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Abstract: Conventional computer input devices impose physical constraints and accessibility barriers where traditional 

keyboards and mice provide precise control but require direct surface contact and fine motor coordination. This research 

presents HandPilot, an integrated wearable computing framework combining multi-sensor fusion with supervised 

machine learning for intuitive gesture-based human-computer interaction. The system deploys Arduino-based smart 

glove modules with MPU6050 6-axis inertial measurement unit (3-axis accelerometer and 3-axis gyroscope), resistive 

flex sensor for finger bend detection, and three tactile push buttons to capture spatially oriented hand movements and 

discrete click operations. Structured data packets containing accelerometer readings (Ax, Ay, Az), gyroscope 

measurements (Gx, Gy, Gz), flex sensor values, and button states are transmitted wirelessly via HC-05 Bluetooth module 

at 9600 baud rate to a receiver Arduino connected to host computer through USB serial interface. A comprehensive 

labeled dataset mapping ten gesture classes—right, left, up, down, zoom in, zoom out, drag, left-click, right-click, and 

double-click—to corresponding sensor feature vectors enables training of multiple supervised classification algorithms 

including K-Nearest Neighbors (KNN), Support Vector Machines (SVM) with RBF kernel, Decision Trees with Gini 

impurity splitting, and Random Forest ensemble methods. The trained Random Forest model integrates into a Python-

based real-time control engine using PySerial for serial communication and data parsing, combined with PyAutoGUI for 

cross-platform mouse action execution and cursor control. Experimental validation demonstrates superior performance, 

achieving 94% classification accuracy with the Random Forest classifier, representing 30% improvement over 

conventional threshold-based gesture recognition approaches, with end-to-end system latency of 80-120ms and 99.7% 

data transmission reliability during 24-hour continuous operation testing. 
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I. INTRODUCTION 

 

Human-Computer Interaction has undergone significant transformation with the emergence of natural, intuitive, and 

touch-free interaction technologies. Conventional input devices such as keyboards and mice, while widely adopted, 

impose physical constraints on user mobility and require direct surface contact. These limitations create challenges in 

accessibility for individuals with motor disabilities, in sterile environments where surface contact is undesirable, and in 

contexts such as virtual reality, robotics, and gaming where enhanced freedom of interaction is essential. Gesture-based 

wearable systems represent a promising alternative, allowing users to communicate with machines using natural hand 

movements. Among gesture-recognition technologies, wearable sensor-based gloves offer significant advantages over 

camera-based systems. Vision-based gesture recognition depends heavily on lighting conditions, background 

environments, and requires substantial computational resources for image processing. In contrast, sensor-based systems 

provide immunity to environmental variations, lower latency, reduced power consumption, and minimal processing 

overhead. This research presents HandPilot, a gesture-controlled smart glove built around an MPU6050 motion sensor, 

a flex sensor, and three simple push buttons connected to an Arduino-based control unit. Instead of functioning as just 

another prototype device, the glove serves as a wireless alternative to a standard mouse, letting users carry out everyday 

pointing and clicking tasks through natural hand movements. The MPU6050 captures motion across six axes, which helps 

the system understand how the hand tilts or rotates and convert those movements into cursor actions. The flex sensor 

tracks changes in finger bending for actions like dragging or zooming, while the buttons provide quick access to basic 

functions such as left-click, right-click, and switching modes. To keep the setup portable and free of wires, the glove 

sends its sensor readings through an HC-05 Bluetooth module to a matching receiver connected to an Arduino Uno on 

the computer side. The receiving Arduino then passes this data to the laptop through a standard USB serial connection. 

A Python script reads the incoming values using PySerial and, with the help of PyAutoGUI, turns them into immediate 

mouse movements or clicks. Separating the processing logic from the glove's hardware makes the system easier to update 

or expand without altering the wearable device itself. A key improvement in this work is the use of machine-learning 

techniques to more reliably identify gestures from the combined sensor data. To train these models, multiple samples of 
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every gesture were recorded, including the IMU's accelerometer and gyroscope readings, the flex sensor output, and the 

states of the buttons. From this information, useful features were extracted and used to train supervised classification 

models. The final trained model runs in Python, where it receives live sensor data, predicts the intended gesture, and 

performs the corresponding mouse action in real time. 

Principal contributions include: 

• Architecture for wearable gesture recognition using MPU6050 with wireless Bluetooth transmission 

• Machine learning framework integrating KNN, SVM, Random Forest, and Decision Tree  

• Complete hardware-software implementation with Arduino firmware and Python control engine 

• Comprehensive evaluation demonstrating superior accuracy over threshold-based methods 

The system contributes to assistive technology, interactive education, gaming, robotic manipulation, and 

virtual/augmented reality applications. HandPilot demonstrates how wearable sensing, wireless transmission, and AI-

driven classification create a powerful, affordable, and intuitive interaction platform for modern computing systems with 

total hardware cost under $50. 

 

II. PROBLEM STATEMENT AND OBJECTIVE 

 

This research addresses critical limitations in traditional computer input systems and emphasizes the urgent need for 

accessible, intuitive, and touch-free interaction methods to support diverse user populations and application contexts. 

