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Abstract: MedGuard Edge is a decentralized healthcare IoT system that ensures continuous and secure patient monitoring 

while solving the fundamental security and privacy concerns of traditional centralized systems. The smart wearable hand 

band includes sensors for temperature, oxygen saturation (SpO2), heart rate (BPM), and humidity, which process crucial 

biomedical data. These data are encrypted and transferred to the MedGuard server via a Node MCU module for threat 

analysis, anomaly identification, and decision-making, with the user receiving emergency notifications. At its core, 

Clustered Federated Learning allows for local model training on clustered devices without exchanging raw patient data, 

hence ensuring privacy. Blockchain technology secures model updates via tamper-proof validation, ensuring data 

integrity. Real-time anomaly detection monitors devices and data for anomalies, while self-healing features isolate or 

recover compromised nodes to ensure system stability. A real-time dashboard displays graphical views of patient data, 

alerts, device health, and blockchain logs, allowing healthcare administrators to monitor and respond more efficiently. 
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I. INTRODUCTION 

 

MedGuard Edge is a cutting-edge next-generation digital healthcare platform that combines Clustered Blockchain and 

CFL improve the security, scalability, and effectiveness of IoT networks.  IoT devices minimize data transmission and 

protect privacy by locally training models on their own datasets. sensitive health data, MedGuard Edge decentralizes data 

processing, in contrast to typical centralized healthcare systems that concentrate it in a single location. Instead of sending 

raw medical records over the network, the system simply shares encrypted model updates to preserve patient privacy. 

 

Blockchain acts as the foundational technology for maintaining data security and integrity fostering transparency, with 

every transaction, model update, and access event immutably recorded on a distributed ledger that is resistant to tampering 

and fraud. The system includes real-time anomaly detection systems that track each device's activities in order to improve 

security.  The system may automatically isolate the affected node and start recovery procedures if suspicious or malicious 

activity is found, ensuring consistent and reliable healthcare service delivery. Clustering of IoT devices within the CFL 

framework improves the scalability and efficiency of the learning process, allowing the system to successfully manage 

various IoT contexts. complex healthcare contexts. In addition, this clustering method improves energy usage and 

communication overhead, which is critical for medical devices with limited resources. 

 

Together, these components provide a solid digital healthcare architecture that facilitates precise diagnosis, real-time 

patient monitoring, and compliance with strict data standards. MedGuard Edge opens the door to a secure, scalable, and 

intelligent healthcare IoT infrastructure suitable for the future of connected health by combining decentralized learning, 

blockchain-based security, and intelligent anomaly handling. 

 

II. PROBLEM STATEMENT AND OBJECTIVE 

 

Centralized IoT healthcare solutions are inherently vulnerable to system outages, unauthorized access, and breaches of 

patient confidentiality, which can undermine trust and compromise compliance with privacy laws.  

The MedGuard Edge framework is designed to confront these risks by decentralizing data processing, employing devices 

clustered for federated learning so that sensitive medical information is locally safeguarded rather than consolidated on 

central servers. Blockchain technology underpins the verification of model updates, providing a transparent and 

immutable audit trail that ensures data accuracy and security throughout the healthcare network.  Advanced self-healing 

mechanisms, combined with real-time anomaly detection, reinforce overall system resilience and facilitate rapid response 

to potential threats or network failures. By leveraging clustered device architectures, MedGuard Edge enhances both the 
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efficiency and scalability of distributed learning, making it adaptable for growing healthcare infrastructures while 

upholding stringent data privacy standards and regional regulatory requirements. 

Key objectives of MedGuard Edge: 

• Preserve data privacy. 

• Verify model updates in a transparent and safe manner with blockchain technology. 

• Include self-healing and anomaly detection systems to increase network resilience. 

• Enhance efficiency and scalability through device clustering. 

• Verify compliance with relevant healthcare data privacy laws. 

