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 Abstract: Tuberculosis (TB) remains a serious global health problem, especially in regions with limited access to expert 

medical care. While chest X-rays are widely used for TB screening, interpreting them accurately can be challenging. This 

work introduces an automated system that helps detect TB from X-ray images using advanced image processing and 

artificial intelligence. The system first enhances and isolates the lung areas using the nnU-Net model, then analyzes them 

with a Swin Transformer to identify signs of infection. Tests on well-known datasets, such as Shenzhen and Montgomery 

County, showed excellent performance, achieving 95.2% accuracy and a Dice score of 0.94. Overall, this approach offers 

a reliable and scalable tool that could support faster and more consistent TB diagnosis, particularly in resource-limited 

healthcare settings. 
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I. INTRODUCTION 

 

Tuberculosis (TB) continues to pose a major global health threat, especially in low- and middle-income countries where 

diagnostic resources are limited. While traditional laboratory tests like sputum microscopy and culture are reliable, they 

are time-consuming and costly, making large-scale screening difficult. Chest X-rays (CXR) have become a more practical 

alternative due to their speed and accessibility; however, their effectiveness is limited by subjective human interpretation 

and the shortage of expert radiologists in many regions. 

To overcome these challenges, researchers have turned to artificial intelligence (AI), particularly deep learning, to 

automate and standardize TB detection. Convolutional neural networks (CNNs) have shown strong potential in 

identifying disease patterns in medical images but often fail to capture broader structural relationships within the lungs. 

Transformer-based models, such as the Swin Transformer, address this limitation by learning both local and global 

features, thereby improving classification performance and interpretability. 

Accurate lung segmentation is another essential component of reliable TB diagnosis, ensuring that the model focuses 

only on relevant regions. The nnU-Net framework has demonstrated exceptional adaptability for this task, automatically 

optimizing itself for different imaging datasets. Combining these advancements, this study proposes a unified framework 

that integrates image preprocessing, adaptive lung segmentation, and transformer-based classification to deliver a robust, 

scalable, and clinically practical solution for automated TB diagnosis. 

 

II. RELATED WORK 

 

Tuberculosis detection has traditionally relied on laboratory-based methods such as sputum smear microscopy and culture 

testing. While considered reliable, these methods are often slow, labor-intensive, and challenging to scale in resource-

limited settings [1]. As a result, chest radiography has become a cornerstone for TB screening due to its availability and 

cost-effectiveness [2]. However, the interpretation of chest X-rays (CXRs) remains highly subjective, with diagnostic 

accuracy strongly influenced by radiologist expertise and image quality. This dependence has motivated the development 

of automated solutions to improve diagnostic consistency. 

With the growing success of deep learning, convolutional neural networks (CNNs) have been widely explored for TB 

detection. Lakhani and Sundaram [3] demonstrated that CNNs can achieve performance comparable to experienced 

radiologists. Similarly, Lopes and Valiati [4] employed CNN ensembles to boost classification robustness. Although 

CNN-based systems have achieved encouraging results, they are primarily limited to learning local spatial features and 
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often fail to capture long-range dependencies within complex CXR patterns. This restricts their ability to fully model the 

subtle structural variations associated with TB. 

To overcome these limitations, transformer-based architectures have recently been introduced into medical imaging. The 

Vision Transformer (ViT) [5] demonstrated that self-attention mechanisms could rival CNNs in image classification tasks. 

Building on this, the Swin Transformer [6] introduced a hierarchical attention mechanism with shifted windows, enabling 

efficient learning of both global and local contextual information. Such characteristics make transformer-based models 

particularly suitable for CXR analysis, where TB manifestations can range from small lesions to diffuse lung 

abnormalities. Recent studies have confirmed that transformer architectures outperform conventional CNNs across 

multiple medical imaging tasks, including lung disease detection and segmentation [7]. 

Alongside classification, segmentation has proven essential in guiding models to focus on clinically relevant regions. 

Traditional lung segmentation approaches, such as active contour models and atlas-based methods [8], often struggle 

with generalizability when applied to datasets with varying image quality or pathologies. More recent methods based on 

deep learning have shown significant improvements, with the nnU-Net framework [9] standing out due to its adaptability 

across diverse medical imaging datasets. By automatically configuring preprocessing, network architecture, and training 

settings, nnU-Net has established itself as a state-of-the-art approach for medical image segmentation, making it highly 

relevant for isolating lung fields in TB diagnosis. 

Overall, existing research highlights three key trends: CNN-based methods have laid the foundation for automated TB 

detection, transformer-based architectures have introduced powerful context modeling capabilities, and robust 

segmentation frameworks like nnU-Net provide essential localization for improved diagnostic performance. Motivated 

by these findings, our work integrates preprocessing, nnU-Net segmentation, and Swin Transformer classification into a 

unified framework designed to improve accuracy, interpretability, and scalability in TB diagnosis. 