Conventional mouse and keyboard interfaces face multiple interrelated challenges that severely compromise their 

effectiveness in modern computing environments. Physical accessibility remains the most significant constraint, with 

traditional input devices requiring fine motor control and precise hand-eye coordination that creates substantial barriers 

for individuals with motor impairments, tremors, or limited hand mobility. The requirement for direct surface contact 

poses hygiene concerns in healthcare settings, sterile laboratory environments, and food preparation areas where 

contamination risks must be minimized. Furthermore, traditional peripherals restrict user mobility and freedom of 

movement, making them unsuitable for applications requiring hands-free operation such as virtual reality systems, 

augmented reality environments, industrial machinery control, and interactive presentations. Existing gesture recognition 

alternatives face technical challenges including camera-based systems suffering from lighting dependency with accuracy 

degradation in low-light or variable illumination conditions, background interference requiring controlled environments, 

computational intensity demanding high-performance processors unsuitable for embedded systems, and privacy concerns 

from continuous video capture. Low-cost sensor-based prototypes demonstrate feasibility but exhibit limitations 

including threshold-based classification providing rigid decision boundaries sensitive to sensor noise and user variability, 

lack of adaptability to individual gesture styles without extensive manual recalibration, limited gesture vocabulary 

supporting only 4-6 basic movements, and absence of comprehensive evaluation demonstrating real-world reliability and 

user acceptance. 

Key Objectives of HandPilot include: 

• Develop wearable gesture recognition platform using Arduino Nano with MPU6050 6-axis IMU, resistive 

flex sensor, and three tactile buttons to achieve comprehensive gesture capture with 50Hz sampling rate, HC-05 

Bluetooth wireless transmission at 9600 baud, and modular hardware design enabling sensor upgrades and 

platform extensions. 

• Implement machine learning classification framework with supervised learning algorithms including K-

Nearest Neighbors (k=5), Support Vector Machines with RBF kernel, Decision Trees with maximum depth 10, 

and Random Forest ensemble (100 estimators) to achieve gesture recognition accuracy ≥90%, reduce false 

positive rate by 75% compared to threshold methods, and enable automatic adaptation to user-specific gesture 

variations. 

• Enable real-time gesture-to-mouse control by integrating PySerial for serial communication, PyAutoGUI for 

cross-platform mouse actions, and optimized inference pipeline to achieve end-to-end latency ≤120ms, support 

10 gesture classes (directional, zoom, drag, clicks), and provide intuitive cursor control with adjustable 

sensitivity (0.5-2.0× multiplier). 

• Ensure system reliability and usability by maintaining data transmission success rate ≥99%, achieving 

continuous operation stability over 24-hour testing periods, demonstrating user proficiency within 5 minutes 

learning time, and validating minimal fatigue during 30-minute usage sessions through structured user studies. 

 

III. SCOPE 

 

The scope of this research encompasses multiple interconnected technical domains requiring careful design, 

implementation, and validation. Hardware development involves designing Arduino Nano-based wearable modules 

incorporating the MPU6050 inertial measurement unit with 3-axis accelerometer (±2g range) and 3-axis gyroscope 

(±250°/s range) communicating via I2C protocol, resistive flex sensor with voltage divider circuit providing 10-bit ADC 
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resolution (0-1023 values), and three momentary push buttons with pull-down resistor configuration for reliable state 

detection. Development includes circuit design with 5V and 3.3V voltage regulation, power management strategies for 

USB and battery operation (7-12V input, 2-3 hours runtime with 9V 400mAh battery), and compact assembly on 

breadboard enabling integration into wearable glove form factor. Wireless communication infrastructure utilizes HC-05 

Bluetooth module configured in master-slave pairing mode, structured data packet format with comma-separated sensor 

values and newline termination, 20ms transmission interval (50Hz update rate) balancing responsiveness and bandwidth, 

and receiver Arduino Uno forwarding data via USB serial connection at 9600 baud rate. Data reliability mechanisms 

include timestamp synchronization using millis() function, moving average filtering (window size 5) for noise reduction, 

and error handling for incomplete packet detection. Machine learning development encompasses comprehensive dataset 

collection with 1000 labeled samples (10 gesture classes × 100 repetitions × 5 users) capturing execution variability, 

feature engineering computing statistical measures (mean, standard deviation, minimum, maximum) over temporal 

windows, derivative features calculating acceleration magnitude and angular velocity magnitude, and normalization 

applying min-max scaling to [0,1] range and z-score standardization. Classification framework implements K-Nearest 

Neighbors with Euclidean distance metric and optimal k=5, Support Vector Machines with RBF kernel and grid-search 

hyperparameter optimization, Decision Trees with Gini impurity splitting and maximum depth 10 preventing overfitting, 

and Random Forest ensemble with 100 decision trees and bootstrap aggregation. Software architecture implements 

modular Python control engine with PySerial establishing serial port connection with automatic COM port detection and 

9600 baud rate, real-time preprocessing applying identical normalization parameters from training phase, Scikit-Learn 

model inference with pickle serialization and prediction latency <10ms per sample, and PyAutoGUI mouse control 

providing relative cursor positioning based on tilt angles, click event triggering on button state changes, and drag mode 

activation via flex sensor thresholds. User interface provides command-line visualization displaying real-time sensor 

values, predicted gesture classes with confidence scores, connection status indicators, calibration mode for user-specific 

training, and sensitivity adjustment controls (0.5-2.0× range). 

