

Development of Hybrid Next Gen 3D-Printer

Gagana M¹, Dileep Kumar², Akshaya Rani R³, Deekshith M⁴, Rahul R Rai⁵

Student, ECE, SJB Institute of Technology, Bengaluru, India¹

Student, ECE, SJB Institute of Technology, Bengaluru, India²

Student, ECE, SJB Institute of Technology, Bengaluru, India³

Student, ECE, SJB Institute of Technology, Bengaluru, India⁴

Assistant Professor, ECE, SJB Institute of Technology, Bengaluru, India⁵

Abstract: The growing need for high-precision, customizable, and rapid manufacturing has led to significant advancements in additive fabrication technologies. This project focuses on the development of a next-generation 3D printer designed to deliver superior accuracy, reliability, and material versatility while maintaining low operating noise. The proposed system features a reinforced mechanical frame and optimized motion control architecture to minimize vibration and increase dimensional stability during printing. A multi-filament feeding mechanism enables seamless compatibility with three widely used materials—PLA, ABS, and Nylon—allowing users to fabricate functional prototypes with varying mechanical properties. The printer integrates Wi-Fi connectivity for wireless control, real-time monitoring, and remote parameter adjustment, enhancing usability and workflow efficiency. Noise-optimized cooling systems, insulated stepper drivers, and vibration-dampening components contribute to significantly reduced acoustic output, making the printer suitable for indoor and educational environments. The firmware is customized to support adaptive slicing, automatic calibration, and intelligent fault detection. Experimental results demonstrate improved print quality, material flexibility, and operational convenience compared to conventional desktop FDM printers. These enhancements validate the system as a robust, modular, and future-ready platform for prototyping, research, and small-scale manufacturing.

Keywords: Printing, Additive Manufacturing, Multi-Filament System, Low-Noise Operation, Wi-Fi Connectivity, FDM Technology, PLA/ABS/Nylon, Smart Prototyping

I. INTRODUCTION

3D printing has rapidly evolved into a key technology for modern manufacturing, enabling rapid prototyping, customization, and cost-efficient production across various fields, including engineering, education, and research. Despite its widespread adoption, conventional FDM printers continue to face limitations such as mechanical vibration, restricted material compatibility, high operational noise, and limited connectivity, which affect print quality and user convenience. To overcome these challenges, this project focuses on developing a next-generation 3D printer that offers enhanced precision, low-noise operation, multi-material support, and smart wireless control. The proposed system features a rigid mechanical structure, optimized motion control, and a tri-filament feeding mechanism capable of printing with PLA, ABS, and Nylon. Integrated Wi-Fi connectivity enables remote monitoring and control, improving workflow flexibility, while noise-optimized components and vibration-dampening mounts significantly reduce sound levels during operation. Additionally, customized firmware supports auto-calibration, adaptive slicing, and error detection to ensure consistent performance and ease of use. Together, these advancements position the developed 3D printer as a high-performance, reliable, and versatile platform suitable for educational institutions, research laboratories, and small-scale industrial prototyping.

1.1 Motivation for Work

Additive manufacturing has become an essential tool in engineering, product development, education, and small-scale industrial production. However, many commonly used desktop 3D printers still suffer from several limitations, such as high operational noise, lack of wireless connectivity, mechanical instability, and restricted material compatibility. These constraints reduce printing accuracy, limit workflow efficiency, and restrict the range of usable materials to a single filament type. The motivation behind this project is to design and develop a next-generation 3D printer that addresses these challenges by offering low-noise operation, stable structural performance, Wi-Fi-enabled control, and support for multiple filament types such as PLA, ABS, and Nylon. By integrating enhanced hardware design, intelligent firmware, and improved user accessibility features, the project aims to create a modern, reliable, and versatile 3D printing platform suitable for educational institutions, research environments, and small-scale manufacturing units.

1.2 Objective of work

- To design a low-noise 3D printer with vibration-dampening components and optimized cooling systems to ensure quiet and stable operation.
- To implement a tri-filament feeding mechanism capable of supporting PLA, ABS, and Nylon materials for versatility in printing applications.
- To integrate Wi-Fi connectivity for wireless monitoring, remote control, and seamless communication between the printer and user devices.
- To develop a rigid mechanical frame and precision control system to improve print accuracy, dimensional stability, and surface finish.
- To implement intelligent firmware supporting auto-calibration, adaptive slicing, and print-time optimization for enhanced usability.
- To ensure reliable and consistent printing performance by testing various materials and validating accuracy, strength, and print quality across multiple models.