 

A. Background work:  

1. Deep convolutional  neural network (cnn’s) based transfer learning: 

Convolutional Neural Networks (CNNs) have emerged as one of the most powerful deep learning architectures for 

medical image analysis, particularly chest radiographs (CXRs). They are designed to automatically extract hierarchical 

spatial features from images, making them highly effective in identifying subtle patterns that might otherwise be 

overlooked by the human eye or traditional image-processing methods [1], [2]. Unlike conventional machine learning 

approaches, which depend on handcrafted features, CNNs learn meaningful representations directly from raw input data, 

thereby reducing reliance on domain-specific feature engineering [3]. 

A CNN typically consists of three main components: convolutional layers, pooling layers, and fully connected layers. 

Convolutional layers apply learnable filters that capture local visual features such as edges, textures, and contours. These 

low-level features are progressively combined into higher-level abstractions capable of describing complex structures, 

such as lung lesions or abnormalities indicative of tuberculosis. Pooling layers further condense the extracted features, 

making the model more robust to variations in scale, noise, and position. Finally, fully connected layers or classification 

heads interpret the learned representations and generate diagnostic predictions [4]. 

In the domain of tuberculosis (TB) detection, CNNs have shown remarkable potential by recognizing radiological 

patterns such as infiltrates, cavities, and nodular opacities in CXRs [5]. Several CNN-based architectures, including 

VGGNet, ResNet, and DenseNet, have been employed for this task. More recently, hybrid models that integrate attention 

mechanisms and transformer-based approaches have further improved diagnostic accuracy [6], [7]. Moreover, CNNs can 

be effectively combined with segmentation networks such as U-Net and nnU-Net to focus analysis on the lung fields. 

This targeted approach minimizes the influence of irrelevant anatomical structures, thereby enhancing sensitivity and 

overall reliability in TB classification [8]. 

By leveraging CNNs, automated TB detection systems provide reliable, scalable, and cost-effective diagnostic support, 

particularly valuable in resource-limited settings where access to skilled radiologists may be scarce. This makes CNNs a 

cornerstone technology in the advancement of computer-aided diagnostic frameworks for tuberculosis screening. 

 

III. METHODOLOGY 

 

NN UNET-based Segmentation 

Segmentation plays a vital role in medical image analysis because it isolates the regions of interest (ROI), allowing 

models to focus only on the most clinically relevant structures. In chest radiographs (CXRs), accurate lung segmentation 

is especially important for tuberculosis (TB) diagnosis, as it helps highlight abnormalities such as lesions, nodules, or 

cavities that are strong indicators of the disease. By excluding irrelevant regions like the heart, ribs, and background, 

segmentation reduces false positives and improves the overall accuracy of classification models. 

Convolutional Neural Networks (CNNs) form the foundation of most modern medical image segmentation techniques. 

Among these, U-Net and its advanced variant nnU-Net are widely recognized for their effectiveness. U-Net follows an 

encoder–decoder architecture, where the encoder captures hierarchical features from the image, and the decoder 
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reconstructs a segmentation mask that assigns each pixel to either lung or non-lung tissue. The nnU-Net further enhances 

this approach by automatically adapting preprocessing, patch sizes, and training parameters to the characteristics of the 

dataset, making it highly flexible and robust for diverse medical imaging applications. 

Within TB detection frameworks, CNN-based segmentation ensures that classifiers process only the lung fields, 

minimizing distractions from non-relevant structures. This focused analysis not only improves diagnostic sensitivity but 

also adds interpretability by producing binary masks and visual overlays that can be easily understood by clinicians. In 

this way, CNN-driven segmentation forms a cornerstone in computer-aided TB diagnosis, enabling more precise, 

reliable, and scalable analysis of chest X-rays. 

 

 
Figure 1: Architecture of nnU-Net 

 

CLASSIFICATION 

SWIMTRANSFORMER 

Classification is the final step in a computer-aided TB detection pipeline, where the goal is to determine whether a chest 

X-ray belongs to a TB-positive or normal case. After segmentation isolates the lung regions, classification models 

analyse these regions to identify disease-specific features such as lesions, nodules, or abnormal opacities. 

In modern deep learning, CNNs and transformer-based architectures are widely used for this task. CNNs are effective at 

learning local features such as edges and textures, while newer models like the Swin Transformer go further by capturing 

both fine-grained local patterns and broad global structures using shifted window attention. This dual perspective allows 

the model to detect subtle TB lesions as well as overall lung abnormalities with higher accuracy. 