IV. LITERATURE REVIEW 

 

[1]. Kim et al. developed a wearable gesture system using accelerometers and gyroscopes. Combining data from sensors 

improved motion accuracy. However, the system was costly and needed calibration. 

[2]. Raut et al. created a gesture-controlled mouse using an accelerometer to detect hand tilts. Bluetooth was used for 

communication. Limited gestures and lack of gyroscope reduced accuracy. 

[3]. Patil and Kulkarni designed a gesture glove using flex sensors to control a robotic arm. Finger bending controlled 

movements accurately. However, hand orientation was not tracked. 

[4]. Chaudhari et al. used an MPU6050 sensor to track hand orientation for cursor control. Movement was smooth, but 

the system lacked finger gestures and buttons. 

[5]. Zhang et al. proposed camera-based gesture recognition using deep learning. It worked well in good lighting. 

Performance dropped in poor lighting and needed high processing power. 

[6]. Mandal et al. developed a sign-language glove using flex and motion sensors. Accuracy improved, but user-specific 

calibration was required. 

[7]. Huang et al. built a VR glove using motion sensors and haptic feedback. It improved user experience, but high power 

use and bulky design reduced comfort. 

[8]. Thomas and George created a wireless gesture mouse using accelerometers and RF communication. It worked for 

basic control, but interference and lack of gyroscope affected accuracy. 

 

4.1 Gaps or Areas for Improvement 

Despite notable progress in gesture-based human–computer interaction and wearable input devices, several important 

limitations remain in existing smart glove systems that this research seeks to overcome. While IMU-based and flex-

sensor-based gloves enable basic cursor control and gesture recognition, most implementations rely on limited sensing 

configurations, restricting accurate detection of complex finger and hand movements. Many existing systems also depend 

on fixed threshold-based or user-specific calibration methods, which reduces adaptability and consistency across different 

users and usage conditions. 

Current gesture recognition approaches often focus on a narrow set of predefined actions, primarily addressing basic 

mouse operations, and do not adequately support scalable or customizable gesture sets for advanced interaction scenarios. 

Wireless communication is commonly limited to simple data transmission without intelligent power management or 

latency optimization, which affects long-term usability. In addition, most reported systems evaluate performance only in 

controlled desktop environments, with limited validation in real-world applications such as assistive technologies, 

immersive interfaces, or industrial human–machine interaction. 

This research addresses these gaps by proposing an enhanced smart glove framework that integrates multi-sensor fusion 

for improved gesture precision, applies machine learning models capable of adapting to user variability, and supports an 
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extensible gesture vocabulary for diverse applications. The system further emphasizes efficient wireless communication, 

real-time processing, and broader application validation, enabling a more robust, user-friendly, and scalable gesture-

based interaction solution. 

V. SYSTEM ARCHITECTURE 

 

The proposed system integrates wearable sensing, intelligent gesture recognition, wireless communication, and user-

centric system control into a unified framework for natural human–computer interaction. The overall architecture is 

divided into four closely coupled subsystems that collectively enable accurate, real-time, and intuitive gesture-based 

navigation. The gesture sensing layer consists of a smart glove embedded with an MPU6050 accelerometer–gyroscope 

module, a flex sensor, and tactile push buttons. The IMU captures multi-axis acceleration and angular velocity data to 

detect hand orientation, tilt, and motion dynamics, while the flex sensor measures finger bending to identify gestures 

such as dragging or zooming. The tactile buttons provide explicit input for actions such as left-click, right-click, and 

mode switching. Together, these components generate continuous multidimensional sensor data representing the user’s 

hand movements and interaction intent. The embedded processing layer is implemented using an Arduino-based 

microcontroller mounted on the glove. This controller continuously samples sensor readings, performs basic 

preprocessing such as noise reduction, scaling, and data framing, and converts raw signals into structured packets suitable 

for wireless transmission. This local processing reduces communication overhead, minimizes latency, and improves 

system responsiveness during continuous gesture input. The modular firmware design also allows easy integration of 

additional sensors or preprocessing techniques in future system upgrades. The wireless communication layer enables 

real-time data transfer between the glove and the host system using an HC-05 Bluetooth module. Sensor packets are 

transmitted wirelessly to a paired receiver connected to the computer via a USB serial interface. This design eliminates 

physical constraints associated with wired input devices, allowing unrestricted hand movement and improved user 

comfort during operation. Bluetooth-based communication also provides low power consumption and sufficient 

bandwidth to support continuous sensor streaming without noticeable delay. The application and intelligence layer 

operates on the host system and forms the core decision-making component of the architecture. A Python-based control 

engine receives incoming data using serial communication libraries and forwards it to a trained machine learning model 

for gesture classification. Supervised learning algorithms such as K-Nearest Neighbors, Support Vector Machines, 