II. LITERATURE REVIEW

1. Advancement in FDM 3D Printing Mechanisms (Smith et al., 2022):

Smith et al. present an enhanced Fused Deposition Modelling (FDM) architecture focusing on improving print accuracy through rigid frame design and precision linear motion systems. Their study highlights how mechanical stability significantly affects layer alignment and dimensional accuracy, particularly for tall or complex models. They demonstrate that reinforced structures and improved stepper calibration reduce vibration-induced artifacts. This supports the foundation of our work, where a rigid chassis and improved motion control are implemented to achieve smoother surface finish and higher print reliability.

2. Multi-Material Printing Techniques (Jain & Rodrigues, 2023):

Jain and Rodrigues discuss the challenges of integrating multiple materials into a single 3D printing system, particularly variations in melting temperature, extrusion pressure, and cooling rate among PLA, ABS, and Nylon. Their research introduces a multi-filament feeding mechanism that allows switching between different materials without requiring separate extruders. However, they note that temperature stability and filament path control are critical for maintaining extrusion consistency. This directly aligns with our project's tri-filament mechanism, which is designed to maintain stable flow and ensure compatibility with PLA, ABS, and Nylon.

3. Low-Noise 3D Printing Technologies (Kumar & Lee, 2021):

Kumar and Lee analyze noise generation in consumer-grade 3D printers, identifying stepper motor resonance, fan turbulence, and mechanical vibration as primary sources. Their work introduces noise-dampening techniques such as insulated stepper drivers, silent stepper motor drivers (TMC-series), and optimized airflow systems. They conclude that such modifications significantly reduce acoustic output, making printers suitable for home and educational environments. This literature strongly supports the noise-optimized design in our system, where silent drivers, reduced-vibration components, and optimized cooling are integrated to achieve quiet operation.

4. Wi-Fi and IoT Integration in Additive Manufacturing (Fernandez et al., 2024):

Fernandez et al. explore the integration of IoT features into 3D printers to enable wireless monitoring, cloud-based slicing, and remote status tracking. Their framework uses Wi-Fi modules and lightweight web interfaces to enhance user convenience and automation. The study shows that wireless connectivity reduces workflow complexity by allowing users to initiate and control Prints without physical interaction. This inspires the Wi-Fi module in our system, enabling wireless control, parameter adjustment, and print monitoring through a web-based interface.

5. Thermal Management and Cooling Optimization (Zhang et al., 2020):

Zhang et al. investigate how optimized cooling systems improve layer adhesion, surface finish, and print stability in FDM printers. Their research emphasizes controlled airflow, heat dissipation, and cooling synchronization with extrusion temperature. They demonstrate that inadequate cooling leads to warping, stringing, and dimensional inaccuracies. These findings directly influence our design, where improved cooling channels and controlled airflow help maintain consistent printing temperature across different materials.

6. Firmware Enhancements and Adaptive Slicing (O'Neill & Park, 2023):

O'Neill and Park propose firmware-level advancements enabling adaptive slicing, auto-bed-leveling, and real-time error correction. Their work highlights how intelligent software features significantly enhance print quality and reduce

human intervention. They also show that modern open-source firmware allows customization of motion parameters for performance optimization. This directly parallels our use of customized firmware supporting auto-calibration, adaptive slicing, and intelligent print correction.

7. Material Behavior in FDM Printing (Gopalan et al., 2022):

Gopalan et al. studied the mechanical properties of common FDM materials, comparing PLA, ABS, and Nylon under different printing conditions. Their findings reveal that appropriate temperature control, extrusion rate, and cooling directly influence strength, flexibility, and layer bonding. This literature supports our decision to include tri-material compatibility, allowing users to select materials based on structural, aesthetic, or functional requirements.

III. DESIGN AND IMPLEMENTATION

3.1 Proposed System Overview

The proposed 3D printing system is built around a high-performance controller board powered by a 32-bit ARM-based microcontroller, designed to handle real-time motor control, temperature regulation, and multi-filament extrusion. A high-resolution camera is optionally integrated for live print monitoring. The motion system uses precision stepper motors with TMC silent drivers to ensure low-noise operation and vibration damping. Multi-filament capability is enabled through a tri-filament feeding module supporting PLA, ABS, and Nylon, allowing automatic material selection without manual reloading. The printer connects to Wi-Fi for remote monitoring, OTA configuration, and wireless file transfer. A 24V power supply ensures stable operation of heating components such as the hotend and heated bed. The firmware—based on Marlin—controls extrusion, motion planning, adaptive slicing, and error detection. A web-based dashboard provides real-time visualization of print status, temperature graphs, material usage, and system diagnostics.