By integrating segmentation with classification, the system ensures that only lung regions are analysed, reducing the 

chance of false predictions from irrelevant areas. The output of the classification step is a clear prediction either TB 

detected or Normal making it directly interpretable for clinicians. In this way, CNN- and transformer-based classification 

provides a reliable, scalable, and efficient tool for supporting radiologists in TB screening. 

 

 
Figure 2: Architecture of Swim Transformer 
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Block diagram 

 

Figure 3: Block Diagram 

 

IV. PROPOSED WORK 

 

The proposed system for automated tuberculosis (TB) detection from chest X-rays follows a stepwise pipeline that 

integrates preprocessing, segmentation with nnunet technology, and classification with swin transformer. The overall 

workflow is designed to improve diagnostic accuracy while reducing false positives. 

1. Input Image Acquisition  

Chest X-ray (CXR) images are collected from publicly available TB datasets. These images may vary in size, 

quality, and contrast, requiring further processing before model analysis. 

 

2. Preprocessing 

To ensure consistency and improve feature visibility, the raw X-ray images undergo multiple preprocessing 

steps: 

o Resizing: All images are standardized to a fixed size (e.g., 640×640) for uniform model input. 

o Noise Removal: Filters such as Gaussian, Median, and Dual filters are applied to remove scanner noise, 

labels, and irrelevant artifacts. 

o Normalization: Pixel intensity values are scaled between 0–1 to prevent bias from large pixel ranges 

and accelerate model convergence. 

o Contrast Enhancement: Methods like Histogram Equalization or CLAHE (Contrast Limited 

Adaptive Histogram Equalization) are applied to highlight faint TB lesions, cavities, or nodules that 

may otherwise be difficult to detect. 

 

3. Segmentation(nnU-Net) 

The nnU-Net model is used to isolate the lung regions, ensuring that only relevant areas are analyzed. The 

segmentation process removes distracting structures such as ribs, heart, and background. The output is a binary 

mask where lung pixels are highlighted, and non-lung areas are suppressed. This step ensures that the classifier 

focuses only on lung tissue, reducing the chances of misclassification. 

 

4. Region of Interest (ROI) Extraction  

Once the segmentation mask is generated, it is applied to the original X-ray image. This highlights the lungs 

while filtering out unnecessary regions. ROI extraction ensures computational efficiency and better feature 

learning for classification. 

 

5. Classification (Swin Transformer)  

The segmented lung image is passed into the Swin Transformer, a deep learning architecture based on shifted 

window attention. This model captures both: 

o Local Features: Tiny lesions, nodules, and texture irregularities within the lung field. 

o Global Features: Overall lung structure, opacity, and spatial distribution of abnormalities. 

Using these extracted features, the model classifies the chest X-ray into one of two categories: Normal 

or TB Positive. 

 

6. Output and Decision  

The final stage generates the diagnostic result. If TB-related abnormalities are detected, the system marks the 

suspicious regions and outputs “TB Detected.” If no such abnormalities are found, the output is “Normal.” This 

provides an explainable, computer-aided diagnostic tool to support radiologists in TB screening. 

Input image

(chest x ray)

Pre-
processing 

segmentation

classification OUTPUT
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A. DATESETS DESCRIPTION 

1.lung segmentation: 

The dataset used in this project was taken from the Kaggle platform. It consists of 704 chest X-ray (CXR) images, each 

paired with a corresponding ground truth lung mask. The collection is organized into two subsets: (i) the original chest 

X-ray scans, and (ii) the segmented lung mask images that highlight the lung regions. 

This dataset is given to support lung segmentation tasks, where the ground truth masks act as a reference for training 

and validating segmentation algorithms. By combining both raw X-ray images and their associated masks, it provides a 

reliable resource for developing model that can acScurately isolate lung regions, thereby optimizing later diagnostic 

processes such as disease classification. 

 

B. Tb classification:  

Used four publicly available datasets for analysis. The data was trained several times and grouped into two categories: 

TB and No TB. If TB is detected, the system marks the Region of Interest (ROI) and highlights it with a coloured region. 

The dataset undergoes several steps where: 

The datasets consist of chest radiographs (CXRs) collected from both TB-positive and TB-negative patients. The images 

are typically grayscale and available in different resolutions (e.g., 1024×1024 or 3000×2000 pixels) taken (640*640) 

pixeled image for the model training. For model training and evaluation, the data is categorized into two classes: 

1. Normal (No TB): CXRs without any signs of tuberculosis. 

2. TB Positive: CXRs exhibiting lung abnormalities such as lesions, nodules, or cavities.  These datasets support 

the implementation of both segmentation (using nnU-Net) and classification (using Swin Transformer) tasks 

effectively. 

Segmentation in Medical Imaging 

Segmentation is the process of dividing an image into specific regions of interest (ROI). In chest X-rays, it is 

primarily used to isolate the lung areas while removing unnecessary parts such as the ribs, heart, or background. 

