
ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 12, December 2025

DOI: 10.17148/IJARCCE.2025.141273

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 480

Implementation of real-time audio signal

processing using FPGA-based digital FIR filter

Dr. S G Hiremath1, Hemanth Kumar N N2, Srinivasa T3, Tabrez Pasha4,

Yogeshwar Gowda P5

Dept. of ECE, East West Institute of Technology, Bangalore1-5

Abstract: This Project paper present the implementation of digital filters on an FPGA platform for real-time audio

signal processing. This utilizes the Basys-3 FPGA board and the peripheral module (PMOD) I2S2 accessory to process

audio data using digital finite impulse response (FIR) filters. The extension of the filter kernel length is achieved by

converting the dual- channel input to a single-channel output, and the use of free LUTs (Look Up Tables) as digital

signal processing (DSP) multipliers, optimizing the utilization of available resources. The successful implementation

of the filters highlighted the potential for FPGA- based solutions in audio engineering and digital signal processing.

The results provide valuable insights that can guide future work in optimizing FPGA- based digital filters for audio

engineering.

Keywords: Digital filter,Field Programmable gate array(FPGA),Digital Signal Processing(DSP).

I. INTRODUCTION

Digital signal processing techniques have revolutionized the field of audio engineering by enabling advanced

manipulation and analysis of audio signals. Real-time processing of audio data is crucial for applications such as audio

effects, noise cancellation, speech recognition, and audio enhancement. Field Programmable Gate Arrays (FPGAs)

have emerged as a powerful platform for implementing real-time signal processing systems due to their

reconfigurability, parallel processing capabilities, and low latency. In this paper, we present an implementation of FIR

digital filters on an FPGA platform for real-time audio signal processing.

In this paper, we focus on the implementation of essential filters for audio processing, including low- pass, high-pass,

band-pass, and moving average filters. These filters are widely used in various audio applications, such as frequency

shaping, noise removal, and signal enhancement. We justify the choice of these filters based on their relevance to

audio processing and the human auditory spectrum's frequency range.

To optimize the filter performance and resource utilization, we explore techniques to extend the filter kernel lengthWe

demonstrate how the conversion from dual-channel input to single-channel output allows for a larger kernel length,

maximizing the utilization of the available resources on the FPGA. Furthermore, we investigate the utilization of free

Look- Up Tables (LUTs) as Digital Signal Processing (DSP) multipliers, enabling additional computational capacity

without consuming extra resources.

The research presented in this paper contributes to FPGA- based audio signal processing by showing the feasibility

and effectiveness of implementing digital filters on the Basys-3 FPGA board. The outcomes of our paper provide

valuable insights into the design and optimization of real- time audio processing systems using FPGAs. The findings

and methodologies discussed in this paper lay the groundwork for further advancements in FPGA-based audio

processing and inspire future research and innovation in this domain.

II. LITERATURE REVIEW

Introduction to FPGAs Field-Programmable Gate Arrays (FPGAs) have emerged as powerful hardware platforms for

implementing various digital signal processing (DSP) applications, including real-time audio processing. FPGAs are

programmable semiconductor devices that consist of an array of configurable logic blocks (CLBs), embedded memory

blocks (BRAM), digital signal processing blocks (DSPs), and input/output (I/O) blocks interconnected by a network of

programmable routing resources. What sets FPGAs apart from other devices is their reconfigurability. Unlike ASICs,

which are designed for specific functions and cannot be altered once manufactured, FPGAs can be programmed and

reprogrammed to implement different functionalities, making them highly adaptable to changing requirements.

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 12, December 2025

DOI: 10.17148/IJARCCE.2025.141273

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 481

The Basys3 works with Xilinx’s new high- performance Vivado Design Suite. Vivado includes many new tools and

design flows that facilitate and enhance the latest design methods.

III. METHODOLOGY

Hardware

In this section, the hardware components employed in the implementation of digital filters for real-time audio

processing has been discussed. The paper utilizes the Basys-3 FPGA board and the PMOD I2S2 accessory, both of

which play pivotal roles in enabling efficient and effective audio filtering.

Fig.1.Digilent Basys-3 FPGA Board view.

The Basys-3 FPGA board, manufactured by Digilent, serves as the primary hardware platform for the paper shown in

Fig. 1. The Basys-3 board features a Xilinx Artix-7 FPGA, offering 33,280 logic cells in 5200 slices, along with 90

DSP slices, which provides ample resources for implementing complex digital signal processing algorithms, including

digital filters. Additionally, it offers a range of input/output interfaces, including through PMOD accessories, allowing

for seamless integration with external devices and peripherals, making it well-suited for audio processing applications.

