

Child Health Tracker

Ms Punitha MR¹, P Harshitha², Ramitha K³

Assistant Prof., Department of CSE, K. S. School of Engineering and Management, Bangalore¹

Student, Department of CSE, K. S. School of Engineering and Management, Bangalore^{2,3}

Abstract: The Child Health Tracker is a web-based application designed to assist parents and caregivers in monitoring the health, nutrition, and overall development of children. Managing child health data such as growth, sleep, food intake, vaccinations, and medications is often fragmented across multiple sources, making it difficult to identify patterns or potential health concerns. The proposed system integrates modern web technologies with AI-driven analysis to provide a centralized and intelligent childcare platform.

The system is developed using a React frontend and a Node.js Express backend, with Indexed DB used for local data storage to enable offline access. AI services are integrated to analyze meal images, provide nutrition recommendations, and generate health insights. Interactive dashboards and visualizations help caregivers understand growth trends and health patterns easily. The Child Health Tracker aims to simplify child healthcare management, promote healthy habits, and support informed decision-making without requiring complex backend infrastructure.

Keywords: Child Health Tracker, AI-based Recommendation, React, Indexed DB, Health Monitoring

I. INTRODUCTION

The health of children and their daily happiness must be a priority at all times. However, parents and guardians often find it difficult to combine sleep, nutrition, medication, academics, and developmental activities tracking from different sources into one place. With the rapid growth of smart technologies and AI-assisted devices, the question of an integrated platform that would simplify child health management and support learning as well as the day-to-day tasks becomes more and more pressing. The Child Health Tracker is a comprehensive, AI-driven system that combines the core health, lifestyle, and educational features of the platform in one place to meet this demand. It allows caregivers to monitor sleep patterns, analyze meal images for nutrition, get personalized dietary recommendations, manage medications along with possible side effects, keep track of vaccinations, and scan prescriptions for easy record-keeping. Moreover, the platform is not limited to health monitoring only; it goes beyond conventional trackers by including features such as a homework helper, research assistant, image studio, video analysis, and an integrated AI assistant. These tools help children to grow academically and become creative while giving parents smart insights through a centralized dashboard. By integrating cutting-edge AI technologies, user-friendly design, and multifunctional capabilities, the Child Health Tracker is an attempt to build a comprehensive family support system that gives the family the power to change their decisions, promote healthy habits among themselves, and increase the communication between caregivers, educators, and healthcare providers. Hence, this platform contributes to a safer, healthier, and more informed environment for children's overall growth.

II. RELEVANT LITERATURE

- **Stewart et al. (2022)** studied existing eHealth tools used to track child and adolescent health. The study found that while these tools help in monitoring health, many suffer from low long-term usage due to poor user interface and lack of engagement. This supports the need for a simple, interactive, and engaging interface in the Child Health Tracker. The advantage of this work is its comprehensive review, but the wide variety of tools makes technical comparison difficult.
- **Requejo et al. (2022)** proposed a set of globally accepted child health and wellbeing indicators. This work is relevant as it helps in selecting meaningful health metrics such as nutrition, growth, and activity for the Child Health Tracker. Its main advantage is global relevance, though adapting policy-level indicators to a real-time system requires careful implementation.
- **Böhm et al. (2019)** analyzed mobile health applications and wearable devices for improving physical activity in children. The study showed positive effects on activity levels, supporting the inclusion of exercise tracking and

motivational features in the project. However, the study focuses on older wearable technologies, which highlights the need to use modern and accurate devices.

III. SYSTEM DESIGN AND METHODOLOGY

SYSTEM COMPONENTS

The proposed Child Health Tracker system consists of the following components:

1. **User Interface (React)**
Provides a responsive and user-friendly interface for parents and caregivers to enter and monitor child health data.
2. **Navigation (React Router DOM)**
Enables smooth navigation between modules such as growth tracking, nutrition, sleep monitoring, vaccination schedules, and dashboards.
3. **Frontend Request Handling (Axios)**
Handles communication between the frontend and backend for data submission and retrieval.
4. **Backend Processing (Express Server)**
Processes requests, manages application logic, and securely integrates AI and health-related APIs.
5. **AI & Health APIs**
Used for meal image analysis, nutrition suggestions, and predictive health insights.
6. **Response Processing**
Backend formats and validates processed health data before sending it to the frontend.
7. **Data Visualization Layer**
Displays growth charts, nutrition graphs, sleep patterns, and health trends.
8. **Local Storage (Indexed DB)**
Stores child health records locally to support offline access and data persistence.
9. **Security**
Ensures secure handling of sensitive data using API keys and environment variables.

