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Abstract: Urban air pollution represents a significant public health challenge where traditional Continuous Ambient Air
Quality Monitoring Stations (CAAQMS) provide accurate measurements but suffer from sparse spatial distribution. This
research presents an integrated framework combining mobile IoT sensors with hybrid deep learning for comprehensive
air quality assessment. The system deploys ESP32-based sensor modules with electrochemical gas detectors (MQ-135,
MQ-7, MQ-136) and optical particulate matter sensors to capture spatially distributed measurements of PM2.5, NO2,
CO, and SO2. A hybrid CNNLSTM model processes spatial patterns and temporal dependencies to calibrate sensor
readings and generate Air Quality Index (AQI) forecasts. The prototype implementation demonstrates feasibility,
achieving Mean Absolute Error of approximately 24 AQI units, with complete mobile deployment projected to reduce
errors by 20-40% and provide city-wide coverage with over 50,000 daily measurements.
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L INTRODUCTION

Environmental air pollution has emerged as a critical global health crisis. The World Health Organization reports that
approximately 99% of the global population resides in areas where air quality exceeds recommended limits, contributing
to seven million premature deaths annually. Urban centers face severe challenges with PM2.5, nitrogen oxides, carbon
monoxide, and sulphur dioxide regularly exceeding safe levels. Conventional monitoring in developing countries depends
on government-operated CAAQMS facilities. While these provide accurate measurements, they encounter fundamental
constraints: sparse geographic distribution (10-20 stations per major metropolitan area), substantial capital investments
(>50 lakhs rupees per installation), delayed data publication, absence of predictive capabilities, and inability to capture
microscale variations. Recent advances in affordable IoT sensors, mobile platforms (public transit and unmanned aerial
systems), and deep learning architectures have created opportunities to address these limitations. However, low-cost
sensors exhibit significant measurement uncertainties due to cross-sensitivity, environmental dependencies, and sensor
drift. The fundamental challenge lies in leveraging spatial coverage advantages while correcting measurements against
reference data. This research presents a comprehensive framework integrating mobile IoT sensing, reference calibration,
and deep learning forecasting. Principal contributions include:
e  Architecture for mobile IoT sensing using ESP32 microcontrollers with electrochemical sensors deployable on
public transit and aerial platforms
e Hybrid CNN-LSTM architecture processing spatial features and temporal patterns for sensor calibration and
AQI forecasting
e Proof-of-concept demonstration achieving MAE of 24 AQI units
e Comprehensive evaluation framework with projected performance metrics for mobile deployment

II. PROBLEM STATEMENT AND OBJECTIVE

This research addresses critical limitations in traditional air quality monitoring systems and emphasizes the urgent need
for accurate, real-time pollution forecasting to protect public health. Conventional monitoring infrastructure faces
multiple interrelated challenges that severely compromise its effectiveness in modern urban environments.

Sparse spatial coverage remains the most significant constraint, with government-operated CAAQMS facilities typically
providing only 10 to 20 stations per metropolitan area—equating to one station per 50-75 square kilometers. This
distribution is grossly inadequate to capture micro-scale variations and localized pollution hotspots that significantly
affect community health. The prohibitive cost of reference-grade monitoring stations, often exceeding 50 lakh rupees per
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installation, creates substantial barriers to comprehensive deployment, particularly in resource-constrained regions.
Additionally, delays in data publication reduce the utility of collected information for timely decision-making and public
health warnings.

Traditional systems measure only current pollution levels without forecasting future conditions, fundamentally
limiting proactive health protection measures. While affordable IoT sensors offer promising alternatives, they introduce
technical challenges including measurement uncertainties from cross-sensitivity between gases, environmental effects
from temperature and humidity causing errors up to 50 percent, and sensor drift requiring frequent recalibration.
Furthermore, raw pollutant data often fails to communicate health risks in accessible formats to the general public.

Key Objectives of AWAIR include:

e Develop mobile IoT monitoring infrastructure using ESP32-based sensors deployed on public transit
vehicles to achieve 50—100 times greater spatial coverage than traditional stations, generating 50,000—
100,000 daily measurements at 500x500 meter resolution.

e Build hybrid CNN-LSTM deep learning model with attention mechanisms to achieve accurate AQI
prediction (MAE <24 units, R? >0.87) and reduce sensor measurement errors by 60—70% through machine
learning-based calibration.

e Enable real-time forecasting and route optimization by generating reliable 1-6 hour AQI forecasts and
integrating pollution maps with routing services to reduce daily exposure by 15-30 percent.

e Ensure operational reliability and data quality by maintaining 99% system availability, implementing
automated calibration procedures, and achieving PM2.5 accuracy of 5-8 pg/m* MAE with real-time inference
under 200 milliseconds.