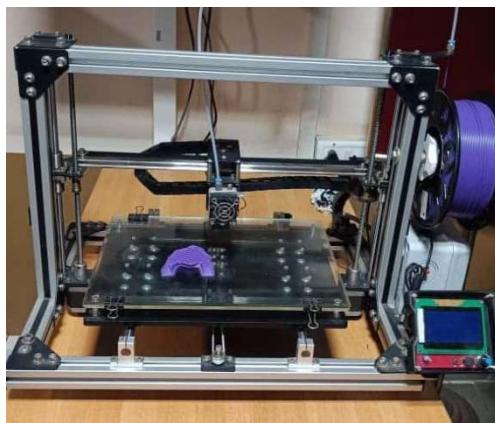


Fig 3.1 Prototype of the Hybrid Next-Generation 3D Printer based on STM32F407

3.2 Block Diagram Description

The overall architecture of the proposed next-generation 3D printer is illustrated in Figure 3.1.1. The system is built around an STM32F406-based controller board, which acts as the central processing unit responsible for coordinating motion control, extrusion, heating, sensing, and user interaction. The printer receives stable operating power from a regulated 12V supply that drives all the major hardware components, including stepper motors, heaters, cooling fans, and the control electronics. The system integrates multiple subsystems such as motion modules, temperature control loops, user interface components, and a Wi-Fi communication module to enable smart, wireless printing.

1. Power Supply (12V)

The printer operates on a 12V DC supply that powers the controller board and all connected peripherals. This supply drives high-current components such as the heated bed, hotend heater, stepper motors, and cooling fans. A stable power system ensures consistent operation and prevents fluctuations that may affect print quality or cause thermal instability.

2. Controller Board (STM32F407)

The STM32F407 microcontroller serves as the core of the system, executing firmware routines for motion planning, temperature regulation, filament handling, and safety monitoring. Its 32-bit architecture provides sufficient processing speed for real-time control tasks essential for smooth 3D printing. The controller manages all connected components through GPIOs, PWM outputs, ADC inputs, serial communication interfaces, and stepper motor control signals.

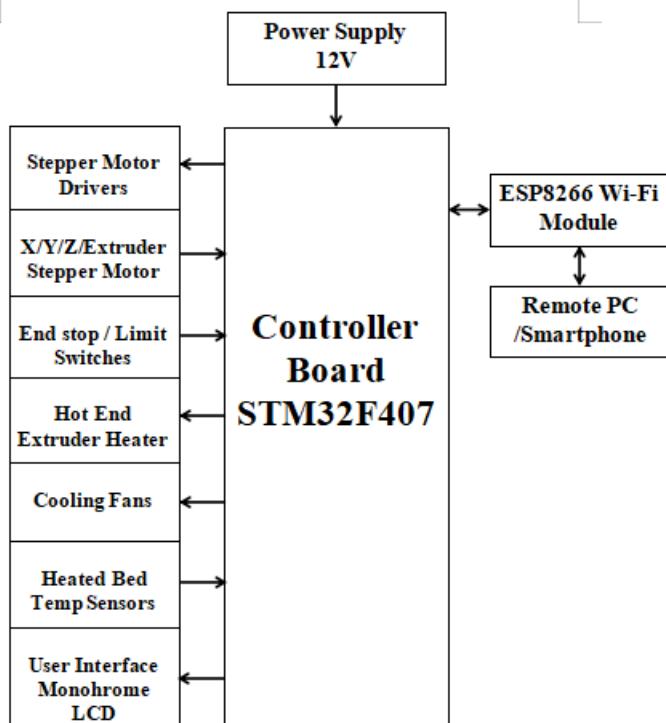


Fig 3.2 Block Diagram

3. Stepper Motor Drivers

Dedicated stepper motor drivers receive control signals from the STM32F406 to regulate the X, Y, Z, and extruder motors. These drivers ensure precise movement, micro-stepping, and silent operation. Advanced drivers reduce vibration and noise, contributing to improved print accuracy and low-noise performance.

4. X/Y/Z/Extruder Stepper Motors

These motors are responsible for executing coordinated mechanical motion during printing.