Fig.2.Block Diagram of setup

To facilitate audio data transmission into and out of the FPGA, we utilize the PMOD I2S2 accessory which is

presented in Fig. 2. The PMOD I2S2 is a PMOD (peripheral module) specifically designed for audio applications. It

supports the Inter-IC Sound (I2S) protocol, a widely used standard for digital audio communication. The PMOD I2S2

enables bidirectional audio data transfer between the FPGA and external audio devices, such as microphones,

speakers, or audio codecs.

By leveraging the capabilities of the PMOD I2S2, we can efficiently process audio signals in real-time using the

FPGA's computational power.

The successful implementation of our FPGA- based audio signal processing system relies on the integration of various

other components including an audio source, software to program the FPGA, and a speaker. The audio source in our

setup is a smartphone equipped with a 3.5mm audio jack, which plays back the sound to be processed. The software

tool used for programming the FPGA and flashing it with the designed System Verilog code is Xilinx Vivado.

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 12, December 2025

DOI: 10.17148/IJARCCE.2025.141273

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 482

This powerful software suite enables the configuration and control of the FPGA, facilitating the execution of our audio

processing algorithms. Lastly, the Beoplay A1 speaker with a 3.5mm audio jack serves as the output device, playing

back the analog audio signal generated by the FPGA. The seamless integration of these components forms a

comprehensive audio processing system, enabling real-time signal manipulation, and demonstrating the practical

application of FPGA technology in the audio domain.

FILTER DESIGN

When designing digital filters for audio applications, several constraints need to be considered to ensure optimal

performance and compatibility with the target hardware. In the context of audio processing on a FPGA board, the

following constraints are particularly relevant: the audio spectrum, the available DSP units on the FPGA, and the

sampling frequency.

The human audio spectrum, which encompasses the range of audible frequencies, typically extends from 20 Hz to 20

kHz. To accurately process audio signals within this frequency range, it is essential to choose filters that provide

sufficient frequency response coverage. The filters should be designed to handle frequencies from 20 Hz to 20 kHz

without significant attenuation or distortion in their passband, and sufficient attenuation in their stopbands so that an

average human can hear the effects of the filters.

Another important consideration is the available resources on the Basys-3 FPGA board. The board is equipped with a

limited number of DSP units, which are essential for implementing digital filters efficiently. DSP units are specialized

hardware blocks within the FPGA designed for digital signal processing operations. The number of available DSP

units determines the kernel length of the filters implemented. In the case of the Basys-3 FPGA board, having 90 DSP

units means the filter design should consider the utilization of these units to achieve the desired audio processing

functionality.

Furthermore, the sampling frequency of the PMOD I2S2 module plays a crucial role in filter design. The PMOD I2S2

module provides an interface for audio input and output and operates at a sampling frequency of 44.1 kHz [8]. This

sampling frequency represents the number of samples taken per second from the analog audio signal. To ensure

accurate audio processing, the filters must be designed to handle the specific sampling frequency of 44.1 kHz. This

involves considering the cutoff frequencies and filter characteristics that are appropriate for this sampling rate to avoid

aliasing and ensure accurate reconstruction of the audio signal.

Selected Filters With regards to the constraints introduced in the previous section, the following filters were selected to

be implemented. All these filters are dual channel, with a kernel length of 45 for each filter.

1. Low-pass Filter with a cut-off frequency of 1KHz.

2. High-pass Filter with a cut-off frequency of 2KHz.

3. Band-pass Filter with passband from 1KHz to 4KHz.

4. Band-stop Filter with passband from 1KHz to 4KHz. Generation of Coefficients

The coefficients for the digital filters were generated using GNU Octave, a high-level programming language for

numerical computations. The “fir1” function is used to generate the filter coefficients. This function creates a finite

impulse response (FIR) filter with the specified number of taps and cutoff frequencies. The resulting coefficients are

then scaled to fit within the desired coefficient width of 16 bits. The code also prints out the coefficients in a

formatted, human-readable format

Fig.3. PMOD I2S2 module view

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 12, December 2025

DOI: 10.17148/IJARCCE.2025.141273

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 483

Site Type Utilization

Used Available % Utilization

Slice LUTs 383 20800 1.84%

DSPs 89 90 99%

IMPLEMENTATION

The Digilent Basys-3 FPGA is programmed in System Verilog using Xilinx Vivado 2019.2. The FIR engine is divided

into two main files: firbackend.sv and fir.sv. All the code can be found in . The file firbackend.sv contains System

Verilog code implements FIR filter engine capable of applying four different filters to incoming data. It utilizes buffer

elements to store the input data and compute the filtered output based on the selected filter's coefficients. The

coefficients for the filters are a part of this file. Based on the currently selected filter, the FIR filter engine computes

the output of the filter on receiving each new packet. The output is computed using the standard formula for FIR

filters, multiplying the coefficients with the corresponding buffer values, and accumulating the results.

