

Smart Mining Helmet: An IoT-Based Automated Safety Monitoring, Hazard Detection, and Worker Protection System

Dr. R Kanagavalli¹, Pradeep S V², Santhosh B T³, Dhanush B C⁴, Akshay Ramakrishna Bhat⁵

Department of Information Science and Engineering, The Oxford College of Engineering,

Affiliated to Visvesvaraya Technological University, Belagavi, Karnataka, India¹⁻⁵

Abstract: The Smart Mining Helmet is an innovative Internet of Things (IoT)-based system designed to improve safety and real-time monitoring in hazardous underground environments. It integrates a variety of sensing technologies to detect dangerous gases, track miner health, and provide continuous environmental awareness with minimal manual effort. The system includes a durable helmet equipped with gas sensors, temperature and humidity modules, a heartbeat sensor, and an ESP8266 microcontroller. When a miner enters a work zone, the sensors measure gas levels, thermal conditions, and vital signs to record critical safety information. This data is instantly transmitted to a cloud platform and a monitoring interface for immediate access. Alerts are generated when gas concentrations exceed safe limits, when temperature or humidity becomes unstable, or when abnormal heartbeat values are detected. The gas sensors monitor early traces of harmful emissions, while the environmental modules help maintain awareness of unsafe atmospheric shifts. The interface displays live data such as gas intensity, miner identification, temperature, and heart rate. Overall, the Smart Mining Helmet enhances worker protection, reduces risk, and supports rapid emergency response by combining automation, sensing, and real-time analysis into a single IoT-driven safety solution.

I. INTRODUCTION

Mining is one of the most essential industries supporting global development, yet it continues to expose workers to severe and unpredictable hazards. Underground environments often contain toxic gases, unstable temperatures, poor ventilation, and limited communication pathways, making safety monitoring difficult and inefficient. Conventional safety practices rely heavily on manual checking and periodic supervision, which fail to provide continuous awareness of threats. As a result, miners remain highly vulnerable to sudden environmental changes, equipment failures, and health-related emergencies. The need for a reliable, real-time safety solution has therefore become more important than ever in modern mining operations.

In recent years, the rapid advancement of Internet of Things (IoT) technologies has introduced new opportunities for transforming traditional industrial safety systems. IoT enables sensors, wearable devices, and cloud platforms to communicate seamlessly, allowing continuous monitoring of conditions and instant reporting of risks. When applied to mining, IoT can overcome many limitations of manual safety checks by providing persistent tracking of gas levels, temperature variations, humidity changes, and worker health indicators. These capabilities shift mining safety from a reactive system to a proactive one, offering supervisors accurate information at all times and reducing the likelihood of accidents or delays in emergency response.

The Smart Mining Helmet leverages this technology by integrating multiple sensors into a compact and durable wearable device specifically designed for miners. The system incorporates gas sensors for hazardous gas detection, temperature and humidity modules for environmental measurement, a heartbeat sensor for health monitoring, and an RFID unit for identification and location tracking. An ESP8266 microcontroller collects data from all sensors and transmits it wirelessly to a cloud dashboard, where supervisors can observe real-time readings. The helmet also includes a buzzer to warn miners immediately whenever unsafe conditions are detected.

to monitor the safety conditions around miners automatically, without needing to manually check instruments or inspect the surroundings continuously. The system consists of hardware components such as gas sensors, temperature and humidity sensors, a heartbeat sensor, and an ESP8266 microcontroller. Each miner is associated with an RFID tag for identification. When the worker enters the mining area wearing the helmet, the RFID module detects the miner and begins recording important information such as gas levels, body condition, and environmental readings. The sensors measure these values continuously, helping the system determine when dangerous gas concentrations are present or