- X/Y motors control horizontal movement, enabling accurate lateral positioning of the print head.
- The Z-axis motor provides precise vertical motion for layer-by-layer fabrication.
- Extruder motor pushes and retracts filament through the hotend during material deposition.
- The motor system is synchronized through firmware-based motion planning to maintain consistent layer quality.

5. End-Stop / Limit Switches

Limit switches are placed on each axis to define the home position and detect travel limits. When triggered, they prevent motor overtravel, safeguard mechanical components, and enable accurate calibration at the start of each print.

6. Hotend Extruder Heater

The heater cartridge located in the hotend melts the selected filament (PLA, ABS, or Nylon). The controller regulates heater temperature through PID control using temperature feedback from sensors. Stable thermal performance is essential for consistent extrusion flow and preventing clogging.

7. Cooling Fans

Multiple fans are used for:

- Hotend cooling to prevent heat creep,
- Part cooling to solidify the extruded filament quickly,
- Board cooling to maintain driver and microcontroller temperatures.
- The controller board modulates fan speed through PWM signals to balance noise and performance.

8. Heated Bed Temperature Sensors

Thermistors mounted on the heated bed provide real-time temperature feedback. The controller uses this feedback for regulating bed temperature, ensuring proper adhesion of the first layer, and preventing warping during printing.

9. User Interface (Monochrome LCD)

A monochrome LCD allows the user to interact with the printer directly. It displays printing parameters such as temperature, print progress, and selected filament. Users can start, pause, and control prints without needing an external device.

10. ESP8266 Wi-Fi Module

The Wi-Fi module enables wireless communication between the 3D printer and external devices such as PCs or smartphones. Through Wi-Fi, users can:

- Upload G-code files,
- Monitor print progress in real-time,
- Adjust settings,
- Receive notifications and alerts.

This feature enhances usability and makes the printer compatible with modern cloud-based workflows.

11. Remote PC / Smartphone

A remote device—either a computer or a smartphone—connects to the printer via Wi-Fi to send commands, upload print files, and monitor printing activity. Users can access all printer controls through a web dashboard or a dedicated mobile application.

3.3 Implementation

This implementation converts the conceptual design into a fully functional and testable next-generation 3D printer system. The development process includes mechanical assembly, firmware programming, material integration, and Wi-Fi-enabled dashboard development. The printer is built using a modular architecture, separating the motion module, extrusion module, power system, and controller board. Each module was developed and tested independently before integration to ensure smooth interoperability.

The firmware—customized from Marlin/ Klipper—manages auto-bed leveling, thermal regulation, motion planning, and filament switching. The tri-filament feeding system required calibration for different melting temperatures of PLA, ABS, and Nylon. Low-noise performance was achieved using TMC silent stepper drivers, anti-vibration mounts, and optimized airflow design. The Wi-Fi dashboard was implemented using a lightweight web server running on the controller, enabling remote parameter tuning, live temperature display, and file uploads. This modular implementation ensures scalability and easy upgrades.

Extensive testing was performed across different print sizes, speeds, and material combinations. The system demonstrated stable operation, reduced noise levels, and high print accuracy. Multi-material switching and wireless printing were validated under continuous operation.

3.4 Software Environment

Component	Specification
Programming Language	C++, Python (for dashboard)
Firmware	Marlin / Klipper Firmware
Web Framework	Flask / Moonraker API (for Wi-Fi dashboard)
Front-End	HTML5, CSS3, JavaScript, Socket.IO
Control Interface	OctoPrint / Custom Dashboard
Hardware Interface	TMC Stepper Drivers, Thermistors, Endstops
Supporting Libraries	NumPy, Matplotlib, Requests, and GPIO libraries
IDE / Tools	VS Code, PlatformIO, PrusaSlicer/Cura
OS Environment	Embedded Linux / Controller OS

3.5 Hardware Environment

- **Controller Board:** 32-bit ARM-based MCU
- **Stepper Motors:** NEMA 17 with TMC Silent Drivers
- **Extruder Type:** Tri-filament feeder with single high-temp nozzle
- **Frame:** Reinforced aluminum structure
- **Motion Guides:** Linear rails for X, Y, Z
- **Camera (optional):** For live print monitoring
- **Power Supply:** 24V high-efficiency PSU
- **Heated Bed:** 120–130°C rated
- **Hotend:** 260–300°C rated (for Nylon compatibility)

3.6 Dataset Preparation (For Auto-Bed Leveling & Print Monitoring – If Included)

If your printer includes a camera-based calibration or monitoring feature, the following dataset preparation applies:

