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Abstract: MedGuard Edge is a decentralized healthcare 10T system that ensures continuous and secure patient monitoring
while solving the fundamental security and privacy concerns of traditional centralized systems. The smart wearable hand
band includes sensors for temperature, oxygen saturation (SpO2), heart rate (BPM), and humidity, which process crucial
biomedical data. These data are encrypted and transferred to the MedGuard server via a Node MCU module for threat
analysis, anomaly identification, and decision-making, with the user receiving emergency notifications. At its core,
Clustered Federated Learning allows for local model training on clustered devices without exchanging raw patient data,
hence ensuring privacy. Blockchain technology secures model updates via tamper-proof validation, ensuring data
integrity. Real-time anomaly detection monitors devices and data for anomalies, while self-healing features isolate or
recover compromised nodes to ensure system stability. A real-time dashboard displays graphical views of patient data,
alerts, device health, and blockchain logs, allowing healthcare administrators to monitor and respond more efficiently.
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l. INTRODUCTION

MedGuard Edge is a cutting-edge next-generation digital healthcare platform that combines Clustered Blockchain and
CFL improve the security, scalability, and effectiveness of 10T networks. [0T devices minimize data transmission and
protect privacy by locally training models on their own datasets. sensitive health data, MedGuard Edge decentralizes data
processing, in contrast to typical centralized healthcare systems that concentrate it in a single location. Instead of sending
raw medical records over the network, the system simply shares encrypted model updates to preserve patient privacy.

Blockchain acts as the foundational technology for maintaining data security and integrity fostering transparency, with
every transaction, model update, and access event immutably recorded on a distributed ledger that is resistant to tampering
and fraud. The system includes real-time anomaly detection systems that track each device's activities in order to improve
security. The system may automatically isolate the affected node and start recovery procedures if suspicious or malicious
activity is found, ensuring consistent and reliable healthcare service delivery. Clustering of 10T devices within the CFL
framework improves the scalability and efficiency of the learning process, allowing the system to successfully manage
various loT contexts. complex healthcare contexts. In addition, this clustering method improves energy usage and
communication overhead, which is critical for medical devices with limited resources.

Together, these components provide a solid digital healthcare architecture that facilitates precise diagnosis, real-time
patient monitoring, and compliance with strict data standards. MedGuard Edge opens the door to a secure, scalable, and
intelligent healthcare 10T infrastructure suitable for the future of connected health by combining decentralized learning,
blockchain-based security, and intelligent anomaly handling.

1. PROBLEM STATEMENT AND OBJECTIVE

Centralized 0T healthcare solutions are inherently vulnerable to system outages, unauthorized access, and breaches of
patient confidentiality, which can undermine trust and compromise compliance with privacy laws.

The MedGuard Edge framework is designed to confront these risks by decentralizing data processing, employing devices
clustered for federated learning so that sensitive medical information is locally safeguarded rather than consolidated on
central servers. Blockchain technology underpins the verification of model updates, providing a transparent and
immutable audit trail that ensures data accuracy and security throughout the healthcare network. Advanced self-healing
mechanisms, combined with real-time anomaly detection, reinforce overall system resilience and facilitate rapid response
to potential threats or network failures. By leveraging clustered device architectures, MedGuard Edge enhances both the
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efficiency and scalability of distributed learning, making it adaptable for growing healthcare infrastructures while
upholding stringent data privacy standards and regional regulatory requirements.
Key objectives of MedGuard Edge:
e  Preserve data privacy.
Verify model updates in a transparent and safe manner with blockchain technology.
Include self-healing and anomaly detection systems to increase network resilience.
Enhance efficiency and scalability through device clustering.
Verify compliance with relevant healthcare data privacy laws.