when the miner's health indicators show abnormalities. Temperature and humidity sensors detect changes in underground conditions that may signal unsafe environments, especially in deep tunnels where heat, moisture, and gas buildup can occur rapidly. Once the data is collected, it is transmitted wirelessly using the ESP8266 module. The system sends real-time updates to a central monitoring platform, allowing supervisors to receive instant alerts directly on their computers or smartphones. Along with this, a web-based dashboard displays all sensor readings, detected gas levels, miner identification, and current environmental conditions. Instead of manually checking each tunnel or using handheld detectors repeatedly, supervisors can simply open the dashboard to know the status of every miner and their surroundings at any time. For example, if methane concentration begins to rise beyond the safe threshold, the system immediately issues a warning to both the monitoring station and the miner wearing the helmet. This system is designed not just for hazard detection but also for continuous health and safety awareness. By linking the sensors with cloud-based analytics, the monitoring team can view heart rate trends, temperature changes, and other health-related information of the miner.

The objectives of the Smart Mining Helmet:

1. Automating safety monitoring—eliminating the need to manually inspect gas levels.
2. Detecting hazardous gases—Detecting hazardous gases or check environmental conditions frequently.
3. Maintaining safe working conditions—monitoring environmental factors to ensure miners remain protected throughout their operations.
4. Providing health-related insights—giving supervisors easy access to vital information about the miner's physical condition.
5. Sending real-time alerts – notifying miners and monitoring staff about dangerous gas levels, abnormal health readings, or sudden environmental changes through wireless interfaces.

The significance of implementing such a system is substantial. First, it reduces the risk of mining accidents, one of the most serious challenges in underground operations. A considerable number of incidents occur simply because workers are unaware of rising gas levels or sudden changes in environmental conditions. By offering timely notifications, the Smart Mining Helmet helps miners respond to hazards before they become dangerous. Second, it can improve operational efficiency, as supervisors will avoid unnecessary inspections and gain better awareness of the conditions workers are exposed to. Third, it contributes to health and safety by ensuring that harmful gases, heat stress, or abnormal physical conditions are detected early. Being able to track environmental and health data further contributes to safer and more controlled mining practices.

From a technological standpoint, the Smart Mining Helmet demonstrates how IoT components, cloud platforms, and wireless communication systems can work together to address real-world safety challenges. It showcases how automation and data visualization can make industrial operations more efficient and secure. This project aligns with the growing trend of smart industry solutions, where connected devices enhance workplace safety, support real-time monitoring, and promote more reliable and sustainable mining practices.

In a world where technology is rapidly changing industrial operations, the Smart Mining Helmet represents an innovative approach to worker safety management. It transforms traditional safety practices into an intelligent system that actively supports supervisors and miners in decision-making. By combining environmental sensors, microcontroller programming, the Smart Mining Helmet is much more than a basic protective device; it serves as an integrated IoT-driven platform that continuously enhances the safer mining environments.

II. PROBLEM STATEMENT AND OBJECTIVES

Modern mining operations are becoming increasingly dependent on technology for daily activities, yet one of the most essential tasks—ensuring worker safety—still relies heavily on manual inspection and periodic checks. With fast-paced working conditions, long underground shifts, and demanding routines, keeping track of environmental hazards has become a major challenge for mining teams. Workers often enter deep tunnels or work in confined spaces, but due to a lack of systematic monitoring, they may remain unaware of what gas levels are present, when conditions may become unsafe, and how rapidly environmental factors can change.

One of the most common problems observed in underground mining is the unintentional exposure of workers to hazardous conditions. Gas pockets inside tunnels, shafts, or enclosed chambers often go unnoticed until they reach dangerous levels. Toxic gases such as methane and carbon monoxide may accumulate without miners realizing it, especially in areas with poor ventilation. Environmental factors like rising temperature or humidity can also become unsafe if they are not monitored regularly. This not only creates a serious safety risk for workers but also contributes to accidents—an ongoing environmental and economic challenge in the mining industry.

Another critical aspect often ignored is health and safety awareness. Even though mining organizations are becoming more safety-conscious, most underground worksites do not maintain any proper record of the environmental conditions miners are exposed to throughout their shift. Workers may unknowingly operate in unsafe or low- visibility zones simply because conditions change quickly inside tunnels.

