Implements position size limits, stop-loss and take-profit thresholds, volatility filters, and risk rules. This ensures trading 

suggestions focus on safety and capital preservation. 

8.9 Visualization & Performance Monitoring Module   

Creates charts like candlestick plots, trend lines, prediction accuracy graphs, equity growth curves, and dashboard views. 

These are used for performance tracking and insights. 

8.10 Model Evaluation & Continuous Improvement Module   

Assesses strategy performance over time. It compares models, tracks metrics, tunes parameters, and supports periodic 

retraining to respond to changing market behavior. 
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IX. PERFORMANCE EVALUATION  

 

The prototype system is implemented using widely available open-source tools so that it can be reproduced and 

extended by other students and researchers.  

A. Technology Stack  

The main implementation components are:  

• Backend: Python with Flask is used to expose REST APIs for fetching predictions, RL decisions and portfolio 

data.  

ML/RL Libraries: Popular libraries such as pandas for data handling, NumPy for numerical operations and a deep 

learning framework (e.g., TensorFlow or PyTorch) for implementing LSTM and DQN networks 

 

• Frontend: A lightweight JavaScript-based interface (such as React or plain HTML/CSS/JS) renders charts 

using libraries like Plotly.js or Chart.js.  

Database: A relational database stores user credentials, saved portfolios and historical trade logs 

 

B. Modular Design  

The codebase is structured into separate modules: 

• Data loader and preprocessor,  

• Indicator computation module,  

• ML model training and inference module,  

• RL agent training and live decision module,  

• API routing and authentication module,  

• Front-end UI components.  

This separation simplifies debugging and allows individual parts to be improved without rewriting the entire system. 

 

Historical market datasets were used to evaluate the bot’s effectiveness across different market regimes such as bullish, 

bearish, and sideways conditions. 

Four strategies were benchmarked for comparison: 

• Baseline buy-and-hold approach 

• Standalone Machine Learning (ML) price-prediction strategy 

• Standalone Reinforcement Learning (RL) trading policy 

• Integrated ML–RL hybrid strategy combining predictive signals with adaptive policy actions 

Evaluation metrics included: 
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• Cumulative Return (%) – measures overall profit generation 

• Sharpe & Sortino Ratios – assess risk-adjusted performance 

• Maximum Drawdown (%) – evaluates capital loss risk during downturns 

• Win-Loss Ratio – indicates the consistency of successful trades 

• Exposure Time – measures capital deployment duration 

• Backtesting results showed the ML–RL hybrid strategy achieved the highest cumulative return and Sharpe 

ratio, indicating better profitability per unit of risk. 

The ML-only approach improved signal accuracy but lacked adaptive execution logic during volatile periods, resulting 

in unstable trade performance. 

The RL-only strategy reduced overtrading and improved risk management but occasionally acted on weak signals due 

to limited predictive context. 

Maximum drawdown was lowest in the ML–RL hybrid model, demonstrating superior downside protection and better 

capital preservation. 

Cross-market evaluations confirmed strategy robustness, with the hybrid model maintaining consistent performance 

across varying volatility levels. 

Overall, results verify that combining predictive modeling with reinforcement-based execution offers more stable, 

profitable, and risk-aware automated trading compared to isolated ML or RL strategies. 

 

X. CONCLUSION 

 

This paper presented the design and implementation of an AI driven trading bot that integrates LSTM-based price 

forecasting and DQN-based reinforcement learning in a web- accessible platform. By combining predictive modelling 

with policy. 

 

learning, the system can both anticipate price direction and learn which actions are more profitable in the long run.  

The platform also offers practical features such as portfolio views, sentiment summaries and graphical outputs, 

making it suitable as a decision-support tool for traders and as a learning aid for students exploring algorithmic trading 

concepts. Future improvements may include: 

• Using more advanced RL variants such as Double DQN or PPO,  

• Incorporating news and social media sentiment directly into the state representation,  

• Extending the system to support multiple asset classes such as cryptocurrencies or commodities,  

     

10.1 Future work 

Future improvements for the AI-driven trading bot focus on enhancing flexibility, reliability, and efficiency in real-

world execution. One key direction is integrating online and incremental learning. This approach allows the system to 

update its models continuously as new market data becomes available. It also boosts responsiveness to sudden changes 

in market conditions and unexpected price movements. Adding multi-objective reinforcement learning could optimize 

returns alongside liquidity use, transaction efficiency, and compliance with regulations. This setup aims to create a more 

realistic balance between risk and reward. 

 

More research is needed to implement explainable AI methods that explain model decisions and provide clear reasons 

for trade actions. This will help build user trust and ensure compliance with new financial regulations. Expanding 

coverage to different asset classes, including commodities, futures, and cryptocurrencies, would increase diversification 

and generalization. Additionally, using high-performance inference pipelines through model compression, GPU 

acceleration, or edge execution can cut down latency and make the bot more suitable for intraday or near high-frequency 

trading. 

 

Future versions might also include event-driven features like sentiment changes, macroeconomic indicators, and 

geopolitical signals to boost prediction accuracy. Lastly, working with actual brokerage systems in controlled live settings 

would confirm long-term profitability and assist in developing the bot into a scalable, production-ready trading solution. 
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