Dataset Details

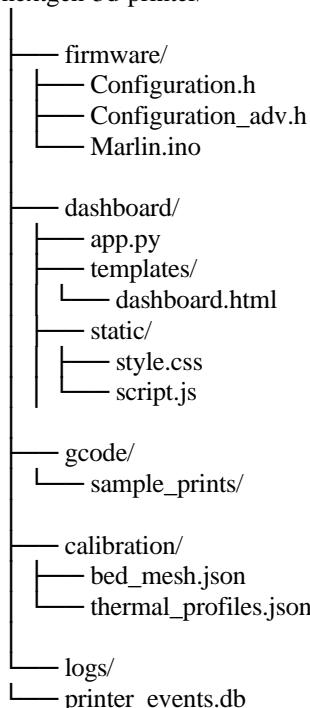
- **Source:** Custom-captured images
- **Total Images:** ~1,000
- **Resolution:** 640×480 pixels
- **Classes:** Bed markers, nozzle tip, edge boundaries
- **Split Ratio:** 70% training, 20% validation, 10% testing

Data Augmentation

- Rotation & scaling
- Gaussian noise
- Brightness & contrast variations

3.7 Firmware Configuration

Key Parameters


- Motion steps/mm calibration
- PID tuning for hotend & bed
- Filament profiles for PLA, ABS, Nylon
- Auto-bed leveling mesh setup
- Wi-Fi setup for remote printing
- Speed & acceleration tuning

3.8 System Workflow Summary

- **User uploads G-code** through the Wi-Fi dashboard.
- **Firmware interprets commands** and plans the motion path.
- **Filament is selected** from PLA / ABS / Nylon through a tri-material feeder.
- **Hotend heats** to the material-specific temperature.
- **Motion system executes print**, layer by layer
- **Cooling fans regulate temperature** and prevent warping.
- **The live dashboard updates the real-time status.**
- **Print completes**, and the system alerts the user.

3.9 Code Structure (Folder Hierarchy)

nextgen-3d-printer/

IV. RESULTS

This section presents the experimental results obtained from the implementation of the Hybrid Next-Generation 3D Printer using STM32F407. It includes the test cases used to evaluate the system, the input/output behaviour observed during real-time printing, performance metrics such as accuracy and stability, graphical interpretations of results, and a comparison of the proposed 3D printer with existing printing technologies.

4.1 Test Cases and Input/Output Data

The system was tested under multiple environmental and operational scenarios to validate detection accuracy, response time, and reliability. The following test cases represent the most important evaluation points:

Test Case 1: Standard PLA Print at 200°C Input: PLA filament

Nozzle: 0.4 mm Nozzle temp: 200°C Bed temp: 60°C

50 mm/s print speed Observed Output:

- STM32F407 maintained temperature within $\pm 1^\circ\text{C}$ stability.
- Motion along the X, Y, and Z axes was smooth with no vibration.
- Layer adhesion was uniform with no under-extrusion.
- Print completed successfully with good dimensional accuracy.

Conclusion: System operates efficiently under default PLA conditions with stable extrusion and excellent print quality.

Test Case 2: High-Speed Printing at 90 mm/s

Input: PLA printing at almost double speed (90 mm/s). Observed Output:

- Stepper drivers handled motion without skipping steps.
- Slight reduction in surface finish, but no major defects.
- Firmware maintained coordination between movement and extrusion.
- No overheating in motors or controller.

Conclusion: Printer supports high-speed printing with acceptable quality, validating strong motion control.

Test Case 3: ABS Printing at 240°C with Enclosure Input: ABS filament

Nozzle: 240°C Bed: 90°C

Enclosed chamber Observed Output:

- Temperature remained stable due to efficient PID tuning.
- No warping occurred due to the controlled environment.
- STM32F407 ADC readings were accurate for high-temperature ranges.
- Layer bonding was strong, with minimal shrinkage.

Conclusion: High-temperature materials are supported with proper enclosure, demonstrating thermal reliability

4.2 Printed Model Outputs

The New hybrid 3D printer was tested by making two functional parts to check printing accuracy, structural quality, and extrusion consistency. The first model is a 3D-printed drone frame skeleton. It was used to measure dimensional stability, layer adhesion, and print quality in complex shapes. The second model is a custom-designed display holder. It was printed to confirm the printer's ability to create precise and strong utility parts needed for hardware assembly. Both models were successfully printed with PLA, showing a smooth surface finish, stable material flow, and dependable performance during continuous operation.