Traditional mining safety management depends entirely on human effort. Supervisors manually check tunnels, equipment, and environmental readings, try to remember which areas are hazardous, and respond only when they believe conditions may be becoming unsafe. This approach comes with several limitations:

- There is no automatic alert for rising hazardous gas levels.
- Safety conditions must be checked manually, which is time-consuming.
- Dangerous changes are detected only after noticeable symptoms appear, by which time the miner may already be at risk.
- There is no structured data about environmental readings or worker health. In some cases, supervisors may send workers into areas that appear normal, while completely overlooking zones where conditions have deteriorated. The absence of an intelligent monitoring mechanism leads to confusion, increased danger, and an unsafe working environment.

With the widespread availability of the Internet of Things (IoT), smart sensors, and wireless communication systems, it is now possible to develop automated, real-time monitoring solutions for mining environments. IoT technology allows physical objects—such as safety helmets and sensing modules—to communicate data to supervisors remotely. By integrating sensors and microcontrollers, it becomes possible to detect hazardous gas levels, track miner health signals, monitor temperature variations, and send alerts instantly to a monitoring device or a centralized dashboard.

A Smart Mining Helmet fulfills this requirement by acting as a digital assistant for monitoring underground safety conditions. Instead of manually inspecting each area, the system automatically detects gas levels, tracks environmental parameters, measures changes. Each miner is assigned an RFID tag linked to the helmet. When the miner enters a specific zone, the RFID reader identifies the individual and records essential details. This eliminates human error in tracking worker presence and safety information. Gas sensors embedded in the helmet measure hazardous concentrations continuously, providing accurate information about the surrounding air. Instead of guessing when a situation might become unsafe, the system can alert both the miner and the monitoring team as soon as gas levels or environmental values reach a predefined danger threshold.

To ensure worker safety, the Smart Mining Helmet integrates gas sensors and temperature sensors, which play a major role in detecting hazardous conditions. Underground tunnels release dangerous gases when structural or environmental changes occur. By monitoring these gases, the system can warn the miner before the situation becomes visibly or physically noticeable. Similarly, temperature sensors help maintain awareness of thermal conditions, especially in deep areas where heat buildup and poor ventilation are common. Any abnormal rise in temperature that could lead to unsafe working conditions is instantly reported. All these components are controlled by an ESP8266 microcontroller, which collects sensor data and sends it to the monitoring team through Wi-Fi. The ESP8266 communicates with a centralized alert system, allowing supervisors to receive messages and warnings directly on their smartphones or computers. It also uploads information to a web dashboard, where supervisors can view gas readings, environmental conditions, miner identification, and health-related information in a user-friendly format. This dashboard acts as a virtual safety control panel that can be accessed anytime. For example, if a supervisor wants to check whether a tunnel is safe before sending a worker inside, they can simply view the dashboard. This is act as a virtual safety control panel that can be accessed anytime.

Objectives of Smart Mining Helmet

The main purpose of this project is to develop an intelligent IoT-based safety management system that supports automatic monitoring and hazard detection in underground mines. The key objectives include:

1. **Automated Worker Identification:** To integrate RFID technology for identifying miners and recording essential information including their presence, location, and entry time in specific zones, eliminating manual logging.
2. **Environment Measurement Monitor:** To use gas, temperature, and humidity sensors to determine the conditions surrounding the miner, enabling timely alerts when any parameter becomes unsafe.
3. **Hazard Detection and Monitoring:** To employ gas and thermal sensors to observe environmental changes that signal dangerous situations, ensuring proper safety conditions inside tunnels.
4. **IoT-Based Data Transmission:** To use an ESP8266 microcontroller to collect all sensor data and transmit it wirelessly to both a monitoring platform and a web dashboard for real-time access.

