

CROP YIELD PREDICTION USING MACHINE LEARNING

Priyanka P¹, Meghana M A², Syeda Aliya Muskan³, Nimra Taj⁴, Pallavi H⁵

Assistant Professor, Dept. of ISE., Bapuji Institute of Engineering and Technology, Davangere, Karnataka, India¹

UG Student, Dept. of ISE., Bapuji Institute of Engineering and Technology, Davangere, Karnataka, India²

UG Student, Dept. of ISE., Bapuji Institute of Engineering and Technology, Davangere, Karnataka, India³

UG Student, Dept. of ISE., Bapuji Institute of Engineering and Technology, Davangere, Karnataka, India⁴

UG Student, Dept. of ISE., Bapuji Institute of Engineering and Technology, Davangere, Karnataka, India⁵

Abstract The rapid growth of agricultural data and the increasing need for sustainable farming practices have created a demand for intelligent decision-support systems. This paper presents a Smart Agriculture System that integrates ML, rule-based inference, and a web-based management platform to assist both farmers and administrators in making informed agricultural decisions. The system provides crop yield prediction, crop recommendation, and fertilizer suggestion, using a trained Random Forest model that achieved 99.15% accuracy on a curated dataset of crop samples. Additionally, fertilizer recommendations are generated using a rule-based expert module, ensuring reliable outputs even in cases of limited training data.

The platform is built using Python and Flask for backend processing and MySQL for secure data storage, while the frontend is implemented with HTML, CSS, and JavaScript, delivering a responsive and user-friendly interface. Separate dashboards are provided for users and Administrators: farmers can access predictions, alerts, and feedback modules, whereas admins can monitor analytics, manage crops, view farmer history, and broadcast notifications. This unified system streamlines agricultural decision

Keywords: Smart Agriculture; Machine Learning; Crop Yield Prediction; Fertilizer Recommendation; Crop Recommendation; Precision Farming; Decision Support System; Artificial Intelligence (AI); Random Forest; Rule-Based System; Data Analytics; Web Application; Flask Framework; MySQL Database; Sustainable Agriculture; Agricultural Informatics; Predictive Modeling; Farmer Advisory System.

I. INTRODUCTION

Agriculture has always been one of the most vital sectors supporting human civilization, providing food, raw materials, and economic stability across the world. With the rapid growth of population and the corresponding rise in food demand, traditional farming methods are increasingly becoming insufficient in ensuring sustainable food production. Farmers continue to face numerous challenges, including unpredictable climatic conditions, limited access to real-time data, lack of scientific decision-making support, inefficient fertilizer usage, soil degradation, and crop losses caused by incorrect farming practices. In many developing countries, particularly rural regions of India, farmers still rely heavily on traditional knowledge and manual practices, leading to inconsistent productivity and low profit margins.

These limitations highlight the urgent need for technological advancements that can help farmers make more accurate, data-driven decisions. Smart agriculture, enabled by modern computational approaches, machine learning, rule-based systems, and intelligent alert mechanisms, has emerged as a powerful solution to bridge this gap and transform farming into a more efficient, sustainable, and productive activity.

Recent advancements in artificial intelligence and machine learning have enabled the development of predictive models capable of identifying optimal crop choices, estimating crop yield, forecasting potential risks, and enhancing resource utilization. These technologies empower farmers with real-time recommendations that traditionally required expert knowledge. Even with relatively small datasets, modern machine learning algorithms like Random Forest demonstrate high accuracy due to their ability to learn complex, non-linear patterns.

In addition to machine learning, the integration of rule-based systems provides structured agricultural knowledge for fertilizer recommendation, ensuring that nutrient requirements are scientifically matched with soil type, crop type, and environmental

conditions. Similarly, alert systems play a crucial role in communicating critical updates such as weather risks, pest attack warnings, or government advisories directly to the farmers, enabling timely action and reducing losses.

II. RELATED WORK

Early research in agriculture decision support systems relied heavily on **manual methods and rule-based recommendations**. Farmers traditionally depended on personal experience, local expert advice, or agricultural extension services to select suitable crops and fertilizers. While helpful, these approaches were **limited in accuracy**, not data-driven, and unable to adapt dynamically to varying soil conditions, weather fluctuations, or pest incidences.

With the advent of **data-driven approaches**, researchers began applying **machine learning (ML) techniques** for crop yield prediction and fertilizer recommendation. Traditional ML algorithms, including **linear regression, decision trees, and support vector machines (SVM)**, were trained on historical crop, soil, and weather datasets. These methods provided moderate predictive accuracy but often struggled with **non-linear relationships** between soil nutrients (N, P, K), climate factors (temperature, rainfall, humidity), and crop performance, limiting their real-world applicability.