The file fir.sv contains modules that handle and connect the AXI stream from the PMOD input to the FIR filter

backend and forward the output from the FIR filter to the output stream. The file Basys-3-Master.xdc contains the

mapped pins and switches between hardware and software, and the clocks used Using single-channel filter instead of

dual-channel filter

By converting the dual-channel input to a single- channel output, the available resources can now be dedicated entirely

to a single channel, allowing for a higher number of taps to be accommodated. By utilizing a single-channel filter, the

number of taps or coefficients can be effectively doubled compared to a dual-channel filter design with the same

available resources. The decision to use a single-channel filter should be based on the application's nature and the

specific requirements of the signal processing task. In scenarios where the input signal contains significant information

in both channels, or when preserving stereo imaging is crucial, a dual- channel filter may be more appropriate.

Site Type Utilization

Used Available % Utilization

Slice LUTs 18948 20800 91.1%

DSPs 89 90 99%

However, when working with signals that do not necessitate dual-channel processing, employing a single- channel

filter offers a practical solution for extending the filter kernel length and enhancing the filtering capabilities.

Using free LUTs as DSP Multipliers FPGAs consist of an array of LUTs that can be configured to implement any

desired Boolean function. In many applications, the LUTs are not fully utilized, leaving some LUTs unused or

underutilized. By repurposing these unused LUTs as DSP multipliers, additional resources can be made available for

extending the filter kernel length. The process involves mapping the multiplier Digital Signal Processing (DSP) units

of the FPGA to the available free LUTs. This mapping allows the FPGA to effectively use the LUTs as multipliers,

augmenting the number of available multiplier blocks beyond the default count provided by the device. In our case,

after mapping the multiplier DSP units to free LUTs, 73 extra multiplier blocks were obtained. After applying both the

techniques to increase filter length, we could implement single- channel filters with a length of 163, which is a 262%

increase over our original 45-tap dual-channel filters.

The central processing unit in the FPGA includes a control unit implemented using programmable logic or a soft

processor. This control unit manages filter selection based on user inputs or predefined logic and configures the FIR

filter module accordingly.

The FIR filter module is coded in SystemVerilog and supports low-pass, high-pass, and band-pass filtering. These

filters are essential for shaping, cleaning, or enhancing specific audio frequencies. The digital filters operate using a

multiply-accumulate (MAC) approach, where incoming audio samples are multiplied by pre-defined filter coefficients

and summed to produce the filtered output.

The coefficients for each filter are generated using GNU Octave’s fir1 function, which designs filters based on the

desired specifications and sampling rate. These coefficients are either hardcoded or loaded dynamically into the

FPGA. To increase the kernel length of the filter (i.e., the number of taps), two optimization techniques are applied:

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 12, December 2025

DOI: 10.17148/IJARCCE.2025.141273

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 484

converting dual- channel audio to single-channel, and repurposing unused Look-Up Tables (LUTs) as additional DSP

multipliers.

LOW PASS: A low pass filter (LPF) is an electronic or digital filter that allows low- frequency signals to pass through

while attenuating or blocking high- frequency signals. It is commonly used in audio processing to remove high-

frequency noise and in signal processing to smooth signals.

HIGH PASS: It allows high-frequency signals to pass while blocking low-frequency signals. High pass filters are used

to remove low-frequency interference such as hum or DC offset in audio and communication systems. For instance, in

an audio system, a high pass filter will suppress bass frequencies and let the treble pass, making it useful in situations

where deep sounds are unwanted.

BAND PASS: A band pass filter (BPF) allows only a specific range of frequencies to pass through while blocking

frequencies that are lower or higher than the desired band. This makes band pass filters extremely useful in

applications like wireless communication, where only signals within a certain frequency range should be received or

transmitted.

BAND STOP: A Band Stop Filter (BSF) — also known as a Band Reject Filter or Notch Filter — is an electronic

filter that blocks (attenuates) frequencies within a specific range (band) and allows frequencies outside that range to

pass.

Fig 4Magnitude Response and Phase Shift of the 89-tap single-channel Low- pass filter

Fig. 5. Magnitude Response and Phase Shift of the 89-tap single-channel High-pass filter

Fig. 6. Magnitude Response and Phase Shift of the 89-tap single-channel Band- pass filter

Fig. 7. Magnitude Response and Phase Shift of the 89-tap single-channel Band- stop filter

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 12, December 2025

DOI: 10.17148/IJARCCE.2025.141273

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 485

IV. RESULTS AND DISCUSSION

In this project, noise cancellation was achieved by implementing four different FIR-based filters—Low-Pass, High-

Pass, Band-Pass, and Band-Stop—on the Artix-7 FPGA. Each filter was tested with real-time audio signals to evaluate

how well it isolates useful speech information from background noise. The FPGA provided sufficient parallelism to

perform filtering with almost zero perceptible delay.

Fig 8: The working hardware setup.