. SCOPE

The MedGuard Edge system provides a complete and innovative solution designed to tackle the urgent issues that
healthcare 10T environments face. By guaranteeing that sensitive patient The 10T devices process the data directly, this
decentralized framework reduces the dangers connected with centralized data storage and transfer, improving data
privacy. Data integrity and regulatory compliance are ensured by the incorporation of blockchain technology, which
offers a transparent and unchangeable method for confirming model revisions. In order to sustain ongoing healthcare
service delivery, the structure system's anomaly detection and self-healing features enhance network resilience by
enabling real-time reaction to security threats and operational errors. MedGuard Edge greatly increases scalability and
energy efficiency by using device clustering within Clustered Federated Learning, which enables it to adapt to the
dynamic and frequently resource-constrained healthcare settings. In order to provide wide compatibility and future-proof
the framework, the scope also includes supporting a range of clinical data sources and loT devices for healthcare
accommodating growing medical technology. In decentralized health systems, the framework's flexible design promotes
cross-institutional cooperation and cloud interoperability. It also makes it easier to include cutting-edge Al-based
prediction technologies, allowing physicians to offer proactive care and timely diagnoses. All things considered,
MedGuard Edge is a prime example of both a strong security solution and an intelligent, scalable, and compliant
infrastructure that can adapt to changing healthcare needs and technology breakthroughs. MedGuard Edge is positioned
to revolutionize digital healthcare by enabling creative and efficient healthcare delivery through the deployment of a safe
and privacy-focused 10T network.

V. LITERATURE REVIEW

[1] Alami et al. The system may identify rogue IoT devices without transmitting raw data by utilizing Federated Learning
in conjunction with a permissioned blockchain, resulting in low false positives and high detection accuracy.

[2] Alsamhi et al. proposed an FL—Blockchain architecture for healthcare, where patient data stays local and smart
contracts manage secure model exchange. Their multi-hospital simulations show improved privacy and auditability, but
highlight overhead on resource-limited devices.

[3] Ying et al. introduced BIT-FL, an incentivized FL system that rewards clients for high-quality model updates using
blockchain smart contracts. Experiments show improved accuracy and participation, although incentive mechanisms may
introduce new vulnerabilities.

[4] Yuan et al. addressed scalability with a layered and sharded blockchain that parallelizes model update verification.
Their approach significantly improves throughput and reduces validation latency in large FL networks.

[5] Lin et al. proposed a time-efficient blockchain-based FL workflow that prioritizes low-latency clients to speed up
convergence. While effective for real-time 10T, this method raises fairness concerns for slower devices.

[6] Huang et al. designed FL chain, a lightweight FL-Blockchain system optimized for low computational and
communication overhead. Despite its simplicity, it maintains tamper-evidence and integrity, making it suitable for loT
healthcare devices.

[7] Ahmed et al. presented a blockchain-secured FL framework for classifying AlIoMT devices. Their system supports
decentralized model sharing while preserving provenance, validated through device datasets and simulated hospital
environments.

[8] Dong et al. proposed a blockchain-based mechanism to defend against poisoning attacks in FL by logging updates
and detecting anomalies. The outcomes show enhanced resilience and successful client segregation.
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[9] Yang & Xing integrated homomorphic encryption with blockchain-managed FL to ensure encrypted model updates
throughout aggregation. Their approach enhances privacy for multi-hospital collaboration despite higher computational
Costs.

[10] Issa et al. provided a comprehensive survey of blockchain-enabled FL for 10T, outlining architectures, threats, and
cryptographic strategies. They identify research gaps such as dynamic clustering and real-time anomaly handling,
motivating more adaptive FL systems.

4.1 Gaps or Areas for Improvement

Despite considerable advancements in the fusion of federated learning with blockchain for safe and expandable Internet
of Things healthcare systems healthcare 10T environments, several gaps and limitations remain unaddressed in existing
research. A notable constraint is the lack of models for Clustered Federated Learning (CFL). Large, diverse healthcare
loT applications have limited scalability because to the single-layer, flat structure of most existing FL systems, which
also results in high communication costs. CFL, which groups devices into smaller and more manageable clusters to
improve training efficiency, remains significantly underexplored in medical applications. Another critical gap is the
absence of self-healing capabilities and real-time threat detection. While privacy-preservation has been widely
emphasized, many existing solutions fail to incorporate autonomous intrusion detection mechanisms or automatic fault-
recovery features. These functionalities are essential in healthcare environments, where continuous monitoring and
uninterrupted device operation are crucial for patient safety. In addition, current blockchain-FL systems often lack
healthcare-specific optimization. Many frameworks are designed for generic 10T scenarios and do not consider medical
requirements such as ultra-low latency, device heterogeneity, strict reliability constraints, and patient-safety-driven
protocols. Tailored models that address these domain-specific needs are still limited.

Furthermore, many studies continue to rely on centralized or cloud-based storage for logs and system metadata, creating
vulnerabilities despite using blockchain. Fully decentralized storage solutions such as IPFS, which enhance data
availability and integrity, are still not widely adopted. Finally, energy efficiency and scalability pose significant
challenges. Healthcare 10T devices usually operate under tight power constraints, and heavy cryptographic operations or
blockchain consensus mechanisms can overwhelm these devices. To enable scalable, sustainable systems, striking a
balance between strong security and energy efficiency remains an open research problem.