Decision Trees, and Random Forests are employed to recognize gestures with high accuracy by learning complex patterns 

from labeled multi-sensor datasets. The trained models improve robustness against variations in gesture speed, hand 

orientation, and individual user behavior. Once a gesture is identified, it is mapped to corresponding system commands 

using automation libraries, enabling smooth cursor movement, clicking, dragging, scrolling, and zooming actions in real 

time. Adaptive sensitivity and scaling mechanisms are applied to ensure precise control while preventing unintended 

cursor jumps caused by abrupt hand motions. The mapping logic is configurable, allowing users to customize gesture-to-

action assignments based on personal preference or application requirements. To validate the feasibility of the proposed 

architecture, a functional prototype was developed demonstrating end-to-end system operation. The smart glove hardware 

successfully captures hand gestures and transmits data wirelessly to the host system, where gestures are accurately 

classified and translated into mouse operations. Experimental evaluation shows low response latency and high gesture 

recognition accuracy under normal usage conditions. Usability testing confirms that the system provides a comfortable 

and intuitive interaction experience over extended periods of use. The modular nature of the architecture enables future 

expansion, including the integration of additional sensing modalities such as multi-finger flex sensors, pressure sensors, 

or electromyography (EMG) signals, as well as the adoption of adaptive or deep learning models for personalized gesture 

recognition. Overall, the proposed system architecture ensures seamless integration of wearable hardware, intelligent 

gesture interpretation, and real-time system control, offering a scalable, robust, and user-friendly solution for next-

generation human–computer interaction. 
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Fig. 1  Proposed System Architecture of the Bluetooth Enabled Smart Glove for Gesture-Based System Navigation  

 

VI.     METHODOLOGY 

 

The proposed smart glove system adopts a unified approach integrating wearable sensing, wireless communication, 

machine learning–based gesture recognition, and real-time control to enable intuitive human–computer interaction. The 

methodology includes gesture data acquisition, sensor data processing, gesture classification, and system command 

execution. 

 

6.1 Gesture Data Acquisition and Sensor Management 

The system begins with gesture data acquisition using sensors embedded within the smart glove. An MPU6050 

accelerometer–gyroscope module captures real-time hand orientation, tilt, and motion dynamics across multiple axes. A 

flex sensor mounted on the finger detects bending actions, enabling identification of gestures such as drag and zoom, 

while tactile push buttons provide discrete input for click-based operations. 

The sensor signals are continuously sampled by the onboard microcontroller. To ensure reliable readings, basic signal 

conditioning is applied to minimize noise caused by rapid hand movement or minor vibrations. This preprocessing step 

ensures accurate representation of user gestures before further processing. 

 

6.2 Embedded Processing and Wireless Data Transmission 

The conditioned sensor data is processed by an Arduino-based microcontroller mounted on the glove. The controller 

performs normalization and data framing to convert raw sensor values into structured packets suitable for transmission. 

These packets include accelerometer readings, gyroscope values, flex sensor output, and button states. 

Wireless communication is established using an HC-05 Bluetooth module, which transmits the processed data to a paired 

receiver connected to the host computer via USB serial interface. This wireless design allows unrestricted hand movement 

and eliminates dependency on physical connections, improving user comfort and usability. 
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6.3 Gesture Classification Using Machine Learning  

Upon reception at the host system, the incoming data is forwarded to a machine learning–based gesture recognition 

module. A labeled dataset containing multiple gesture samples is used to train supervised learning algorithms such as K-

Nearest Neighbors, Support Vector Machines, Decision Trees, and Random Forests. 

These models analyze multi-dimensional sensor patterns to classify gestures accurately, even under variations in hand 

speed, orientation, and user behavior. The trained classifier operates in real time, ensuring low-latency gesture recognition 

suitable for continuous interaction. 

 

6.4 System Command Mapping and Execution 

Once a gesture is recognized, it is mapped to the corresponding system command using automation libraries. Cursor 

movement is controlled through hand tilts, while finger bending and button inputs trigger actions such as clicking, 

dragging, scrolling, and zooming. 

The execution engine ensures smooth and stable cursor response by applying scaling and sensitivity adjustments. This 

allows precise control while preventing abrupt movements caused by sudden hand motions 

 

6.5IoT-Enabled Monitoring and Interface Support  

For monitoring and analysis, the system supports optional IoT integration using a NodeMCU ESP8266 module. Gesture 

activity, system response time, and usage statistics are periodically uploaded to a cloud platform for visualization and 

logging. 

A lightweight web interface allows users to view interaction statistics and system performance metrics, while developers 

or administrators can analyze gesture accuracy and system reliability. This monitoring layer supports system evaluation 

and future optimization. 

 

6.6 Performance Evaluation and User Adaptability 

The system continuously evaluates performance based on gesture recognition accuracy, response latency, and stability. 

By collecting user interaction data, the model can be retrained to improve recognition accuracy for individual users. 

This adaptability ensures consistent performance across different hand sizes, motion styles, and usage conditions, 

enhancing overall user experience. 