METHODOLOGY

The development of the Child Health Tracker follows a structured and modular approach:

1. **Requirement Analysis**
Identification of essential features for tracking health, nutrition, sleep, medication, vaccinations, and learning activities.
2. **System Design**
Design of a modular architecture using React 18 with TypeScript and IndexedDB for offline storage.
3. **AI & API Integration**
Integration of AI services for meal analysis, nutrition recommendations, and health trend insights.
4. **Front-End Development**
Development of interactive dashboards for growth tracking, nutrition monitoring, sleep analysis, and educational support.
5. **Data Visualization**
Implementation of charts and graphs to represent health trends and progress clearly.
6. **Testing**
Unit and integration testing to ensure reliability, performance, and offline functionality.
7. **Deployment & Maintenance**
Deployment on a secure platform with continuous updates to AI models and system features.

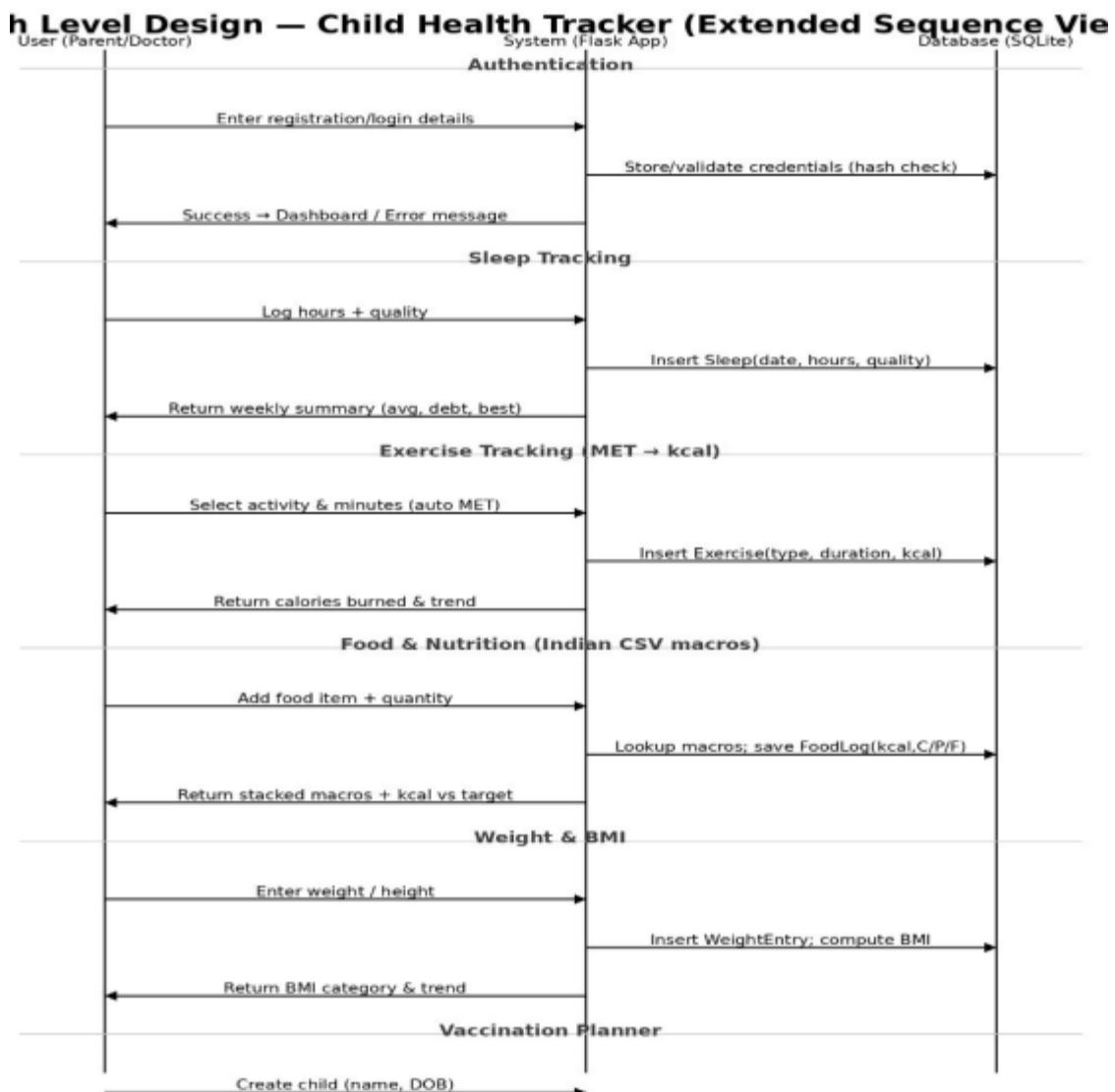


FIG. 1 HIGH-LEVEL DIAGRAM

- The user (parent or doctor) registers or logs in by entering credentials through the application interface.
- The system authenticates the user by validating credentials and stores secure login details in the database.
- After successful authentication, the user is redirected to the dashboard; otherwise, an error message is displayed.
- For sleep tracking, the user enters sleep duration and quality details.
- The system stores sleep data and returns a weekly summary showing average sleep, sleep debt, and best sleep patterns.
- For exercise tracking, the user selects the activity type and duration.
- The system automatically calculates calories burned (MET to kcal) and stores exercise data.
- Exercise trends and calorie information are displayed on the dashboard.
- For food and nutrition tracking, the user adds food items along with quantity.
- The system looks up nutritional values (calories, carbohydrates, proteins, fats) and saves the food log.
- Nutrition summaries and comparisons with daily targets are returned to the user.
- For weight and BMI tracking, the user enters height and weight details.
- The system computes BMI, categorizes it, and displays trends over time.
- In the vaccination planner, the user creates a child profile by entering name and date of birth.
- Based on the child's age, the system generates and maintains the vaccination schedule.

IV. RESULTS AND DISCUSSIONS

- The **GrowWell – Child Health Tracker** system was tested using sample prescription images and medication data. The results show that the system works effectively and improves medication management for children.
- The prescription scanning feature successfully extracted important details such as medicine name, dosage, and intake frequency from prescription images. This reduced manual data entry and saved time for parents and caregivers. The medication tracking module allowed users to store current and past medications with proper schedules.
- The system also provided dosage validation based on the child's age and weight. In some test cases, incorrect or risky dosages were identified and warnings were displayed. Reminder notifications helped improve timely medication intake.
- The application worked smoothly even with multiple medication records. Offline access allowed users to view medication schedules without internet connection, and data was synchronized once connectivity was restored.