V. SYSTEM ARCHITECTURE

The MedGuard Edge framework establishes a comprehensive, decentralized architecture designed to address the critical
challenges faced by healthcare 10T systems, including data privacy, security, scalability, and resilient management.
Fundamentally, important patient data including blood pressure, heart rate, temperature, and oxygen saturation are
continuously gathered by wearable sensors and medical monitoring devices. These devices preprocess the data locally,
cleaning, normalizing, and filtering it to maintain patient privacy and reduce data transmission burdens. Above this lies
the Clustered Federated Learning (CFL) layer, which organizes 10T devices into logical clusters based on factors like
device type, geographic location, or data similarity. A model for local machine learning is trained by every gadget, and
the cluster head only receives model updates. These updates are combined by the cluster head to create a cluster-level
model, which then adds to a global model that depicts the complete system.

This hierarchical training approach enhances model efficiency, significantly cuts down communication costs, and
supports scalability far better than traditional flat federated or centralized methods. To ensure the authenticity Regarding
the model's integrity updates, the system employs a blockchain layer where every update is validated and immutably
recorded using smart contracts. A central authority is no longer necessary thanks to this decentralization, which also
shields the system from malicious attacks or tampering that can jeopardize the accuracy of the model or the reliability of
the data. Complementing blockchain is the Interplanetary File System (IPFS), used for decentralized storage of validated
model updates, anomaly reports, and other critical system information. IPFS ensures fault tolerance, high availability,
and rapid data retrieval, even if parts of the network fail, thereby reinforcing system robustness. A dedicated anomaly
detection and self-healing layer continuously monitors network and device activities for abnormal patterns such as
unauthorized access or malfunctioning nodes. When issues are detected, the system autonomously isolates compromised
devices, initiates restorative actions like resets or reconfigurations, and reintegrates the devices once stability is achieved.
This reduces downtime and enhances the network’s overall resilience. Finally, system administrators are supported by a
user-friendly, web-based dashboard that provides real-time visualization of blockchain transactions, security threats,
device performance, and mitigation efforts. This interface enables proactive management and transparent oversight,
empowering administrators to maintain optimal system health and security.
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Figure 1: Complete system architecture showing integration of blockchain validation, clustered federated learning,
IPFS storage, real-time monitoring dashboard

In summary, MedGuard Edge fuses hierarchical federated learning, blockchain-secured validations, decentralized fault-
tolerant storage, intelligent anomaly detection with self-healing, and comprehensive real-time monitoring into a unified
architecture. This design effectively addresses the pressing needs of healthcare 10T networks by safeguarding sensitive
patient data, ensuring reliable system operation, and enabling scalable, adaptive intelligence for modern medical
environments.

VI. METHODOLOGY
The MedGuard Edge system is constructed upon a multi-layered decentralized architecture that brings together
blockchain verification, decentralized storage via IPFS, autonomous self-healing capabilities, and Clustered Federated

Learning (CFL) to guarantee a secure, scalable, and privacy-preserving environment for healthcare 10T devices. This
integrated model ensures the system’s integrity, availability, and resilience even under adverse conditions.
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6.1 10T Data Gathering

The foundation lies in a network of 10T gadgets deployed within healthcare environments, including wearable sensors as
well as patient monitoring devices. These devices continuously monitor crucial patient physiological information, such
as blood pressure, heart rate, body temperature, and oxygen saturation pressure, and oxygen saturation. The information
gathered is used to train and update localized models for machine learning, enabling accurate and timely patient health
assessments.

6.2 Preprocessing Local Data

Each 10T device performs on-device preprocessing, which involves cleaning the collected data, normalizing it to a
standard format, and handling missing or inconsistent values locally. By reducing pointless data transfer, this method
lowers communication overhead while simultaneously increasing model training accuracy.

Timestamp SpO: Pulse Temp Humi
19-11-2025 14:17 92.44 82 27 59
19-11-2025 14:17 100 85 27 59
19-11-2025 14:17 93.47 85 27 59
19-11-2025 14:17 93.29 89 27 59
19-11-2025 14:17 91.32 82 27 59

Table 1: Sample sensor log readings

6.3 Device Cluster Formation

To improve scalability and reduce latency, 10T gadgets are logically arranged into clusters according to standards such
gadget type, data similarity, or geographic proximity. Under the direction of a cluster head who oversees local data
gathering and model training within the group, each cluster functions somewhat independently. This clustered federated
learning approach boosts bandwidth efficiency and accelerates convergence by localizing intensive communication.