5. **Real-Time Alerts and Health Awareness:** To provide instant notifications for hazardous gas levels, abnormal environmental readings, and irregular health indicators, and to supply safety- related insights for promoting better protection of miners

III. LITERATURE REVIEW

The Internet of Things (IoT) has emerged as a major technological advancement supporting the development of smart industrial ecosystems. With the growing demand for automation and safety in hazardous environments, many researchers have explored IoT-based solutions to improve mining safety and environmental monitoring. Several studies have focused on Many existing RFID-based mining systems focus primarily on worker entry logging and location tracking. However, most of these solutions handle only record-keeping and do not provide real-time communication or automated safety guidance that assists supervisors in making better operational decisions. Many existing RFID-based mining systems focus primarily on worker entry logging and location tracking. However, most of these solutions handle only record-keeping and do not provide real-time communication or automated safety guidance that assists supervisors in making better operational decisions in real time. Another category of research highlights the use of environmental sensors for monitoring conditions inside underground tunnels. These systems measure parameters such as temperature, humidity, or basic gas concentration, helping teams understand the state of the mining environment. While this method is helpful for safety awareness, many of these models function in isolation and do not connect to cloud platforms or alert systems. As a result, supervisors still need to check the readings manually instead of receiving automatic warnings about hazardous conditions.

In addition, various studies have explored the use of gas sensors to detect dangerous gases like methane and carbon monoxide. These gases accumulate in confined mining spaces and can be identified early using sensor-based monitoring. Although this technology is useful in laboratory and controlled research environments, many practical implementations lack integration with wireless alert mechanisms or user-friendly dashboards. Without real-time communication, workers and supervisors may not receive warnings quickly enough to respond before an incident occurs.

Some recent projects have adopted web dashboards or mobile applications for visualizing food inventory data. These dashboards display basic information such as detected gas levels, temperature readings, or miner location. However, only a few existing studies have attempted to create a comprehensive solution that merges environmental monitoring, hazard detection, single integrated system

Key Limitations of Previous Research

- Most earlier systems addressed only one aspect, such as gas detection or worker identification, instead of offering a unified safety solution.
- Real-time interaction with supervisors was limited, and many systems lacked instant notifications or wireless alert support.
- Health-related monitoring was not integrated in most studies, resulting in limited assistance for detecting miner stress or abnormal conditions.

IV. METHODOLOGY

The Smart Grocery Kit is an IoT-based system that helps people automatically monitor their groceries. Instead of checking food items manually, this system uses sensors and a microcontroller to track expiry dates, food quantity, spoilage, and nutritional details. The main idea is to make grocery management simple, automatic, and useful for everyday life.

System Setup and Components

The system consists of a smart safety helmet equipped with multiple sensing and communication modules. Each helmet includes the following parts:

- **RFID Reader** – Identifies the miner through an RFID tag attached to their helmet or uniform. This tag provides information such as the miner's ID and entry details.
- **Gas Sensor**– Detects harmful gases present in underground tunnels, such as methane or carbon monoxide, ensuring early detection of hazardous conditions.
- **LCD Display** – Shows basic information such as gas levels, temperature, miner ID, and other real- time safety data.
- **Temperature Sensor** – Checks the inside temperature to make sure food stays fresh.
- **Heartbeat Sensor**– tracks the miner's heart rate to identify signs of stress, fatigue, or medical irregularities during work.