The development of **ensemble and advanced ML algorithms** such as **Random Forests, Gradient Boosting, and XGBoost** marked a significant improvement. These algorithms could handle **large, multi-dimensional agricultural datasets**, model complex non-linear interactions, and provide more robust and reliable predictions for crop yield and fertilizer needs. Studies demonstrated that ensemble models significantly outperformed traditional ML approaches in both accuracy and generalization.

Recent research emphasizes **integrated, end-to-end agriculture support platforms**. These platforms combine **soil testing data, weather forecasts, crop histories, and machine learning models** to generate **personalized crop recommendations and fertilizer plans**. They often include **visual dashboards**, predictive analytics, and real-time alerts to enhance decision-making. Additionally, modern systems aim to be **farmer-friendly**, accommodating those without access to advanced soil labs by providing **approximate nutrient suggestions** based on regional data and crop type.

These advancements collectively highlight the transition from **manual, experience-based methods to intelligent, data-driven, and user-centric agricultural decision support systems**, forming the foundation for modern crop recommendation and yield prediction solutions.

III. PROPOSED ALGORITHM

A. Description of the Proposed Algorithm:

The proposed Smart Agriculture Decision Support System automates crop yield estimation, crop recommendation, and fertilizer guidance using a hybrid approach that combines machine learning, rule-based inference, and real-time data processing. The system operates across four major stages: User Input Acquisition, Data Preprocessing, Model-Based Prediction, and Rule-Based Fertilizer Recommendation, followed by Result Display and Storage in the database.

Step 1: User Input Acquisition

- Collect agricultural parameters from the farmer through the web interface:
 - Soil type
 - Crop type
 - Land size (acres/hectares)
 - Pesticide usage
 - Location
- Validate fields for missing or inconsistent entries.
- Forward validated inputs to the preprocessing module.

Step 2: Data Preprocessing

- Convert categorical inputs (soil type, crop type, location) into numerical form using Label Encoding.
- Normalize numerical parameters (land size, fertilizer quantity, etc.) for model compatibility.
- Handle missing data using mean/median imputation if required.

Output: Clean and structured input data ready for prediction.

Step 3: Crop Yield Prediction Using Random Forest Regression

- Load the pre-trained Random Forest model with 99.15% accuracy.
- Supply preprocessed input features to the model.
- The model analyzes relationships between soil conditions, crop characteristics, fertility, and environmental factors.

The model predicts the expected crop yield, expressed in tons/hectare. Random Forest outputs include:

- Estimated yield value
- Feature importance scores

Advantages:

- High accuracy on small datasets
- Resistant to overfitting
- Handles non-linear patterns effectively

Step 4: Crop Recommendation Algorithm

- Retrieve soil and location inputs.
- Query the crop database to identify suitable crops based on soil compatibility and regional suitability.
- If an exact match is unavailable, apply similarity scoring (cosine similarity) between soil–crop profiles.

Output:

- Top recommended crops ranked by suitability.

Step 5: Rule-Based Fertilizer Recommendation

The fertilizer suggestion engine is derived from domain-specific agricultural rules rather than ML.

- Match crop type and soil type with predefined nutrient requirement rules:
 - Nitrogen requirement
 - Phosphorus requirement
 - Potassium requirement

Step 6: Admin Analytics and Visualization

- Aggregate farmer and crop records using SQL queries.
- Compute:
 - Total number of farmers
 - Active vs inactive farmers
 - Crop distribution statistics
 - Seasonal crop trends (Winter, Summer, Rainy)
 - Location-wise farmer patterns
- Visualize results using Chart.js graphs, including:
 - Pie charts
 - Bar charts
 - Line graphs
 - Histogram-style plots

Step 7: Alert Generation and Notification

- Admin posts alerts related to weather, pest outbreaks, or market updates.
- System stores alert data in MySQL.
- Farmers receive alerts instantly on their dashboard.

Step 8: Result Display and Logging

- Display final outputs to the farmer dashboard:
 - Predicted yield

- Recommended crops
- Fertilizer suggestions
- Alerts

- Store predictions and user activity logs in the database for future analytics.

Step 9: System Deployment

- Host the ML models, rule engine, and dashboards using Flask backend.
- Integrate MySQL for persistent data storage.
- Deploy system on cloud/hosting platform for real-time farmer access.