Cluster 02 Pulse Temp Humi
1 92.84 88.12 27.00 59.00
2 87.17 76.38 24.99 55.03
3 93.20 72.80 27.00 59.00

Table 2: Cluster summary statistics

6.4 Training Local Models

Within each device cluster, individual 10T devices are used to directly train local machine learning models using their
respective pre-processed datasets. Importantly, patient raw data remain secure on the devices. The models capture vital
data patterns and insights unique to each patient's profile. After training, these devices transmit only model modifications
to the cluster head for secure aggregation.

6.5 Global Model Integration and Cluster-Level Aggregation

In order to create cluster-level models that reflect localized learning outcomes, cluster chiefs gather local model updates
from their devices. These cluster models are then forwarded to a global aggregator that fuses the aggregated updates into
a comprehensive global model. This hierarchical aggregation technique significantly reduces overhead in communication
while enhancing the general model's accuracy and generalizability across diverse healthcare populations.

6.6 Blockchain-Based Verification

All improvements to the model and cluster-level aggregations are recorded and validated in a blockchain ledger through
the execution of smart contracts. The blockchain consensus mechanism ensures that every update is authentic, immutable,
and traceable, thereby fostering transparency and trust among participating devices and stakeholders. This decentralized
verification process prevents data tampering and increases overall system security.

6.7 IPFS-based decentralized storage

MedGuard Edge securely stores approved model updates, training logs, and anomaly detection data over IPFS. This
decentralized storage solution guaranty’s fault tolerance, high data availability, and redundancy by distributing data
across multiple network nodes. Even if some nodes become inoperative, the system maintains continuous access to
critical information, enhancing resilience.
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6.8 Identifying Anomalies and Preventing Intrusions

An anomaly detection module persistently monitors device activities, data flows, and network traffic to detect suspicious
behaviours such as unauthorized access attempts, data breaches, or unusual communication patterns. Upon detecting
anomalies, the system immediately triggers mitigation actions that can include limiting network access, isolate malicious
nodes, or block hostile entities to avoid the propagation of attacks.

6.9 Threat Response, System Shutdown, and Safe File Recovery

MedGuard Edge has an automated shutdown response mechanism to prevent widespread compromise after repeated
intrusion attempts. Every unauthorized or anomalous occurrence raises a threat counter. The system continuously tracks
IP access patterns, CSV file requests, and strange data behaviours. The framework initiates a secure shutdown mode to
stop further activity and stop data corruption when this counter reaches twenty consecutive violations. The blockchain-
verified baseline file is then retrieved by the system from IPFS, guaranteeing the restoration of a secure, reliable dataset
even in the event that an attacker targets numerous files. Data integrity is maintained, cascading failures are avoided, and
the system is ready for a safe restart upon administrator verification, thanks to our secure recovery method.

Closing 3 apps and shutting down
bpbﬂ.ﬂmmmﬁ&tﬂw.ﬂﬁﬂlﬂmwm

@m  O.csv - Bxcel
- e en files Excel
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Figure 2: Threat-Response Shutdown Triggered After Repeated Anomalies

6.10 Dashboard for Monitoring and Visualization

Healthcare administrators are provided with a comprehensive, web-based dashboard offering real-time monitoring and
visualization of the system's operational and security status. This interface presents crucial metrics such as blockchain-
verified transactions, network performance, device health indicators, and active security threats. The dashboard facilitates
timely decision-making, early identification of possible dangers, and effective administration of the healthcare loT
infrastructure.

VII. IMPLEMENATION ENVIRONMENT

The recommended MedGuard Edge system's implementation environment combines hardware and software elements to
allow for decentralized validation, intelligent analysis, and safe data collection. Data preprocessing, SHA-256-based
authenticity validation, clustered supervised learning, identifying anomalies, and connection with chain and IPFS services
are all supported by the system's primary programming language, Python. Solidity is used in blockchain smart contract
implementation to safely store model modifications, IPFS hash values, and audit trails, guaranteeing transparency and
defense against unwanted changes. Ganache is used to establish a localized Ethereum blockchain environment for the
effective deployment and testing of smart contracts without actual gas expenses. Through JSON-RPC, Web3.py enables
communication among the Python back and the blockchain, enabling immutable logging, hash storage, contract
execution, and update verification. As the backend server, Flask manages network operations, IPFS uploads, anomaly
warnings, federated training workflows, sensor data receipt, and immediate dashboard communication.