 

III. SCOPE 

 

The MedGuard Edge system provides a complete and innovative solution designed to tackle the urgent issues that 

healthcare IoT environments face. By guaranteeing that sensitive patient The IoT devices process the data directly, this 

decentralized framework reduces the dangers connected with centralized data storage and transfer, improving data 

privacy. Data integrity and regulatory compliance are ensured by the incorporation of blockchain technology, which 

offers a transparent and unchangeable method for confirming model revisions. In order to sustain ongoing healthcare 

service delivery, the structure system's anomaly detection and self-healing features enhance network resilience by 

enabling real-time reaction to security threats and operational errors. MedGuard Edge greatly increases scalability and 

energy efficiency by using device clustering within Clustered Federated Learning, which enables it to adapt to the 

dynamic and frequently resource-constrained healthcare settings. In order to provide wide compatibility and future-proof 

the framework, the scope also includes supporting a range of clinical data sources and IoT devices for healthcare 

accommodating growing medical technology.  In decentralized health systems, the framework's flexible design promotes 

cross-institutional cooperation and cloud interoperability. It also makes it easier to include cutting-edge AI-based 

prediction technologies, allowing physicians to offer proactive care and timely diagnoses. All things considered, 

MedGuard Edge is a prime example of both a strong security solution and an intelligent, scalable, and compliant 

infrastructure that can adapt to changing healthcare needs and technology breakthroughs. MedGuard Edge is positioned 

to revolutionize digital healthcare by enabling creative and efficient healthcare delivery through the deployment of a safe 

and privacy-focused IoT network. 

 

IV. LITERATURE REVIEW 

 

[1] Alami et al. The system may identify rogue IoT devices without transmitting raw data by utilizing Federated Learning 

in conjunction with a permissioned blockchain, resulting in low false positives and high detection accuracy. 

 

[2] Alsamhi et al. proposed an FL–Blockchain architecture for healthcare, where patient data stays local and smart 

contracts manage secure model exchange. Their multi-hospital simulations show improved privacy and auditability, but 

highlight overhead on resource-limited devices. 

 

[3] Ying et al. introduced BIT-FL, an incentivized FL system that rewards clients for high-quality model updates using 

blockchain smart contracts. Experiments show improved accuracy and participation, although incentive mechanisms may 

introduce new vulnerabilities. 

 

[4] Yuan et al. addressed scalability with a layered and sharded blockchain that parallelizes model update verification. 

Their approach significantly improves throughput and reduces validation latency in large FL networks. 

 

[5] Lin et al. proposed a time-efficient blockchain-based FL workflow that prioritizes low-latency clients to speed up 

convergence. While effective for real-time IoT, this method raises fairness concerns for slower devices. 

 

[6] Huang et al. designed FL chain, a lightweight FL–Blockchain system optimized for low computational and 

communication overhead. Despite its simplicity, it maintains tamper-evidence and integrity, making it suitable for IoT 

healthcare devices. 

 

[7] Ahmed et al. presented a blockchain-secured FL framework for classifying AIoMT devices. Their system supports 

decentralized model sharing while preserving provenance, validated through device datasets and simulated hospital 

environments. 

 

[8] Dong et al. proposed a blockchain-based mechanism to defend against poisoning attacks in FL by logging updates 

and detecting anomalies. The outcomes show enhanced resilience and successful client segregation. 
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[9] Yang & Xing integrated homomorphic encryption with blockchain-managed FL to ensure encrypted model updates 

throughout aggregation. Their approach enhances privacy for multi-hospital collaboration despite higher computational 

costs. 

 

[10] Issa et al. provided a comprehensive survey of blockchain-enabled FL for IoT, outlining architectures, threats, and 

cryptographic strategies. They identify research gaps such as dynamic clustering and real-time anomaly handling, 

motivating more adaptive FL systems. 