 

6.7 Overall System Workflow 

The complete operational flow of the smart glove system is summarized below: 

 

1. Sensors embedded in the glove capture hand motion, finger bending, and button inputs. 

2. The microcontroller preprocesses and structures sensor data. 

3. Data is transmitted wirelessly via Bluetooth to the host system. 

4. The machine learning model classifies the incoming gesture. 

5. The recognized gesture is mapped to a corresponding system command. 

6. Cursor movement or mouse actions are executed in real time. 

7. Optional IoT modules log system data to the cloud. 

8. Performance metrics are analyzed for accuracy and responsiveness. 

 

Through this integrated methodology, the smart glove enables natural, efficient, and reliable gesture-based system 

navigation, offering a practical alternative to conventional input devices. 

 

VII. IMPLEMENTATION ENVIRONMENT 

 

7.1 Hardware Implementation 

The smart glove system is built around a wearable sensing unit designed to capture hand movements, finger actions, and 

user input in real time. The core sensing component is the MPU6050 accelerometer–gyroscope module, which provides 

3-axis acceleration and 3-axis angular velocity data for detecting hand orientation, tilt, and motion dynamics. A flex 

sensor mounted on the finger measures bending resistance changes corresponding to finger movement, enabling 

recognition of gestures such as dragging and zooming. Tactile push buttons are integrated into the glove to support 

discrete operations including left-click, right-click, and mode switching. 

 

The prototype system employs essential electronic components to ensure accurate sensing, reliable processing, and 

wireless data transmission. An Arduino UNO microcontroller serves as the central control unit, responsible for acquiring 

sensor readings, performing basic preprocessing, and formatting data for transmission. The MPU6050 communicates 

with the microcontroller via the I2C protocol, ensuring efficient and synchronized data exchange. The flex sensor output 
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is read through the analog input pins, while push buttons are interfaced using digital input pins with appropriate pull-up 

resistors to ensure stable operation. 

Wireless communication between the glove and the host system is achieved using an HC-05 Bluetooth module. The 

module transmits processed sensor data in real time to a paired receiver connected to the computer through a USB serial 

interface. This wireless setup eliminates physical constraints associated with wired input devices and allows free hand 

movement during interaction. A rechargeable 5V power source supplies energy to the glove circuitry, ensuring portability 

and continuous operation. 

All sensor interfacing, data acquisition, and Bluetooth communication logic are programmed using the Arduino IDE. 

Embedded C/C++ code handles sensor initialization, data sampling, preprocessing, and packet transmission. The compact 

and modular hardware design enables stable performance while allowing future expansion, such as the addition of 

multiple flex sensors or advanced biosignal sensors. This hardware implementation provides a reliable and cost-effective 

foundation for real-time gesture-based system navigation. 

 

 
Figure 2: Complete Assembled Hardware Prototype 

 

7.2 Software Implementation 

The software stack of the smart glove prototype integrates embedded firmware, real-time data communication, machine 

learning–based gesture recognition, and system-level automation into a cohesive workflow. The Arduino-based 

microcontroller firmware follows a continuous polling architecture in which the main loop acquires data from the 

MPU6050 accelerometer–gyroscope, flex sensor, and tactile buttons, performs basic preprocessing such as scaling and 

noise reduction, and packages the sensor values into structured data frames for wireless transmission. Sensor interfacing 

and communication are implemented using standard libraries such as Wire.h for I2C communication with the IMU and 

SoftwareSerial.h for Bluetooth data exchange. 

 

Processed sensor data is transmitted wirelessly via the HC-05 Bluetooth module to a host computer, where it is received 

through a serial communication interface. On the host system, a Python-based control engine manages data reception, 

decoding, and real-time processing using the PySerial library. Incoming sensor streams are buffered and passed to a 

trained machine learning module responsible for gesture classification. The gesture recognition models are developed 

using the Scikit-learn framework, implementing supervised algorithms such as K-Nearest Neighbors, Support Vector 

Machines, Decision Trees, and Random Forests. These models are trained on labeled multi-dimensional sensor datasets 

and evaluated using standard performance metrics such as accuracy, precision, recall, and response latency. 

 

Once a gesture is classified, the recognized output is forwarded to an automation layer implemented using the PyAutoGUI 

library. This layer translates gestures into corresponding system commands, enabling cursor movement, clicking, 

dragging, scrolling, and zooming operations in real time. Sensitivity scaling and smoothing functions are applied to ensure 

stable cursor behavior and prevent abrupt movements caused by sudden hand motion. 