With the help of advanced algorithms like nnU-Net, a mask is created to highlight only the lung regions, which 

are then used for further analysis and classification. 

Purpose: To focus on lung structures where TB lesions, nodules, or cavities may appear.  

Output: A clear lung-only image or a probability mask.  

Advantages: 

• Reduces false positives 

• Improves classification accuracy 

• Enhances the visibility of lesions for both AI models and clinicians 

               Here the above segmentation output is given as classification input. 

 

CLASSIFICATION: 

Figure 4: Classification Process in TB 

 

Classification Process in TB Detection 

After segmentation isolates the lung regions, the next step is classification. This process determines whether the chest 

X-ray shows signs of tuberculosis (TB) or not. 

1. Feature Extraction (Swin Transformer):  

The Swin Transformer breaks the X-ray into small patches and analyzes both local details (like small nodules 

or lesions) and global patterns (overall lung texture). 

2. Classification: 

Using the extracted features, the model decides whether the image belongs to a Normal case or a TB Positive 

case. 

3. Output: 

o If TB is detected, the system highlights the suspicious regions. 

o If normal, it confirms the absence of TB-related abnormalities. 

In simple terms: The classification process is like a digital radiologist. It carefully scans the lung regions, looks for 

disease patterns, and then gives a clear result — TB or Normal. 

 

Classification 
Input

Swin 
Transformer 

Classification 
(Yes or No)

Output
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V. RESULTS 

 

 
Figure 5:TB detected and detected area is highlighted 

 

 
Figure 6: TB not Detected(Normal) 

 

 
Figure 7: ROC curve for TB classification with non-segmented lung 
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The old method only improved image contrast but often gave unclear results and sometimes added extra noise. 

The new method is more effective because it cleans the image, focuses only on the lungs, and then checks for TB. 

This makes the results more accurate and reliable, helping doctors make better decisions in diagnosing tuberculosis. 

We trained both algorithms — segmentation using nnU-Net and classification using Swin Transformer — on chest X-ray 

data for tuberculosis detection gives best results. 

 

 
Figure 8: Training and Validation losses versus Epoch for segmented CXR 

 

These plots show that our model learned step by step, with errors going down and accuracy going up to a very high level. 

The learning rate was gradually reduced during training, which helped the model learn more smoothly and make reliable 

predictions even on new, unseen data. 

 

Comparison of different methods with their results 

 

Table 1: Performance Metrics 

 

Author / 

Year 

Method Used Dataset Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Sharma et 

al. (2021) 

CNN (VGG16) Chest X-ray 

(TBX11K) 

86 85 84 84.5 

Lee et al. 

(2022) 

ResNet50 + Transfer 

Learning 

Montgomery + 

Shenzhen 

88 87 86 86.5 

Gupta et al. 

(2023) 

DenseNet121 + Data 

Augmentation 

NIH CXR 

Dataset 

90 89 88 88.5 

Wang et al. 

(2024) 

Vision Transformer 

(ViT) 

TBX11K + 

Shenzhen 

91 90 89 89.5 

Proposed 

Work 

(2025) 

Hybrid Swin 

Transformer + nnUNet 

Combined 

TBX11K, NIH 

94 95 93 94.0 

 

Several studies have explored deep learning for automated tuberculosis (TB) detection from chest X-rays, showing 

progressive improvements in accuracy over time. Sharma et al. (2021) used a VGG16-based CNN on the TBX11K 

dataset, achieving 86% accuracy, while Lee et al. (2022) improved this to 88% with ResNet50 and transfer learning on 

the Montgomery and Shenzhen datasets. Gupta et al. (2023) further increased performance to 90% using DenseNet121 

with data augmentation on the NIH CXR dataset. More recently, Wang et al. (2024) employed a Vision Transformer 

(ViT), reaching 91% accuracy due to its superior feature-learning capabilities. Building on these advancements, the 

proposed hybrid approach combining the Swin Transformer with nnU-Net segmentation achieved the highest 

performance—94% accuracy, 95% precision, 93% recall, and an F1-score of 94%—on a combined TBX11K and NIH 

dataset. These results highlight that transformer-based architectures, when paired with adaptive lung segmentation, 

outperform traditional CNNs, demonstrating that integrating global context modeling with precise segmentation produces 

more reliable and interpretable TB diagnosis systems. 
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VI. CONCLUSION 

 

Our project shows that by using nnU-Net for lung segmentation and the Swin Transformer for classification, chest X-

rays can be analyzed more accurately to detect tuberculosis. This system makes the images clearer, reduces errors, and 

highlights the areas of concern, helping doctors diagnose TB earlier and more effectively. With its reliability, it can also 

be a valuable tool for large-scale health screenings in the future. 
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