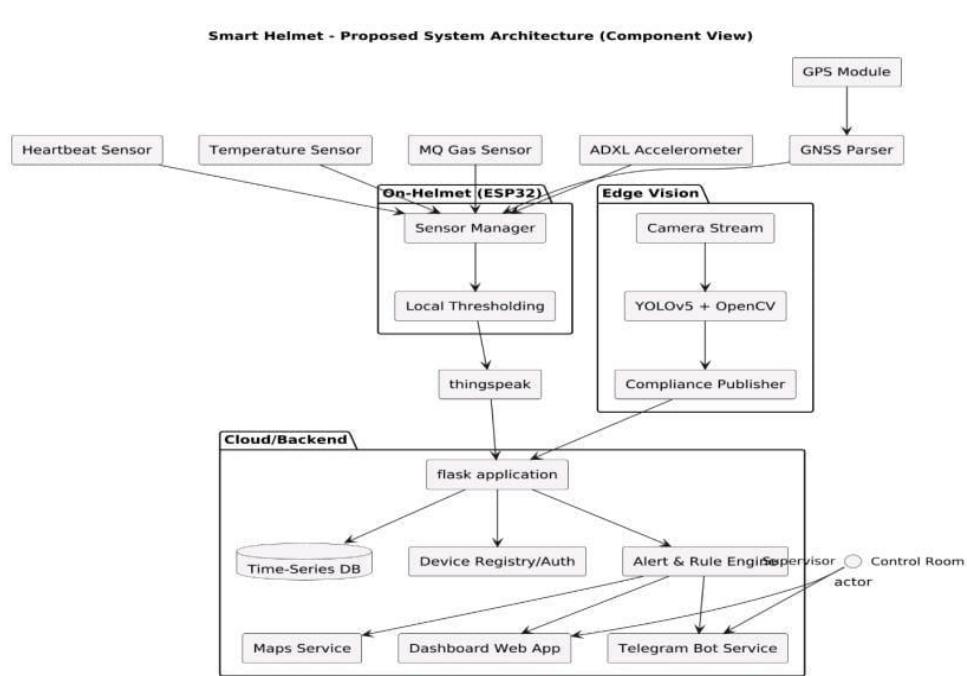


Figure 2.4.1: Architecture of the Proposed Smart Mining Helmet

How Data is Collected

When a miner enters the work zone wearing the smart helmet:

1. The RFID reader scans the miner's tag and stores important identification details such as the miner's ID, location entry, and time.
2. The gas sensor continuously measures hazardous gas levels and updates the system whenever methane, carbon monoxide, or other dangerous gases increase.
3. The temperature sensor checks if the surrounding environment is becoming too hot, helping detect unsafe thermal conditions inside the tunnel.
4. The humidity sensor monitors moisture levels to identify poor ventilation or conditions that may affect comfort and safety.

All this data goes to the ESP32, which processes the readings and decides if there is a problem.

Communication and Alerts

The system is connected to the internet using Wi-Fi.

The ESP32 sends all data to:

1. Web Dashboard

Users can open the dashboard on their phone or computer to check:

- Gas levels in the tunnel
- Temperature and humidity readings
- Heartbeat and health information
- Real-time safety status

Alert System

If something goes wrong, the system sends an alert message on Telegram.

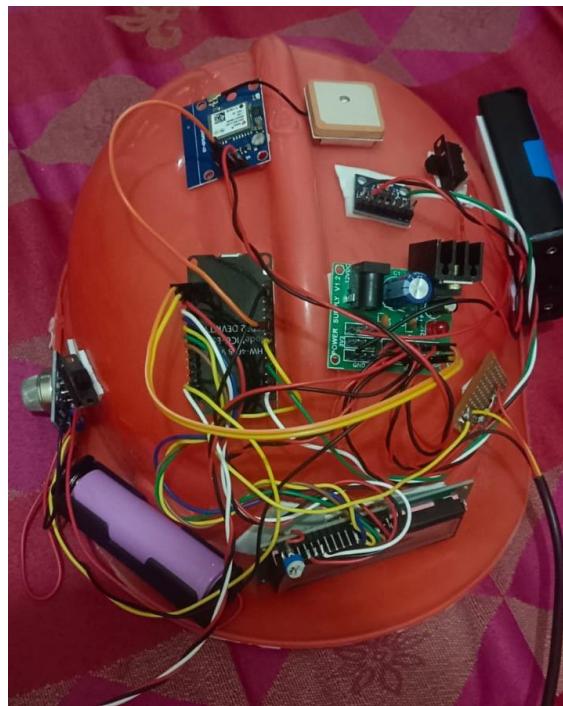
For example:

- "Gas level rising"
- "Temperature becoming unsafe"
- "Hazard detected in the tunnel" This helps users take action immediately.