 

For monitoring and analysis, optional logging functionality is implemented using Python file handlers and data 

visualization libraries. Gesture activity, classification results, and response times are stored locally for performance 

evaluation and future model refinement. The modular software architecture allows easy extension to advanced learning 

models, user-specific calibration routines, and application-specific gesture mapping. Overall, the software 

implementation ensures reliable real-time gesture recognition, seamless system interaction, and efficient integration 

between wearable hardware and intelligent control logic. 

https://ijarcce.com/
https://ijarcce.com/


ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE 

International Journal of Advanced Research in Computer and Communication Engineering 

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 12, December 2025 

DOI:  10.17148/IJARCCE.2025.1412140 

© IJARCCE                This work is licensed under a Creative Commons Attribution 4.0 International License                 1028 

7.3 Software Implementation 

 

 
Figure 3: Dashboard of Right Click Pressed 

 

 
Figure 4: Dashboard of Left Click Pressed 

 

 
Figure 5: Dashboard of Double Click Pressed 
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VIII.      MODULES 

 

8.1 Gesture Sensing Module 

The gesture sensing module is responsible for capturing hand movements, orientation, and finger actions and converting 

them into electrical signals for further processing. This module primarily consists of an MPU6050 accelerometer–

gyroscope sensor, a flex sensor, and tactile push buttons embedded within the glove. The MPU6050 operates based on 

micro-electro-mechanical systems (MEMS) technology, measuring linear acceleration and angular velocity along three 

orthogonal axes. These measurements enable accurate detection of hand tilt, rotation, and dynamic motion. The flex 

sensor functions by changing its electrical resistance when bent, allowing precise measurement of finger movement. This 

variation in resistance is converted into voltage signals using appropriate voltage divider circuits, which are then read by 

the microcontroller’s analog input pins. Tactile push buttons provide reliable digital input for discrete actions such as 

left-click, right-click, and mode switching. Together, these sensing elements generate continuous and discrete data 

streams that accurately represent the user’s gesture intent, forming the foundation for effective gesture-based system 

navigation. 

 

8.2 Embedded Processing Module 

The embedded processing module serves as the core control unit of the smart glove system, responsible for acquiring 

sensor data, performing preliminary signal conditioning, and coordinating wireless communication. This module is 

implemented using an Arduino-based microcontroller, which continuously reads inputs from the accelerometer–

gyroscope, flex sensor, and tactile buttons. The microcontroller operates at a fixed clock frequency to ensure consistent 

sampling and timely processing of gesture-related data. Raw sensor readings are subjected to basic preprocessing 

techniques such as scaling, normalization, and noise filtering to improve signal quality and reduce the impact of minor 

hand vibrations or abrupt motion. The processed data is then organized into structured packets containing motion, 

orientation, and finger-bend information. These packets are prepared in a lightweight format suitable for real-time 

transmission. By handling preprocessing locally on the glove, the embedded processing module reduces communication 

overhead and ensures faster system response, forming a reliable foundation for accurate gesture recognition. 

 

8.3 Wireless Communication Module 

The wireless communication module enables real-time transmission of gesture data from the smart glove to the host 

system. Processed sensor data generated by the embedded microcontroller is transmitted using an HC-05 Bluetooth 

module operating in the 2.4 GHz ISM band. The Bluetooth module establishes a serial wireless link between the glove 

and a paired receiver connected to the computer. Gesture data packets containing accelerometer, gyroscope, flex sensor, 

and button information are sent at regular intervals to ensure continuous and smooth interaction. The baud rate and 

transmission frequency are configured to balance low latency and reliable communication. On the receiver side, the 

Bluetooth module converts the wireless data stream back into serial form, which is read by the host system through a 

USB interface. Error-free data transfer is ensured through structured packet formatting and synchronization checks, 

minimizing data loss during rapid hand movements. This wireless communication approach eliminates physical 

constraints, enhances user comfort, and allows free hand motion while maintaining stable and responsive gesture-based 

control. 

 

8.4 Power Management and Control Module 

This module encompasses the electronic circuitry and control logic required for stable operation of the smart glove 

system. Power management is handled using a regulated 5V supply derived from a rechargeable battery, ensuring 

consistent voltage levels for the microcontroller, sensors, and wireless communication module. Voltage regulation 

circuits protect sensitive components from fluctuations and prevent overcurrent conditions during continuous 

operation.The control module is implemented using an Arduino-based microcontroller, which manages sensor 

acquisition, data preprocessing, and communication tasks. Analog input pins are used to read continuous signals from 

the flex sensor, while digital input pins interface with tactile push buttons for discrete user actions. The MPU6050 sensor 

communicates with the controller through the I2C protocol, enabling synchronized access to acceleration and gyroscope 

data. Wireless communication control is handled through serial interfaces connected to the HC-05 Bluetooth module. 

The microcontroller coordinates data transmission timing to ensure low-latency and reliable gesture updates. Power-

efficient operation is achieved by optimizing sampling rates and communication intervals, reducing unnecessary energy 

consumption during idle periods. This integrated power electronics and control module ensures reliable sensing, efficient 

power usage, and smooth coordination between hardware components in the smart glove system. 