- Overall, the system improved safety, reduced errors, and made medication management easier and more reliable.

V. CONCLUSION AND FUTURE WORK

Conclusion

The Child Health Tracker is an effective example of modern technology integration, where multiple aspects of a child's health and well-being are combined into a single AI-driven platform. The system brings together health monitoring, nutrition analysis, medication management, growth tracking, and educational support, making daily caregiving simpler and more organized. By providing structured data, intelligent insights, and visual dashboards, the platform enables parents, teachers, and doctors to make informed decisions. The use of React 18 with TypeScript, Indexed DB, and AI technologies ensures that the system is responsive, stable, and reliable. Overall, the project demonstrates how digital solutions can promote healthy habits, support academic development, and improve the quality of child care in an interactive and user-friendly manner.

Future Work

The Child Health Tracker offers several opportunities for future development and enhancement. The platform can be expanded by developing mobile applications for Android and iOS to improve accessibility across devices. Cloud integration can be introduced to allow secure data storage, multi-device access, and reliable backups. Advanced AI features can be added to predict health risks, generate personalized diet plans, and identify early symptoms of diseases. Integration with wearable devices such as smartwatches and fitness bands can enable automatic tracking of physical activity, heart rate, and sleep patterns. Telehealth features can be incorporated to allow remote consultations and secure data sharing between caregivers and pediatricians. Additionally, gamification elements can be introduced to encourage children to follow healthy routines, and multi-language support can be added to make the platform accessible to a wider global audience.

REFERENCES

- [1]. C. Bhatt, S. Rawat, R. Chauhan, D. Kumar, M. Kumar, and S. A. Dhondiyal, "Child health tracking system using React," *2023 International Conference on Sustainable Emerging Innovations in Engineering and Technology (ICSEIET)*, Ghaziabad, India, 2023, pp. 370–374, doi: 10.1109/ICSEIET58677.2023.10303369.
- [2]. E. Stewart, A. Milton, H. F. Yee, M. J. Song, A. Roberts, T. Davenport, and I. Hickie, "eHealth tools that assess and track health and well-being in children and young people: Systematic review," *JMIR Mental Health*, vol. 9, no. 8, p. e38806, Aug. 2022, doi: 10.2196/38806.
- [3]. A. D. I. Santos, M. A. B. Oliveira, and F. V. D. Silva, "Child health tracking using sensors," *International Journal of Advanced Research in Computer and Communication Engineering*, vol. 9, no. 4, pp. 47–52, 2020.
- [4]. D. N. Aisyah, N. A. F. Sari, and R. P. Utami, "Using WhatsApp for nutrition surveillance among children under 5 years: Implementation study," *JMIR Pediatrics and Parenting*, vol. 8, no. 1, p. e58752, May 2025, doi: 10.2196/58752.
- [5]. A. Puspitasari, R. Hidayat, and S. Nurul, "Benchmarking pediatric mobile health applications for monitoring growth and development," *BMC Medical Informatics and Decision Making*, vol. 25, no. 3, pp. 112–123, Jun. 2025.