 

4.1 Gaps or Areas for Improvement 

 

Despite considerable advancements in the fusion of federated learning with blockchain for safe and expandable Internet 

of Things healthcare systems healthcare IoT environments, several gaps and limitations remain unaddressed in existing 

research.  A notable constraint is the lack of models for Clustered Federated Learning (CFL). Large, diverse healthcare 

IoT applications have limited scalability because to the single-layer, flat structure of most existing FL systems, which 

also results in high communication costs. CFL, which groups devices into smaller and more manageable clusters to 

improve training efficiency, remains significantly underexplored in medical applications. Another critical gap is the 

absence of self-healing capabilities and real-time threat detection. While privacy-preservation has been widely 

emphasized, many existing solutions fail to incorporate autonomous intrusion detection mechanisms or automatic fault-

recovery features. These functionalities are essential in healthcare environments, where continuous monitoring and 

uninterrupted device operation are crucial for patient safety. In addition, current blockchain-FL systems often lack 

healthcare-specific optimization. Many frameworks are designed for generic IoT scenarios and do not consider medical 

requirements such as ultra-low latency, device heterogeneity, strict reliability constraints, and patient-safety-driven 

protocols. Tailored models that address these domain-specific needs are still limited. 

 

Furthermore, many studies continue to rely on centralized or cloud-based storage for logs and system metadata, creating 

vulnerabilities despite using blockchain. Fully decentralized storage solutions such as IPFS, which enhance data 

availability and integrity, are still not widely adopted. Finally, energy efficiency and scalability pose significant 

challenges. Healthcare IoT devices usually operate under tight power constraints, and heavy cryptographic operations or 

blockchain consensus mechanisms can overwhelm these devices. To enable scalable, sustainable systems, striking a 

balance between strong security and energy efficiency remains an open research problem. 

 

V. SYSTEM ARCHITECTURE 

 

The MedGuard Edge framework establishes a comprehensive, decentralized architecture designed to address the critical 

challenges faced by healthcare IoT systems, including data privacy, security, scalability, and resilient management.  

Fundamentally, important patient data including blood pressure, heart rate, temperature, and oxygen saturation are 

continuously gathered by wearable sensors and medical monitoring devices. These devices preprocess the data locally, 

cleaning, normalizing, and filtering it to maintain patient privacy and reduce data transmission burdens. Above this lies 

the Clustered Federated Learning (CFL) layer, which organizes IoT devices into logical clusters based on factors like 

device type, geographic location, or data similarity. A model for local machine learning is trained by every gadget, and 

the cluster head only receives model updates.  These updates are combined by the cluster head to create a cluster-level 

model, which then adds to a global model that depicts the complete system.  

 

This hierarchical training approach enhances model efficiency, significantly cuts down communication costs, and 

supports scalability far better than traditional flat federated or centralized methods. To ensure the authenticity Regarding 

the model's integrity updates, the system employs a blockchain layer where every update is validated and immutably 

recorded using smart contracts. A central authority is no longer necessary thanks to this decentralization, which also 

shields the system from malicious attacks or tampering that can jeopardize the accuracy of the model or the reliability of 

the data. Complementing blockchain is the Interplanetary File System (IPFS), used for decentralized storage of validated 

model updates, anomaly reports, and other critical system information. IPFS ensures fault tolerance, high availability, 

and rapid data retrieval, even if parts of the network fail, thereby reinforcing system robustness. A dedicated anomaly 

detection and self-healing layer continuously monitors network and device activities for abnormal patterns such as 

unauthorized access or malfunctioning nodes. When issues are detected, the system autonomously isolates compromised 

devices, initiates restorative actions like resets or reconfigurations, and reintegrates the devices once stability is achieved. 