The Low-Pass Filter (LPF) successfully attenuated high- frequency noise such as sharp background sounds, electrical

interference, and hissing noise. As a result, the speech waveform became smoother and clearer in the upper frequency

range. The High-Pass Filter (HPF) was effective in suppressing low-frequency rumble, microphone vibrations, and

environmental hum, making speech more crisp and reducing muffled components that normally interfere with clarity.

Fig 9 Simulation

When testing the Band-Pass Filter (BPF), the system produced the most natural-sounding speech. Because the

passband was tuned to the main speech frequency range, unwanted components outside this band were eliminated

while preserving the important harmonics of human voice. This filter gave the best balance between noise reduction

and speech quality.

Fig 10 Schematic

https://ijarcce.com/
https://ijarcce.com/

ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 14, Issue 12, December 2025

DOI: 10.17148/IJARCCE.2025.141273

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 486

The Band-Stop Filter (BSF), or notch filter, was particularly useful in removing specific unwanted tones such as 50/60

Hz electrical hum. During testing, the BSF provided clean suppression of these narrowband noises without disturbing

the rest of the audio spectrum. This improved the stability of the signal when tonal noise sources were present.

These patterns show the distribution of LUTs, flip-flops, routing interconnect, and other synthesized components. The

presence of dense vertical blue strips suggests that most of the logic is concentrated along specific columns, possibly

corresponding to modules such as filters, MAC units, or control logic block.

The figure shows the Device Floorplan View of the FPGA obtained after synthesis and implementation in Xilinx

Vivado. This view provides a detailed visualization of how the design has been mapped, placed, and routed on the

physical FPGA fabric.

The FPGA area is divided into multiple regions, each corresponding to specific hardware resources such as

Configurable Logic Blocks (CLBs), DSP slices, Block RAMs (BRAMs), I/O banks, and clock regions

Fig 11 Implementation of Schematic

V. CONCLUSION

In conclusion, the proposed FPGA-based real-time audio enhancement and assistance system demonstrates an

effective solution for improving speech clarity, reducing noise, and supporting assistive listening applications. By

leveraging the parallel architecture of the Artix-7 FPGA, the system achieves fast, deterministic audio processing with

minimal latency— an essential requirement for real-time auditory tasks.

The prototype successfully demonstrates clear improvement in speech clarity and background noise reduction. The

processed audio output exhibits noticeably higher intelligibility even in moderately noisy environments. The low

latency of FPGA-based processing ensures natural hearing without echo, making it suitable for continuous use.

Optional speech- to-text conversion, performed on a companion device, accurately transcribes lecture speech and

displays the text, enabling accessibility for individuals with hearing impairment.

REFERENCES

[1]. E. M. Abdulzahra, M. Al-Dulaimi, H. Wahhab, A. Amer, “Design and Implementation of Communication

Digital FIR Filter for Audio Signals on the FPGA Platform,” Journal of Communications, Vol. 18, pp. 89-97,

2023 doi: 10.12720/jcm.18.2.89-96.

[2]. Abdulzahra, Mohammed & Al-Dulaimi, Mohammed & Wahhab, Husam & Amer, Ahmed. (2023). Design and

Implementation of Communication Digital FIR Filter for Audio Signals on the FPGA Platform. Journal of

Communications. Volume 18, 89-97. 10.12720/jcm.18.2.89-96.

[3]. Vellaiappan, Elamaran & Upadhyay, H.N. & Raju, Nallusamy & Kumaravelu, Narasimhan. (2015). Real time

audio denoising using digital fir filters with FPGA implementation. International Journal of Pharmacy and

Technology. 7. 9802-9810.

[4]. Shensheng Tang, Siong Moua, Yi Xie and Yi Zheng. (2022). FPGA based Implementation of an Audio Signal

Processing System on Zedboard. Journal of Smart Technology Applications Vol.3, No.1 (2022), pp.1-20.

[5]. Mohammed Abdulzahra Ahmed Al-Dulaimi, Husam A. Wahhab, and Ahmed Abdulhussein Amer. (2023).

Design and Implementation of Communication Digital FIR Filter for Audio Signals on the FPGA Platform.

Journal of Communications vol. 18, no. 2, February 2023.

[6]. R. Smith and Y. Chang, ”Advancements in Human-Robot Interaction: A Healthcare Perspective,” IEEE

Robotics & Automation Magazine, vol. 27, no. 2, pp. 85-94, 2021.

[7]. C. Ünsalan, B. Tar, “Digital system design with FPGA: Implementation using Verilog and VHDL,” McGraw-

Hill Education, 2017.

[8]. Fahad Syed. “Real-Time Audio Processing on Basys-3FPGA.” github.com.

https://github.com/sinandredemption/fir_basys3 accessed Jun. 29, 2023

https://ijarcce.com/
https://ijarcce.com/