IV. PSEUDO CODE

// Step 1: User Authentication

```
INPUT user_credentials
IF credentials_invalid THEN
    DISPLAY "Invalid Username or Password" TERMINATE
ENDIF

IF user_role == "Admin" THEN REDIRECT_TO(Admin_Dashboard)
ELSE
    REDIRECT_TO(Farmer_Dashboard)
ENDIF
```

// Step 2: Farmer Input Acquisition

```
IF user_role == "Farmer" THEN INPUT
    soil_type
    INPUT crop_type
    INPUT land_size
    INPUT pesticide_used
    INPUT location

    IF any_input_missing THEN
        DISPLAY "Please fill all required fields" TERMINATE
    ENDIF
ENDIF
```

// Step 3: Data Preprocessing

```
encoded_inputs = LABEL_ENCODE([soil_type, crop_type, location]) normalized_land =
NORMALIZE(land_size)
```

```
processed_data = COMBINE(encoded_inputs, normalized_land, pesticide_used)
```

// Step 4: Crop Yield Prediction (Machine Learning)

```
LOAD RandomForest_Model
predicted_yield = MODEL_PREDICT(RandomForest_Model, processed_data)
```

// Step 5: Crop Recommendation (Rule + Similarity Matching)

```
recommended_crops = FIND_COMPATIBLE_CROPS(soil_type, location)
```

```
IF recommended_crops is EMPTY THEN
    recommended_crops = COMPUTE_SIMILARITY_MATCH(soil_type_profile) ENDIF
```

// Step 6: Fertilizer Recommendation (Rule-Based Engine)

```
IF soil_type == "Red Soil" AND crop_type == "Paddy" THEN fertilizer = "High
    Nitrogen + Moderate Phosphorus"
ELSE IF soil_type == "Black Soil" AND crop_type == "Cotton" THEN fertilizer = "NPK
    6:32:16 + Micronutrients"
ELSE
    fertilizer = LOOKUP_FERTILIZER_RULES(crop_type, soil_type) ENDIF
```

// Step 7: Alerts & Notifications


```
FETCH active_alerts FROM Database IF
alerts_exist THEN
```

```
    DISPLAY alerts_on_dashboard ENDIF
```

```
// Step 8: Admin Functionality
```

```
IF user_role == "Admin" THEN
```

```
    // View History
```

```
    history_data = GET_ALL_PREDICTIONS()
```

```
    // Farmer Contact List
```

```
    farmer_list = GET_FARMER_DETAILS()
```

```
    // Add Crops
```

```
    IF NEW_CROP_ADDED THEN
```

```
        SAVE_CROP_TO_DATABASE
```

```
    ENDIF
```

```
    // Analytics
```

```
    analytics = GENERATE_STATISTICS() PLOT_CHARTS(analytics)
```

```
    // Alerts
```

```
    IF new_alert THEN STORE_ALERT_IN_DATABASE
```

```
    ENDIF
```

```
ENDIF
```

```
// Step 9: Display Results to Farmer
```

```
DISPLAY "Predicted Crop Yield:", predicted_yield DISPLAY
"Recommended Crops:", recommended_crops DISPLAY "Fertilizer
Suggestion:", fertilizer DISPLAY_ACTIVE_ALERTS()
```

```
// Step 10: Save Activity Logs
```

```
SAVE_TO_DATABASE(
    soil_type,
    crop_type,
    location,
    predicted_yield, fertilizer,
    recommended_crops
)
```

V. SIMULATION RESULTS

Fig.1. Page of Admin Dashboard

The Admin Dashboard serves as a centralized control panel that enables the administrator to securely log in, add and manage crop records, view user and prediction history, analyze data through reports and analytics, and monitor user feedback efficiently.

Fig.2. Page of Add Crops
Fig.3. Page of View History
Fig.4. Farmers Contact Details

These screens represent the Admin module of the Agriculture System, enabling management of crop data, farmer contacts, prediction history, and feedback in a single dashboard. It helps the administrator monitor system activity, update crop information, communicate with farmers, and analyze reports efficiently.