This reduces downtime and enhances the network’s overall resilience. Finally, system administrators are supported by a 

user-friendly, web-based dashboard that provides real-time visualization of blockchain transactions, security threats, 

device performance, and mitigation efforts. This interface enables proactive management and transparent oversight, 

empowering administrators to maintain optimal system health and security. 
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Figure 1: Complete system architecture showing integration of blockchain validation, clustered federated learning, 

IPFS storage, real-time monitoring dashboard 

 

In summary, MedGuard Edge fuses hierarchical federated learning, blockchain-secured validations, decentralized fault-

tolerant storage, intelligent anomaly detection with self-healing, and comprehensive real-time monitoring into a unified 

architecture. This design effectively addresses the pressing needs of healthcare IoT networks by safeguarding sensitive 

patient data, ensuring reliable system operation, and enabling scalable, adaptive intelligence for modern medical 

environments. 

 

VI. METHODOLOGY 

 

The MedGuard Edge system is constructed upon a multi-layered decentralized architecture that brings together 

blockchain verification, decentralized storage via IPFS, autonomous self-healing capabilities, and Clustered Federated 

Learning (CFL) to guarantee a secure, scalable, and privacy-preserving environment for healthcare IoT devices. This 

integrated model ensures the system’s integrity, availability, and resilience even under adverse conditions. 
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6.1 IOT Data Gathering 

The foundation lies in a network of IoT gadgets deployed within healthcare environments, including wearable sensors as 

well as patient monitoring devices. These devices continuously monitor crucial patient physiological information, such 

as blood pressure, heart rate, body temperature, and oxygen saturation pressure, and oxygen saturation. The information 

gathered is used to train and update localized models for machine learning, enabling accurate and timely patient health 

assessments. 

 

6.2 Preprocessing Local Data 

Each IoT device performs on-device preprocessing, which involves cleaning the collected data, normalizing it to a 

standard format, and handling missing or inconsistent values locally.  By reducing pointless data transfer, this method 

lowers communication overhead while simultaneously increasing model training accuracy. 

 

Timestamp SpO2 Pulse Temp Humi 

19-11-2025 14:17 92.44 82 27 59 

19-11-2025 14:17 100 85 27 59 

19-11-2025 14:17 93.47 85 27 59 

19-11-2025 14:17 93.29 89 27 59 

19-11-2025 14:17 91.32 82 27 59 

Table 1: Sample sensor log readings 

 

6.3 Device Cluster Formation 

To improve scalability and reduce latency, IoT gadgets are logically arranged into clusters according to standards such 

gadget type, data similarity, or geographic proximity. Under the direction of a cluster head who oversees local data 

gathering and model training within the group, each cluster functions somewhat independently. This clustered federated 

learning approach boosts bandwidth efficiency and accelerates convergence by localizing intensive communication. 

 

Cluster O2 Pulse Temp Humi 

1 92.84 88.12 27.00 59.00 

2 87.17 76.38 24.99 55.03 

3 93.20 72.80 27.00 59.00 

Table 2: Cluster summary statistics 

 

6.4 Training Local Models 

Within each device cluster, individual IoT devices are used to directly train local machine learning models using their 

respective pre-processed datasets. Importantly, patient raw data remain secure on the devices. The models capture vital 

data patterns and insights unique to each patient's profile. After training, these devices transmit only model modifications 

to the cluster head for secure aggregation. 

 

6.5 Global Model Integration and Cluster-Level Aggregation 

In order to create cluster-level models that reflect localized learning outcomes, cluster chiefs gather local model updates 

from their devices. These cluster models are then forwarded to a global aggregator that fuses the aggregated updates into 

a comprehensive global model. This hierarchical aggregation technique significantly reduces overhead in communication 

while enhancing the general model's accuracy and generalizability across diverse healthcare populations. 

 

6.6 Blockchain-Based Verification 

All improvements to the model and cluster-level aggregations are recorded and validated in a blockchain ledger through 

the execution of smart contracts. The blockchain consensus mechanism ensures that every update is authentic, immutable, 

and traceable, thereby fostering transparency and trust among participating devices and stakeholders. This decentralized 

verification process prevents data tampering and increases overall system security. 