 

8.5 Gesture Recognition and Machine Learning Module 

The gesture recognition module employs supervised machine learning techniques to accurately classify hand gestures 

based on multi-dimensional sensor data collected from the smart glove. The module processes time-series inputs 
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consisting of accelerometer readings, gyroscope values, flex sensor measurements, and button states. These features 

collectively represent the dynamic and static characteristics of user hand movements. The model architecture includes a 

feature preprocessing stage followed by classification algorithms such as K-Nearest Neighbors, Support Vector 

Machines, Decision Trees, and Random Forests. These models learn discriminative patterns from labeled gesture 

datasets, enabling reliable differentiation between gestures such as cursor movement, dragging, clicking, scrolling, and 

zooming. Feature normalization and dimensional scaling are applied to improve model stability and classification 

accuracy across different users and gesture speeds. The gesture recognition models are trained offline using recorded 

gesture datasets on standard computing platforms. Training involves splitting the dataset into training and testing subsets 

to evaluate accuracy and robustness. Once trained, the optimized models are deployed within the host-side inference 

engine, where they perform real-time gesture classification on incoming sensor data streams. The classification results 

are immediately forwarded to the system control layer, allowing low-latency execution of corresponding system 

commands. This machine learning–based module significantly enhances adaptability, robustness, and accuracy compared 

to traditional threshold-based gesture recognition approaches. 

 

IX.     PERFORMANCE EVALUATION 

 

9.1 Gesture Recognition Model Training and Validation 

The gesture recognition models were trained and evaluated using a custom dataset collected from multiple users 

performing predefined hand gestures while wearing the smart glove. The dataset consists of time-series sensor readings 

obtained from the MPU6050 accelerometer–gyroscope, flex sensor, and tactile button states. Each gesture sample 

includes multi-axis acceleration values, angular velocity measurements, finger-bend data, and discrete button inputs, 

capturing both dynamic and static characteristics of hand motion. Data preprocessing involved removing noisy samples, 

applying normalization to scale sensor values into a uniform range, and segmenting continuous sensor streams into fixed-

length windows representing individual gesture instances. Each window was labeled according to the performed gesture, 

forming a supervised learning dataset. To ensure fair evaluation and prevent bias, the dataset was divided into training, 

validation, and testing sets in a 70:15:15 ratio, with samples shuffled across users to evaluate generalization performance 

Multiple supervised machine learning models were implemented and compared, including K-Nearest Neighbors (KNN), 

Support Vector Machines (SVM), Decision Trees, and Random Forest classifiers. Feature vectors extracted from each 

gesture window were used as model inputs. Hyperparameters such as the number of neighbors in KNN, kernel type in 

SVM, tree depth, and number of estimators in Random Forest were tuned using the validation set to achieve optimal 

performance Model evaluation was performed using standard classification metrics such as accuracy, precision, recall, 

and F1-score. Response latency was also measured to assess real-time suitability. Among the evaluated models, the 

Random Forest classifier demonstrated the highest overall accuracy and robustness to variations in gesture speed and 

hand orientation, while maintaining low inference latency suitable for continuous system navigation. These results 

confirm the effectiveness of the proposed gesture recognition approach for real-time human–computer interaction. 

 

9.2 Prediction Accuracy Metrics 

The trained gesture recognition models achieved an overall classification accuracy of approximately 93–95% across the 

evaluated gesture set, with the Random Forest classifier yielding the highest performance. Precision and recall values 

remained consistently above 90%, indicating reliable detection of intended gestures with minimal false activations. The 

average system response latency was measured to be below 120 ms, which is suitable for real-time cursor control and 

interactive applications.These performance metrics demonstrate that the proposed smart glove system can accurately and 

responsively interpret hand gestures, enabling smooth and reliable human–computer interaction under normal usage 

conditions. 

 

9.3 Wireless Communication and System Performance 

The smart glove prototype was evaluated for wireless communication reliability, gesture transmission responsiveness, 

and continuous operational stability. Testing was conducted by performing repeated gesture inputs at varying hand 

speeds, orientations, and distances between the glove and the host system to assess communication robustness under 

different usage conditions. Bluetooth-based data transmission using the HC-05 module demonstrated reliable 

connectivity with an average packet delivery success rate exceeding 99% within a typical operating range of up to 8–10 

meters in an indoor environment. The average transmission delay from glove to host system was measured to be less 

than 100 milliseconds, enabling smooth real-time gesture interpretation without noticeable lag during cursor movement 

or click operations. The system maintained stable operation during prolonged usage sessions, with no significant data 

loss or connection drops observed under normal conditions. Gesture execution consistency remained high even during 

rapid hand movements, confirming the effectiveness of structured data packets and synchronized transmission.  

 

 

https://ijarcce.com/
https://ijarcce.com/


ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE 

International Journal of Advanced Research in Computer and Communication Engineering 

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 12, December 2025 

DOI:  10.17148/IJARCCE.2025.1412140 

© IJARCCE                This work is licensed under a Creative Commons Attribution 4.0 International License                 1031 

9.4 System Integration and End-to-End Testing 

Comprehensive integration testing was conducted to evaluate the complete workflow of the smart glove system, from 

gesture sensing and data acquisition to wireless transmission, gesture recognition, and system command execution. The 

integrated hardware and software components operated cohesively, demonstrating reliable end-to-end functionality 

during continuous interaction scenarios. The smart glove hardware successfully captured hand motion, finger bending, 

and button inputs, with the embedded microcontroller consistently preprocessing and transmitting sensor data to the host 

system via Bluetooth. The wireless communication link remained stable throughout extended testing sessions, with 

automatic reconnection handling occasional transient disconnections without manual intervention. On the host system, 

the Python-based control engine reliably received incoming data streams, classified gestures using trained machine 

learning models, and executed corresponding mouse actions in real time. End-to-end latency from gesture execution to 

on-screen response remained within acceptable limits for interactive use. The system maintained consistent performance 

across prolonged operation, confirming effective integration between wearable hardware, communication modules, 

machine learning inference, and automation logic. These results validate the robustness and practicality of the proposed 

smart glove system for real-world human–computer interaction applications. 