Temperature Control

If the system finds that the surrounding temperature is too high or too low, it triggers an alert so that corrective measures can be taken. This helps maintain safe working conditions for miners.

V. IMPLEMENTATION


The implementation of the Smart Mining Helmet focuses on combining hardware components, sensing devices, and software systems to build a practical and automated IoT-based safety monitoring solution. The entire setup is controlled using the ESP8266 microcontroller, which acts as the main processor and wireless communication unit. It collects data from all sensors, processes it, and sends it to the monitoring team through online platforms.

Hardware Integration

The system consists of a smart safety helmet equipped with several sensing and monitoring components. Each helmet includes:

- **RFID Reader** – Used to scan the miner's identification tag and automatically record important details such as the miner's ID and entry time.
- **Gas Sensor** – Measures the concentration of hazardous gases in the tunnel and helps detect dangerous conditions early.
- **Temperature Sensor** – Monitors the surrounding temperature continuously to ensure miners are not exposed to unsafe heat levels.
- **Humidity Sensor** – Tracks moisture levels in the environment, helping identify poor ventilation or uncomfortable working conditions.
- **LCD Display** – Shows real-time information including miner ID, gas readings, temperature, and other safety details.
- **Alarm/Buzzer Unit** – Automatically activates if gas levels rise or environmental conditions become unsafe, alerting the miner immediately.

All sensors are connected to the ESP8266 through appropriate modules and wiring. The ESP8266 supplies power, collects data from all sensing units, and controls the alert system when required.

Software and Communication Workflow

The ESP32 is programmed to read values from each sensor at regular time intervals. Once the data is collected and processed, it is sent to two main platforms:

1. WebDashboard

Users can log in and view:

Health information linked from monitoring databases

The dashboard helps supervisors understand the miner's safety condition at any time without physically entering the tunnel.

2. TelegramBot

A customized bot is created to send alerts. Examples of notifications include:

- "Gas level rising"
- "Temperature becoming unsafe"
- "Hazard detected in the tunnel"

This ensures the user is informed even if they are not viewing the dashboard.

This ensures the supervisor is informed even if they are not viewing the dashboard. All data is also stored in a database, enabling the system to generate safety patterns or condition history for future analysis.

System Testing and Calibration

Before full integration, every component is tested separately.

- The RFID reader is checked to ensure correct tag reading.
- The load cell is calibrated with known weights.
- The gas and temperature sensors are tested under different conditions to verify their sensitivity and accuracy.

Once calibration is complete, sensors are connected to the ESP32, and the system is tested as a whole. Multiple scenarios—such as spoiled food, low quantity, and expired items—are simulated to confirm alert accuracy. Temperature control features are also tested by artificially changing the internal temperature.

Result of Implementation

After successful integration and testing, the Smart Grocery Kit is able to:

- Track groceries automatically
- Detect spoilage early
- Detect hazardous conditions early
- Track environmental changes accurately. Provide health details for better decision-making. This makes the system an effective IoT-based solution for improving worker safety.