 

6.7 IPFS-based decentralized storage 

MedGuard Edge securely stores approved model updates, training logs, and anomaly detection data over IPFS. This 

decentralized storage solution guaranty’s fault tolerance, high data availability, and redundancy by distributing data 

across multiple network nodes. Even if some nodes become inoperative, the system maintains continuous access to 

critical information, enhancing resilience. 
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6.8 Identifying Anomalies and Preventing Intrusions 

An anomaly detection module persistently monitors device activities, data flows, and network traffic to detect suspicious 

behaviours such as unauthorized access attempts, data breaches, or unusual communication patterns. Upon detecting 

anomalies, the system immediately triggers mitigation actions that can include limiting network access, isolate malicious 

nodes, or block hostile entities to avoid the propagation of attacks. 

 

6.9 Threat Response, System Shutdown, and Safe File Recovery 

MedGuard Edge has an automated shutdown response mechanism to prevent widespread compromise after repeated 

intrusion attempts. Every unauthorized or anomalous occurrence raises a threat counter. The system continuously tracks 

IP access patterns, CSV file requests, and strange data behaviours. The framework initiates a secure shutdown mode to 

stop further activity and stop data corruption when this counter reaches twenty consecutive violations. The blockchain-

verified baseline file is then retrieved by the system from IPFS, guaranteeing the restoration of a secure, reliable dataset 

even in the event that an attacker targets numerous files. Data integrity is maintained, cascading failures are avoided, and 

the system is ready for a safe restart upon administrator verification, thanks to our secure recovery method. 

 

 
Figure 2: Threat-Response Shutdown Triggered After Repeated Anomalies 

 

6.10 Dashboard for Monitoring and Visualization 

Healthcare administrators are provided with a comprehensive, web-based dashboard offering real-time monitoring and 

visualization of the system's operational and security status. This interface presents crucial metrics such as blockchain-

verified transactions, network performance, device health indicators, and active security threats. The dashboard facilitates 

timely decision-making, early identification of possible dangers, and effective administration of the healthcare IoT 

infrastructure. 

 

VII. IMPLEMENATION ENVIRONMENT  

 

The recommended MedGuard Edge system's implementation environment combines hardware and software elements to 

allow for decentralized validation, intelligent analysis, and safe data collection. Data preprocessing, SHA-256-based 

authenticity validation, clustered supervised learning, identifying anomalies, and connection with chain and IPFS services 

are all supported by the system's primary programming language, Python. Solidity is used in blockchain smart contract 

implementation to safely store model modifications, IPFS hash values, and audit trails, guaranteeing transparency and 

defense against unwanted changes.  Ganache is used to establish a localized Ethereum blockchain environment for the 

effective deployment and testing of smart contracts without actual gas expenses. Through JSON-RPC, Web3.py enables 

communication among the Python back and the blockchain, enabling immutable logging, hash storage, contract 

execution, and update verification. As the backend server, Flask manages network operations, IPFS uploads, anomaly 

warnings, federated training workflows, sensor data receipt, and immediate dashboard communication. 

 

The Arduino Uno microcontroller, which is based on the ATmega328P and operates at 5V with a 16 MHz clock and has 

numerous analogue and digital input/output pins for sensor interfacing, is the hardware foundation of the system. The 

DHT11 moisture sensor, which monitors both humidity and temperature with dependable precision and minimal power 

consumption, is used to monitor environmental conditions. 
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Figure 3: MedGuard Panel Showing Live Sensor Data 

 

The ESP8266 NodeMCU development board, which offers embedded Wi-Fi connectivity, onboard CPU, and memory 

appropriate for Internet of Things applications, enables wireless data transmission. In order to minimize wiring 

complexity, real-time sensor data and system status are shown on a 16x2 LCD displays with an I2C interface. A pulse 

oximetry device sensor that measures hemoglobins that is oxygenated and deoxygenated using red and infrared LEDs is 

used to monitor oxygen saturation, providing precise SpO₂ measurements for health monitoring. These hardware and 

software elements work together to create a reliable and safe operational setting for the Med Guard Edge system. 