The Arduino Uno microcontroller, which is based on the ATmega328P and operates at 5V with a 16 MHz clock and has
numerous analogue and digital input/output pins for sensor interfacing, is the hardware foundation of the system. The
DHT11 moisture sensor, which monitors both humidity and temperature with dependable precision and minimal power
consumption, is used to monitor environmental conditions.
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Figure 3: MedGuard Panel Showing Live Sensor Data

The ESP8266 NodeMCU development board, which offers embedded Wi-Fi connectivity, onboard CPU, and memory
appropriate for Internet of Things applications, enables wireless data transmission. In order to minimize wiring
complexity, real-time sensor data and system status are shown on a 16x2 LCD displays with an 12C interface. A pulse
oximetry device sensor that measures hemoglobins that is oxygenated and deoxygenated using red and infrared LEDs is
used to monitor oxygen saturation, providing precise SpO. measurements for health monitoring. These hardware and
software elements work together to create a reliable and safe operational setting for the Med Guard Edge system.

Figure 4: Hardware prototype showing Arduino uno with DHT 11, ESP8266 NodeMCU Board, LCD 16X2 Display,
Oxygen sensor

VIIl.  MODULES

8.1 Smart Hand Band Sensing Module

This module records temperature, humidity, SpO2 and BPM in real time using an Arduino equipped with DHT11 and
MAX30102 sensors. It preprocesses raw signals, looks for anomalies, sounds an emergency bell, and shows vital signs
on a 16x2 LCD. After processing, the data is prepared and transferred to the NodeMCU for additional examination.

© 1JARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 534


https://ijarcce.com/
https://ijarcce.com/

IJARCCE ISSN (O) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :: Peer-reviewed & Refereed journal :< Vol. 14, Issue 12, December 2025
DOI: 10.17148/IJARCCE.2025.141281

8.2 Wi-Fi Communication NodeMCU Module

The Arduino sends formatted sensor data to the NodeMCU after creating a secure Wi-Fi connection. The values are
transformed into JSON and sent via HTTP POST to the MedGuard server. It enables dependable and low latency
exchange of information between the edge system by sending out alerts in response to the server's response.

8.3 Clustered Federated Learning (CFL) Module

CFL trains local models without sharing raw data by classifying 10T devices according to data proximity or similarity.
To create a combined cluster model that enhances the global model, cluster heads incorporate local updates. This
increases accuracy and scalability, enhances privacy, and uses less bandwidth.

8.4 Security and Validation Module for Blockchain

For unchangeable, impenetrable verification, this module stores all model updates on a blockchain. Smart contracts
ensure transparent donation tracking and update authenticity. By preventing poisoning threats and decentralizing trust,
it safeguards the federated learning workflow.

8.5 Real-Time Anomaly Detection Module

Identify anomalies like faked data or device breach, this module continuously examines sensor values, network activity,
and model updates. To ensure prompt reaction to hardware and cyber risks, it logs events, flags questionable activity,
and sends out alerts using ML-based detection algorithms.

8.6 Self-Healing & Auto-Isolation Module

The system automatically separates hacked or malfunctioning nodes and initiates recovery operations such as resets or
reconfigurations. These self-healing solutions guarantee continuous availability and prevent errors from propagating.
This enables reliable, ongoing healthcare monitoring even in the case of faults or attacks.

8.7 Server & API Processing Module

After receiving JSON payloads, the backend server verifies sensor parameters and compares them to medical thresholds.
It logs important events for auditing, detects anomalies, and creates alarms. It guarantees precise and effective processing
of health data by sending rapid feedback to I0T devices.

8.8 Web Dashboard Visualization Module
For ongoing patient evaluation, a real-time health monitoring dashboard shows temperature, sweat level, pulse rate, SpO,,

and anomaly status.

IX. PERFORMANCE EVALUATION

The performance outcomes of the MedGuard Edge framework concentrating on two key aspects: blockchain validation
time and end-to-end latency. These parameters help assess how efficiently the system handles data as it moves through
different stages such as sensing, communication, model training, blockchain verification, and dashboard visualization.