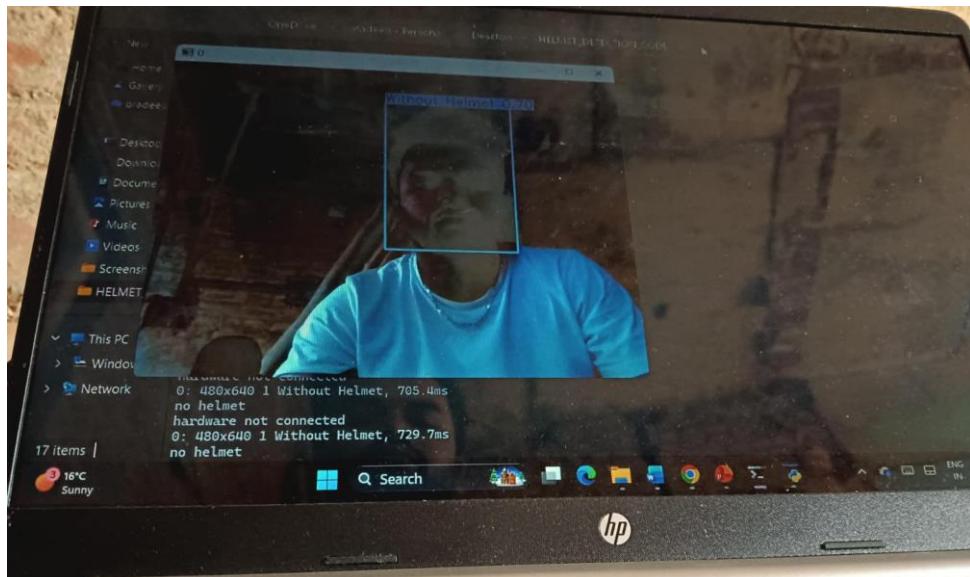


Figure: Dashboard Interface.

INTERPRETATION

The Smart Mining Helmet successfully proved its ability to automate underground safety monitoring by combining IoT technology with multiple sensors. The system functioned as expected during testing, showing that it can reliably detect hazardous conditions, track miner health indicators, and provide useful alerts to supervisors through a web dashboard and the wireless alert system.

RFID Tracking Performance

The RFID reader played a key role in miner identification and entry logging. Whenever a tagged miner entered the work zone wearing the helmet, the system immediately scanned the RFID code and retrieved important details such as the miner's ID, entry time, and assigned zone. This information was automatically sent to the monitoring dashboard and displayed in the safety interface.

During testing, the RFID reader consistently recognized each miner without errors. When a miner exited and re-entered the zone, the system correctly updated the information. This confirms that the RFID module is effective in reducing manual record keeping and eliminates the common problem of losing track of worker location and identification underground.

Gas Level Monitoring Using Gas Sensor

The gas sensor provided real-time data about the concentration of harmful gases in the mining environment. As conditions changed over time, the system continuously measured gas levels and updated the values on the dashboard. A hazard alert was generated when the gas concentration rose above a set safety limit.

The alert system delivered notifications immediately after the threshold was reached. This feature ensures that supervisors are warned about dangerous conditions early, helping prevent accidents and allowing miners to evacuate or respond before the situation becomes critical.

Temperature Control and Safety Protection Temperature monitoring also performed efficiently. The temperature sensor recorded the surrounding conditions inside the mining area and sent updates to the system. In experimental trials, whenever the temperature went beyond safe limits, the system immediately detected the change and updated the readings on the dashboard.

Gas Hazard Detection Through Gas Sensor The gas sensor detected early hazardous conditions by sensing dangerous gases released inside underground tunnels. During testing in controlled environments, the sensor picked up changes in air composition before the levels became critical. Once detected, a warning message was sent to the supervisor.

This feature allows mining teams to respond to unsafe conditions before they become harmful, reducing both accident risks and exposure to toxic gases.

Health Awareness & Dashboard Function

One of the key strengths of the system is the web dashboard. Besides showing safety status, it displays health-related information for each miner, including heartbeat rate, body condition indicators, and exposure history. This helps supervisors make informed decisions about worker safety and encourages timely action in case of abnormal readings.

Overall System Performance

All modules worked smoothly together, showing efficient communication between sensors, the ESP8266, the dashboard, and the alert system. The Smart Mining Helmet greatly reduced the need for manual inspection, prevented unnoticed hazardous conditions, and improved supervisor awareness about both environmental safety and miner health. The results confirm that IoT-based safety systems can be successfully implemented in mines, making underground monitoring smarter, safer, and more efficient.

VI. CONCLUSION

The Smart Mining Helmet successfully demonstrates how IoT technology can be applied to automate and optimize safety management in underground mining environments. By integrating RFID identification, gas sensors, temperature sensors, heartbeat sensors, and an ESP8266 microcontroller, the system effectively monitors environmental conditions, worker location, and basic health indicators. Real-time alerts through the wireless notification system and updates on a web-based dashboard.