Fig.6. Farmers Sign Up Page

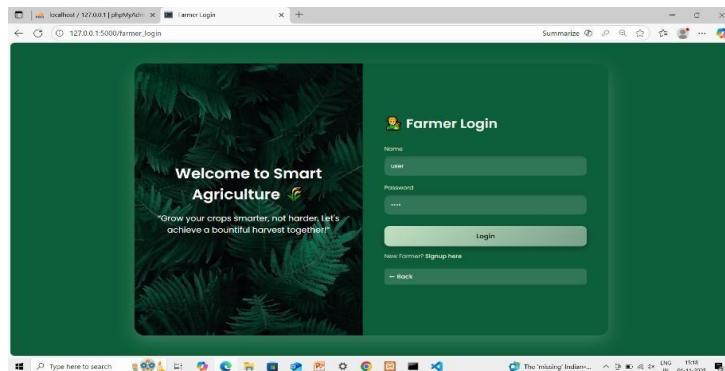


Fig.7. Farmers Login Page

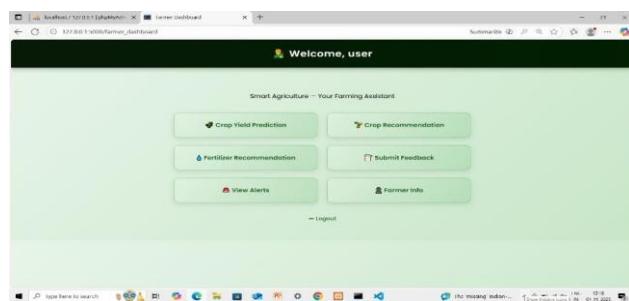


Fig.8. Farmers Dashboard

The Farmer Dashboard provides an easy-to-use interface that allows farmers to sign up and log in securely, perform crop yield prediction, receive crop and fertilizer recommendations, and submit feedback for continuous system improvement.