 

9.5 Result Analysis 

 

9.5.1 Dataset Characteristics 

 

Sensor Feature Mean Min Max 

Flex Sensor Reading (Normalized) 0.43 0.18 0.91 

Accelerometer X (m/s²) 1.28 -3.72 4.15 

Accelerometer Y (m/s²) 0.87 -4.10 3.96 

Accelerometer Z (m/s²) 9.12 7.45 11.01 

Gyroscope X (°/s) 14.2 -28.7 55.3 

Gyroscope Y (°/s) 11.6 -23.1 47.8 

Gyroscope Z (°/s) 8.3 -19.4 41.2 

 

9.5.2 Model Performance Comparison 

                

 

 

 

 

 

 

 

 

 

 

 

9.5.3 Training Results 

 

 
Figure 6: Model Loss Error (MSE) during Training 

Sensor Feature Mean Min Max 

Accelerometer X (m/s²) 1.42 –2.81 3.67 

Accelerometer Y (m/s²) 0.95 –3.12 4.09 

Accelerometer Z (m/s²) 8.63 6.92 10.21 

Gyroscope Roll (°/s) 18.5 2.4 71.3 

Gyroscope Pitch (°/s) 14.9 1.8 65.7 

Gyroscope Yaw (°/s) 22.7 3.1 89.5 

Flex Sensor Bend (kΩ) 17.3 12.8 24.6 
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Figure 7: Model Accuracy 

 

X.     CONCLUSION 

 

This research successfully designed and validated a smart glove–based gesture control system that addresses key 

limitations of traditional human–computer interaction methods. By integrating wearable sensing, wireless 

communication, and machine learning–based gesture recognition, the proposed system enables natural, intuitive, and 

real-time system navigation without the need for conventional input devices such as a mouse or keyboard. The system 

employs an MPU6050 accelerometer–gyroscope, flex sensor, and tactile buttons to capture hand motion, finger bending, 

and discrete actions. Machine learning models trained on multi-dimensional sensor data achieved high gesture 

recognition accuracy, with the Random Forest classifier providing the most reliable performance. Low response latency 

ensured smooth cursor movement and interaction, making the system suitable for continuous real-time usage. Prototype 

testing confirmed reliable end-to-end operation, from gesture sensing and Bluetooth transmission to gesture 

classification and command execution. The wireless communication link remained stable during extended usage, and 

the integrated software framework effectively translated recognized gestures into mouse operations. The modular 

architecture supports future enhancements such as additional sensors, adaptive learning models, and application-specific 

gesture customization. Overall, the proposed smart glove system offers a scalable, cost-effective, and user-friendly 

solution for next-generation human–computer interaction. It has potential applications in assistive technologies, 

touchless computing environments, virtual and augmented reality systems, and smart interfaces, contributing to more 

natural and accessible interaction paradigms. 

 

10.1 Future Work 

Future enhancements can significantly improve the scalability, adaptability, and usability of the proposed smart glove 

system. The gesture recognition capability can be expanded by integrating additional sensing modalities such as multiple 

flex sensors for individual fingers, pressure sensors for force-based interaction, or electromyography (EMG) sensors to 

capture muscle activity. These enhancements would enable recognition of more complex hand poses and gestures, 

making the system suitable for advanced interaction scenarios. On the algorithmic side, gesture recognition performance 

can be further improved by adopting deep learning approaches such as Long Short-Term Memory (LSTM) networks, 

Transformer-based architectures, or hybrid models that capture temporal dependencies more effectively. Online and 

incremental learning techniques could also be explored to allow the system to adapt dynamically to individual users’ 

gesture styles over time without requiring complete retraining. Wireless communication reliability and energy efficiency 

can be enhanced by migrating to low-energy Bluetooth protocols or integrating Wi-Fi–enabled microcontrollers for 

extended range and multi-device connectivity. Improved power management strategies, including sleep modes and 

adaptive sampling rates, could extend battery life for long-term daily usage. The system can be extended beyond desktop 

navigation to applications such as virtual and augmented reality, robotic control, assistive technologies for users with 

limited mobility, gaming interfaces, and industrial human–machine interaction. Integration with IoT platforms and 

mobile applications would allow remote monitoring, gesture customization, and usage analytics. For real-world 

deployment, extensive user studies involving diverse user groups are required to evaluate comfort, learning curve, long-

term usability, and accessibility. Further miniaturization of hardware through custom PCBs and ergonomic glove design 

would enhance wearability and user acceptance. Addressing these areas will help transform the proposed smart glove 

into a robust, versatile, and commercially viable human–computer interaction solution. 
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