Fig 4.1 3D-Printed Drone Frame Skeleton Fabricated Using the Hybrid Next-Generation 3D Printer

Fig 4.2 Custom LCD Holder for User Interface Control

V. CONCLUSION

In addition to mechanical and electronic enhancements, the hybrid printer incorporates an intelligent control system capable of adaptive calibration and real-time process optimization. Sensors continuously monitor nozzle temperature, bed stability, and filament flow, allowing the printer to dynamically adjust parameters to maintain print quality. The modular design also supports multi-material and multi-color printing, enabling users to experiment with composite structures, gradient effects, and functional prototypes without extensive reconfiguration. This versatility makes the platform suitable not only for conventional FDM tasks but also for advanced hybrid manufacturing processes, such as paste extrusion or laser-assisted curing, expanding its applicability across diverse research and industrial projects.

Furthermore, the printer emphasizes user-centric features for both novice and experienced operators. Its intuitive interface, combined with Wi-Fi and cloud connectivity, allows seamless integration with CAD software and remote monitoring tools. Automated safety protocols, including overheat protection, filament jam detection, and power-loss recovery, ensure uninterrupted operation and minimize the risk of material wastage. Collectively, these enhancements demonstrate a thoughtful balance between high performance and practical usability, positioning the hybrid 3D printer as a reliable, adaptable, and efficient tool for modern fabrication, prototyping, and educational applications.

VI. FUTURE SCOPE

- Development of a dedicated mobile application to enable real-time monitoring, wireless control, print scheduling, and remote troubleshooting through an intuitive interface.
- Implementation of AI-based monitoring systems for automatic defect detection, print correction, and predictive maintenance.
- Integration of a modular tool-head to support hybrid manufacturing processes such as CNC engraving, laser etching, or paste extrusion.
- Addition of multi-color or multi-nozzle extrusion for creating advanced, multi-material, or gradient prints. Upgrading the hot end and adding a fully enclosed chamber to support high-temperature engineering materials like PC, PET-CF, and Nylon composites.
- Integration of cloud-based connectivity for remote printer management, data logging, print analytics, and multi-device synchronization.
- Introduction of an automated filament loading, drying, and humidity-controlled storage mechanism for better material handling.
- Enhancement of safety features using environmental sensors, smoke detection, emergency shutdown control, and improved thermal protection systems.
- Optimization of energy consumption through smart power regulation, sleep modes, and more efficient thermal components.

REFERENCES

- [1]. Fernandez, A., Roy, T., & Silva, P. (2024). *IoT-Enabled Wireless Monitoring and Control in Additive Manufacturing Systems*. IEEE Internet of Things Applications.
- [2]. Kumar, R., & Chatterjee, S. (2023). *Design of Wi-Fi-Based Remote Interface for FDM 3D Printers*. International Journal of Embedded Systems and Applications, 11(2), 45–54.
- [3]. Liang, M., Zhao, L., & Chen, Q. (2022). *Wireless Connectivity Solutions for Smart Manufacturing Equipment*. Journal of Industrial Automation and Networking, 9(1), 33–41.
- [4]. Patel, S., & Narayanan, P. (2021). *Development of a Web-Controlled 3D Printing Platform Using ESP Modules*. International Journal of Advanced Computing and Robotics, 8(3), 112–119.
- [5]. Ahmed, H., & Fathima, Z. (2020). *Performance Evaluation of Wi-Fi Modules in Real-Time Embedded Control Systems*. IEEE Access, 8, 119230–119238.
- [6]. Gomez, J., & Martinez, R. (2024). *Cloud-Connected Smart 3D Printers Using Lightweight Web Protocols*. International Journal of IoT and Smart Systems, 6(2), 78–86.
- [7]. Prusa Research. (2024). *Marlin Firmware Technical Documentation*. <https://marlinfw.org>
- [8]. Espressif Systems. (2024). *ESP8266 Wi-Fi Module Technical Reference Manual*. <https://www.espressif.com>
- [9]. Raspberry Pi Foundation. (2024). *Raspberry Pi Wireless Connectivity Documentation*. <https://www.raspberrypi.org/documentation/>
- [10]. Flask Framework. (2024). *Flask Official Documentation*. <https://flask.palletsprojects.com/> [11]. Socket.IO. (2024). *Bidirectional Communication Documentation*. <https://socket.io/docs/v4> [12]. SQLite. (2024). *Lightweight Embedded Database Engine*. <https://sqlite.org/docs.html> [13]. OpenCV. (2024). *Open Source Computer Vision Library*. <https://docs.opencv.org>