 

 
Figure 4: Hardware prototype showing Arduino uno with DHT 11, ESP8266 NodeMCU Board, LCD 16X2 Display, 

Oxygen sensor 

 

VIII. MODULES 

 

8.1 Smart Hand Band Sensing Module 

This module records temperature, humidity, SpO2 and BPM in real time using an Arduino equipped with DHT11 and 

MAX30102 sensors. It preprocesses raw signals, looks for anomalies, sounds an emergency bell, and shows vital signs 

on a 16x2 LCD.  After processing, the data is prepared and transferred to the NodeMCU for additional examination. 
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8.2 Wi-Fi Communication NodeMCU Module 

The Arduino sends formatted sensor data to the NodeMCU after creating a secure Wi-Fi connection. The values are 

transformed into JSON and sent via HTTP POST to the MedGuard server. It enables dependable and low latency 

exchange of information between the edge system by sending out alerts in response to the server's response. 

 

8.3 Clustered Federated Learning (CFL) Module 

CFL trains local models without sharing raw data by classifying IoT devices according to data proximity or similarity. 

To create a combined cluster model that enhances the global model, cluster heads incorporate local updates. This 

increases accuracy and scalability, enhances privacy, and uses less bandwidth. 

 

8.4 Security and Validation Module for Blockchain 

For unchangeable, impenetrable verification, this module stores all model updates on a blockchain. Smart contracts 

ensure transparent donation tracking and update authenticity.  By preventing poisoning threats and decentralizing trust, 

it safeguards the federated learning workflow. 

 

8.5 Real-Time Anomaly Detection Module 

Identify anomalies like faked data or device breach, this module continuously examines sensor values, network activity, 

and model updates.  To ensure prompt reaction to hardware and cyber risks, it logs events, flags questionable activity, 

and sends out alerts using ML-based detection algorithms. 

 

8.6 Self-Healing & Auto-Isolation Module 

The system automatically separates hacked or malfunctioning nodes and initiates recovery operations such as resets or 

reconfigurations.   These self-healing solutions guarantee continuous availability and prevent errors from propagating.   

This enables reliable, ongoing healthcare monitoring even in the case of faults or attacks. 

 

8.7 Server & API Processing Module 

After receiving JSON payloads, the backend server verifies sensor parameters and compares them to medical thresholds.  

It logs important events for auditing, detects anomalies, and creates alarms.  It guarantees precise and effective processing 

of health data by sending rapid feedback to IoT devices. 

 

8.8 Web Dashboard Visualization Module 

For ongoing patient evaluation, a real-time health monitoring dashboard shows temperature, sweat level, pulse rate, SpO2, 

and anomaly status. 

IX. PERFORMANCE EVALUATION  

 

The performance outcomes of the MedGuard Edge framework concentrating on two key aspects: blockchain validation 

time and end-to-end latency. These parameters help assess how efficiently the system handles data as it moves through 

different stages such as sensing, communication, model training, blockchain verification, and dashboard visualization. 

 

9.1 Blockchain Validation Time 

The time taken to validate model updates on the blockchain was measured across five global training rounds. As 

illustrated in Figure.5, the validation time varied between 700 ms and 780 ms, with the third iteration showing the 

maximum delay.  

Key Observations: 

• The first iteration records the lowest delay (~700 ms), which reflects minimal congestion in the network. 

• Iterations 2 and 3 show a slight rise in validation time, reaching up to ~ 780 ms, likely because of increasing 

model size or network load. 

• A drop to ~ 700 ms in iteration 4 suggests improved efficiency when fewer updates are processed. 

• Iteration 5 settles around ~760 ms, showing steady performance. 