9.1 Blockchain Validation Time
The time taken to validate model updates on the blockchain was measured across five global training rounds. As
illustrated in Figure.5, the validation time varied between 700 ms and 780 ms, with the third iteration showing the
maximum delay.
Key Observations:

e The first iteration records the lowest delay (~700 ms), which reflects minimal congestion in the network.

e lterations 2 and 3 show a slight rise in validation time, reaching up to ~ 780 ms, likely because of increasing

model size or network load.
e Adropto~ 700 msin iteration 4 suggests improved efficiency when fewer updates are processed.
e lteration 5 settles around ~760 ms, showing steady performance.

Summary: The blockchain verification process adds a predictable and manageable amount of overhead, making it suitable
for real-time data validation in healthcare 10T applications.
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Figure 5: Blockchain Validation Time Across Consecutive Model Updates

End-to-End Latency Breakdown
To better understand how the total delay is distributed, each stage in the data flow was measured separately. Figure.6
shows the latency contribution from sensing devices to the dashboard output.
Latency Measurements:
e Sensor — NodeMCU: ~15 ms: Very low because the data transfer is direct and lightweight.
e NodeMCU — Server: ~60 ms: Delay occurs due to Wi-Fi transmission, JSON formatting, and communication
overhead.
e  Clustered Federated Learning: ~300 ms: Consists of both cluster-level aggregation and local model updates.
e Blockchain Validation: ~800 ms: The largest delay, caused by hashing operations, smart contract execution, and
block confirmation.
e Dashboard Rendering: ~150 ms: Time taken for the server to send processed results and for the dashboard to
update the visualization.
Summary: The total latency remains acceptable for continuous healthcare monitoring. With future optimizations—such
as lighter consensus algorithms or faster blockchain networks—the overall delay can be further reduced.

Latency Breakdown: Existing vs Proposed System
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Figure 6: Latency Breakdown Across MedGuard Edge Pipeline
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X. CONCLUSION

A practical and forward-thinking approach to improving security and privacy in 10T technologies used in healthcare is
provided by MedGuard Edge. Instead, then relying on centralized servers, it uses a decentralized architecture in which
Clustered Federated Learning (CFL) and blockchain work together to keep confidential patient data on local devices.
This combination ensures transparent, dependable, and tamper-resistant model updates while also protecting privacy.
With the addition of IPFS-based storage, the system greatly improves data integrity and provides visible, verifiable
records of every contribution made to the learning process.

By continuously monitoring physiological patterns and device behaviour, the system's real-time anomaly detection offers
an extra degree of security by assisting in the early discovery of anomalous or possibly dangerous activities. Reliability
is increased by its self-healing feature, which isolates compromised or failing nodes automatically and restores normal
operation without human involvement. All things considered, MedGuard Edge is a significant advancement above
conventional centralized healthcare 10T architectures. It improves security, increases privacy, scales effectively, and
maintains dependability even under changing circumstances. The solution provides a strong basis for next-generation
smart healthcare environments by integrating decentralized intelligence, continuous monitoring, and strong trust
mechanisms. This ensures safe, real-time patient monitoring while protecting vital medical data from new cyber threats.

10.1 Future work

Future improvements to MedGuard Edge might focus on improving its intelligence, scalability, and practicality.
Adaptive and context-sensitive clustering techniques that dynamically rearrange device groups according to data
similarity, movement patterns, or clinical situations can be added to the clustered federated learning framework. The
system's capacity to spot minute temporal variations in patient vitals and device behaviour may be further improved by
including sophisticated deep learning-based anomaly detection models.

The blockchain architecture can be extended into a consortium or multi-institution network using optimized consensus
algorithms and zero-knowledge proof procedures to increase throughput, lower latency, and offer more robust privacy
guarantees in order to fortify the trust layer. In order to encourage sincere involvement and reliable federated learning
updates across diverse healthcare nodes, future research may also investigate incentive-driven smart contracts.

To increase long-term dependability and usefulness, more research can concentrate on integrating redundant IPFS
pinning techniques, fault-tolerant decentralized storage, and energy-efficient wearable hardware. System performance
under practical operating settings may be further validated by extensive deployment throughout hospital networks and
integration with 5G-enabled edge infrastructure. Lastly, adding more biological parameters to the sensing module and
improving power management strategies may allow MedGuard Edge to be used in more clinical and emergency care
situations.
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