The system not only reduces manual inspection but also helps prevent dangerous incidents by maintaining continuous surveillance of the underground atmosphere and alerting supervisors in advance of any hazards. Additionally, the inclusion of health monitoring features encourages safer working practices by providing essential information that keeps miners protected throughout their shift. Testing and implementation results indicate that the Smart Mining Helmet is reliable, efficient, and practical for everyday mining operations. The combination of real-time monitoring, automated alerts, and continuous environmental tracking makes it a comprehensive solution for mines aiming to improve worker safety.

In conclusion, the Smart Mining Helmet showcases the potential of IoT-based smart systems to enhance convenience, protection, and safety awareness in high-risk workplaces. Its integration of automation, communication, and worker monitoring paves the way for more advanced smart mining solutions in the future.

VII. FUTURE WORK

The Smart Mining Helmet demonstrates an effective approach to automated safety monitoring and worker protection, but there are several areas where the system can be enhanced in future iterations. One potential improvement is the integration of machine learning algorithms to predict hazardous patterns and automatically generate early warnings.

based on historical data. This would further reduce accidents and improve overall safety inside the mine. Another area for development is scalability. While the current system is designed for individual miners, it can be expanded to support large underground sites, including multiple teams working in different zones. This would require more advanced sensor networks and cloud-based data management to handle large-scale monitoring and real-time coordination.

The health monitoring module can also be enhanced by integrating it with dynamic medical databases or wearable health APIs. This would allow supervisors to access detailed and updated health information for each worker, including stress levels, oxygen saturation, or fatigue indicators.

Additionally, the system can incorporate mobile applications for iOS and Android to provide more flexible interaction. Features such as voice commands, alerts, and safety statistics could make the system more user-friendly and accessible even during field operations.

Finally, energy efficiency can be improved by optimizing sensor operation and implementing low-power modes for the ESP8266 microcontroller. Integration of renewable energy sources, like compact solar units or energy-harvesting systems, can make the helmet more sustainable for long shifts.

REFERENCES

- [1]. Ninni Singh, Vinit Kumar Gunjan, Gopal Chaudhary, Rajesh Kaluri Nancy Victor, Kuruva Lakshmana “IoT enabled HELMET to safeguard the health of mine workers” Article in Computer Communication- June 2022DOI
- [2]. Dr.S.S.Morade, Vaishnavi Dundale & Rama Krishna Smart Safety Measuring in the helmeting Coal Mining using Arduino” Turkish Journal of Computer and Mathematics in Education Vol.12 No.11 (May- 2021), 5481-5486.
- [3]. Khalid, A. M., et al. (2025). Federated learning-driven IoT system for automated underground hazard detection. Journal of Big Data.
- [4]. Sai, S. M. (2023). IoT-enabled protective helmets for worker safety. Journal of IoT Potentials.
- [5]. Khalid, A. M., et al. (2025). Federated learning-driven IoT system for automated underground hazard detection. Journal of Big Data.
- [6]. Sai, S. M. (2023). IoT-enabled protective helmets for worker safety. Journal of IoT Potentials
- [7]. Bahaman, S. (2023). An efficient IoT-based hazardous gas and temperature monitoring system. International Journal of Intelligent Systems.
- [8]. Ramaya, M. V., & Bharath, H.G. (2023). Intelligent mining helmets: Enhancing safety and reducing risk with smart sensors. IEEE Conference Publication.
- [9]. Xinhua, L., & Ning, J. (2023). Design of intelligent underground safety management system based on the Internet of Things. IEEE Conference Publication.
- [10]. V. Sai Prasanna Kumar, M. Shiva Rama Krishna, Dr. K. Shambavi “A Smart Helmet for Coal Miners”, International Journal of Electrical Engineering and Technology (IJEET) Volume 12, Issue 5, May 2021.