 

Summary: The blockchain verification process adds a predictable and manageable amount of overhead, making it suitable 

for real-time data validation in healthcare IoT applications. 
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Figure 5: Blockchain Validation Time Across Consecutive Model Updates 

 

End-to-End Latency Breakdown 

To better understand how the total delay is distributed, each stage in the data flow was measured separately. Figure.6 

shows the latency contribution from sensing devices to the dashboard output. 

Latency Measurements: 

• Sensor → NodeMCU: ~15 ms: Very low because the data transfer is direct and lightweight. 

• NodeMCU → Server: ~60 ms: Delay occurs due to Wi-Fi transmission, JSON formatting, and communication 

overhead. 

• Clustered Federated Learning: ~300 ms: Consists of both cluster-level aggregation and local model updates. 

• Blockchain Validation: ~800 ms: The largest delay, caused by hashing operations, smart contract execution, and 

block confirmation. 

• Dashboard Rendering: ~150 ms: Time taken for the server to send processed results and for the dashboard to 

update the visualization. 

Summary: The total latency remains acceptable for continuous healthcare monitoring. With future optimizations—such 

as lighter consensus algorithms or faster blockchain networks—the overall delay can be further reduced. 

 

 
Figure 6: Latency Breakdown Across MedGuard Edge Pipeline 
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X. CONCLUSION 

 

A practical and forward-thinking approach to improving security and privacy in IoT technologies used in healthcare is 

provided by MedGuard Edge. Instead, then relying on centralized servers, it uses a decentralized architecture in which 

Clustered Federated Learning (CFL) and blockchain work together to keep confidential patient data on local devices. 

This combination ensures transparent, dependable, and tamper-resistant model updates while also protecting privacy. 

With the addition of IPFS-based storage, the system greatly improves data integrity and provides visible, verifiable 

records of every contribution made to the learning process. 

 

By continuously monitoring physiological patterns and device behaviour, the system's real-time anomaly detection offers 

an extra degree of security by assisting in the early discovery of anomalous or possibly dangerous activities. Reliability 

is increased by its self-healing feature, which isolates compromised or failing nodes automatically and restores normal 

operation without human involvement. All things considered, MedGuard Edge is a significant advancement above 

conventional centralized healthcare IoT architectures. It improves security, increases privacy, scales effectively, and 

maintains dependability even under changing circumstances.  The solution provides a strong basis for next-generation 

smart healthcare environments by integrating decentralized intelligence, continuous monitoring, and strong trust 

mechanisms. This ensures safe, real-time patient monitoring while protecting vital medical data from new cyber threats. 

 

10.1 Future work 

Future improvements to MedGuard Edge might focus on improving its intelligence, scalability, and practicality.  

Adaptive and context-sensitive clustering techniques that dynamically rearrange device groups according to data 

similarity, movement patterns, or clinical situations can be added to the clustered federated learning framework.  The 

system's capacity to spot minute temporal variations in patient vitals and device behaviour may be further improved by 

including sophisticated deep learning-based anomaly detection models. 

 

The blockchain architecture can be extended into a consortium or multi-institution network using optimized consensus 

algorithms and zero-knowledge proof procedures to increase throughput, lower latency, and offer more robust privacy 

guarantees in order to fortify the trust layer.  In order to encourage sincere involvement and reliable federated learning 

updates across diverse healthcare nodes, future research may also investigate incentive-driven smart contracts. 

 

To increase long-term dependability and usefulness, more research can concentrate on integrating redundant IPFS 

pinning techniques, fault-tolerant decentralized storage, and energy-efficient wearable hardware.  System performance 

under practical operating settings may be further validated by extensive deployment throughout hospital networks and 

integration with 5G-enabled edge infrastructure.  Lastly, adding more biological parameters to the sensing module and 

improving power management strategies may allow MedGuard Edge to be used in more clinical and emergency care 

situations. 
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