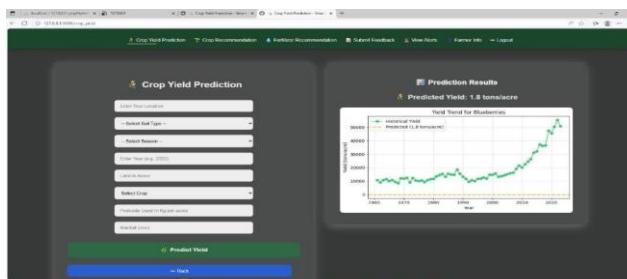


Fig.9. Crop Yield Prediction

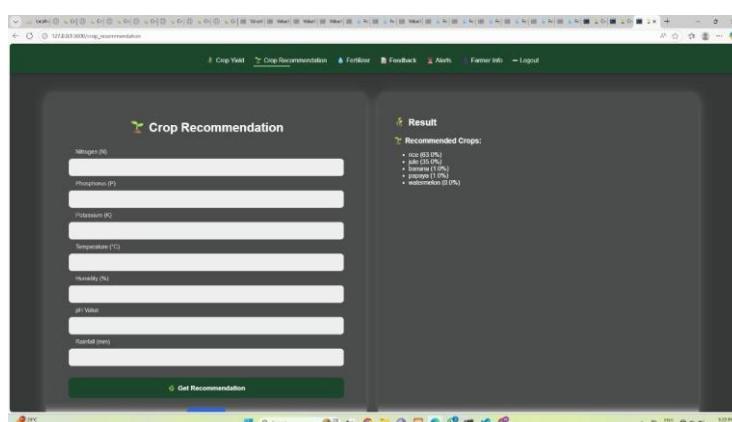


Fig.10. Crop Recommendation

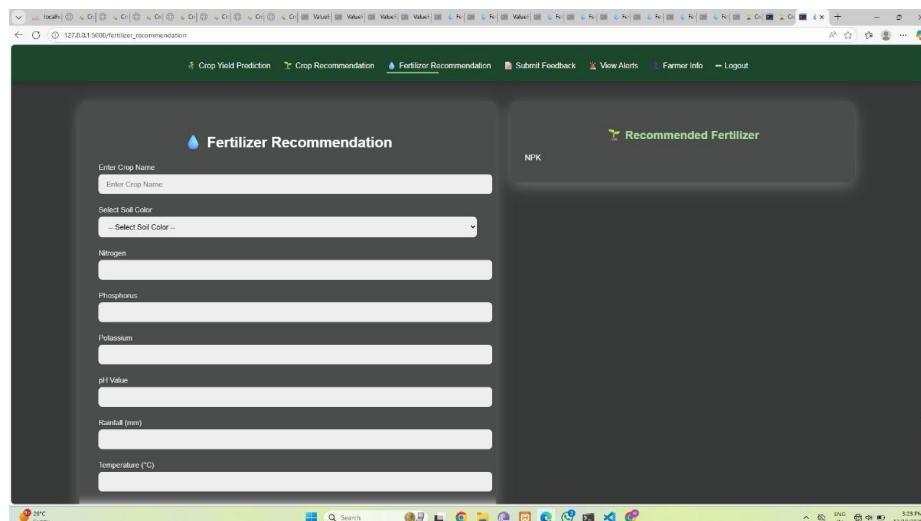


Fig.11. Fertilizer Recommendation

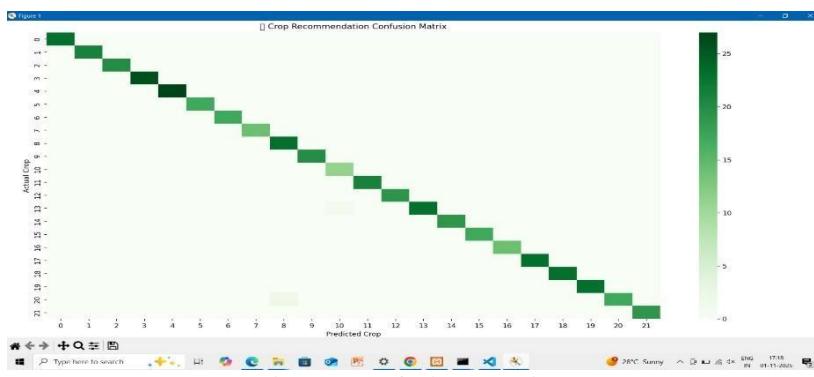


Fig.12. Confusion Matrix

This confusion matrix shows that the crop recommendation model predicts almost all crops correctly, as most values lie on the diagonal. Very few misclassifications occur, indicating high model accuracy.

VI. CONCLUSION AND FUTURE WORK

The Smart Agriculture System presents an intelligent, data-driven solution designed to overcome the limitations of traditional farming practices that depend heavily on manual observation, personal experience, and guesswork. By integrating machine learning with real-time agricultural data, the system provides farmers with accurate predictions of crop yield and actionable insights that significantly enhance productivity and resource efficiency. The use of advanced ML algorithms enables the system to analyze complex patterns in soil characteristics, weather conditions, rainfall distribution, and crop parameters, offering reliable predictions that support informed decision-making.

REFERENCES

- [1]. S. Jeong, J. P. Resop, N. D. Mueller et al., "Prediction of crop yield using machine learning algorithms and climate data," *Computers and Electronics in Agriculture*, 2016.
- [2]. D. Ramesh and B. Vishnu Vardhan, "Analysis of Crop Yield Prediction using Data Mining Techniques," *International Journal of Research in Engineering and Technology*, 2015
- [3]. ICAR, "Fertilizer Guidelines," Available online: <https://icar.org.in/> (Accessed: 2025)
- [4]. Scikit-learn Documentation — <https://scikit-learn.org/> (Accessed: 2025)
- [5]. Kaggle – Crop & Climate Dataset Repository — <https://www.kaggle.com/> (Accessed: 2025)
- [6]. A. Kumar, P. Singh, and M. Yadav, "ML-based Crop Prediction Using Satellite and Soil Data," *Journal of Smart Agriculture Technology*, 2021
- [7]. T. Van Klompenburg, A. Kassahun, and C. Catal, "Crop Yield Prediction Using Machine Learning: A Systematic Literature Review," *Computers and Electronics in Agriculture*, 2020.

- [8]. Food and Agriculture Organization (FAO), “FAO Statistical Database (FAOSTAT),” Available online: <https://www.fao.org/faostat/> (Accessed: 2025).
- [9]. S. Chlingaryan, S. Sukkarieh, and B. Whelan, “Machine Learning Approaches for Crop Yield Prediction and Nitrogen Status Estimation in Precision Agriculture,” *Computers and Electronics in Agriculture*, 2018.
- [10]. Ministry of Agriculture & Farmers Welfare, Government of India, “Agricultural Statistics at a Glance,” Available online: <https://agricoop.nic.in/> (Accessed: 2025).
- [11]. M. K. Patel and S. R. Shah, “Crop Yield Prediction Using Machine Learning Techniques,” *International Journal of Computer Applications*, 2019.
- [12]. R. Priya, L. Prakash, and K. Somasundaram, “Performance Analysis of Machine Learning Algorithms for Crop Yield Prediction,” *International Journal of Advanced Research in Computer Science*, 2020.
- [13]. National Bureau of Soil Survey and Land Use Planning (NBSS&LUP), “Soil Resource Database of India,” Available online: <https://www.nbsslup.in/> (Accessed: 2025).
- [14]. A. Kamilaris and F. X. Prenafeta-Boldú, “Deep Learning in Agriculture: A Survey,” *Computers and Electronics in Agriculture*, 2018.
- [15]. Indian Council of Agricultural Research (ICAR), “Annual Report 2024–2025,” Available online: <https://icar.org.in/> (Accessed: 2025).