III. SCOPE

The scope of this research encompasses multiple interconnected technical domains requiring careful design,
implementation, and validation. Hardware development involves designing ESP32-based sensor modules incorporating
MQ-series electrochemical sensors including MQ-135 for nitrogen oxides and carbon dioxide, MQ-7 for carbon
monoxide, and MQ-136 for sulfur dioxide, along with GP2Y1010AUOF optical sensor for PM2.5 measurement.
Development includes circuit design with voltage regulation, power management strategies for battery operation, and
weather-proof enclosures ensuring ingress protection while maintaining gas sensor ventilation. Calibration techniques
involve co-location with reference instruments and correction algorithms to improve accuracy. Mobile platform
integration utilizes compact modules mounted on public transport vehicles like buses and auto-rickshaws for systematic
coverage, delivery vehicles for residential areas, and drones for vertical profiling and emergency response. Weatherproof
containers with secure mounting ensure sensor protection while cellular connectivity maintains data transmission. Data
infrastructure encompasses the complete pipeline using cloud-based PostgreSQL databases with PostGIS extension
enabling efficient spatial queries including nearest-neighbor searches and radius queries. The system implements robust
data ingestion with timestamp synchronization, validation procedures for physically plausible ranges, anomalous spike
detection, and quality control flags, while RESTful APIs provide standardized interfaces. Deep learning development
focuses on hybrid CNN-LSTM architecture processing multidimensional spatial-temporal inputs including pollutant
concentrations, meteorological parameters, and temporal features through convolutional layers extracting spatial patterns,
LSTM layers modelling temporal evolution, and attention mechanisms dynamically weighting prediction inputs.

Iv. LITERATURE REVIEW

[1] WHO published global air quality guidelines establishing health-protective concentration limits for major pollutants
including PM2.5, PM10, ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide to reduce disease burden
from air pollution.

[2] Kerckhoffs et al. evaluated various prediction algorithms for modeling outdoor air pollution spatial surfaces,
comparing performance metrics across different approaches to identify optimal methods for exposure assessment.

[3] Altamira-Colado et al. conducted a systematic review of drone-assisted particulate matter measurement systems in
urban settings, examining advantages, limitations, and emerging applications of UAV-based air quality
monitoring.

[4] Patel et al. systematically reviewed machine learning and deep learning models for PM2.5 and PM10 prediction,
identifying recent algorithmic advances and outlining future research directions for improved forecasting
accuracy.

[5] Duan et al. developed a hybrid ARIMA-CNN-LSTM model optimized by Dung Beetle Optimizer for air quality
prediction, demonstrating enhanced performance through the integration of statistical and deep learning
techniques.
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[6] Joharestani et al. predicted PM2.5 concentrations using Random Forest, XGBoost, and deep learning approaches
with multisource remote sensing data, showing that ensemble methods achieve superior accuracy compared to
individual models.

[7] Li et al. developed and evaluated Long Short-Term Memory neural networks for air pollutant concentration
predictions, demonstrating the method's capability to capture temporal dependencies in time-series pollution data.

[8] Huang et al. proposed a CNN-LSTM hybrid architecture for air quality prediction that combines spatial feature
extraction with temporal sequence modeling, validated through experiments showing improved forecasting
performance.

[9] Vaswani et al. introduced the Transformer architecture based on self-attention mechanisms, eliminating recurrence
and convolution while achieving superior performance in sequence modeling tasks, fundamentally advancing deep
learning capabilities.

[10] Central Pollution Control Board established the National Air Quality Index for India, providing a standardized
framework for communicating air pollution levels to the public through color-coded categories linked to health
implications.

4.1 Gaps or Areas for Improvement

Despite significant advancements in air quality monitoring and prediction methodologies documented in recent
literature, several critical gaps and limitations persist that this research aims to address. While the WHO Global Air
Quality Guidelines establish internationally recognized health-based thresholds, they do not provide technological
frameworks for cost-effective implementation in resource-constrained regions, leaving developing countries struggling
with prohibitively expensive reference-grade monitoring infrastructure. Mobile monitoring approaches demonstrate the
potential for high spatial resolution coverage, yet existing implementations face challenges with sensor calibration
accuracy, data quality assurance, and systematic integration across multiple mobility platforms including ground
vehicles and aerial drones. Although LSTM and deep learning models show superior performance in capturing temporal
dependencies compared to classical machine learning approaches, most studies focus on single-location predictions or
fixed monitoring stations, failing to leverage the rich spatial information available from mobile sensor networks
deployed across urban landscapes.

Current hybrid models combining ARIMA, CNN, and LSTM successfully capture both linear and nonlinear patterns,
but they typically require extensive computational resources and lack real-time inference capabilities necessary for
practical public health warning systems. Dynamic graph neural networks address spatial correlation modeling between
monitoring stations, yet they assume static network topologies unsuitable for mobile sensing scenarios where sensor
locations continuously change. Feature engineering approaches improve prediction accuracy through derived secondary
features and meteorological integration, but they often rely on data from sparse fixed stations rather than exploiting
dense spatial coverage possible with mobile platforms. Furthermore, while attention mechanisms effectively identify
relevant input features, most implementations do not combine spatial convolution for mobile sensor arrays with
temporal modeling and attention weighting in a unified architecture optimized for mobile air quality monitoring.

The India National AQI framework provides standardized communication but lacks integration with predictive models
and route optimization systems that could translate pollution forecasts into actionable health-protective behaviors. This
research addresses these gaps by developing an integrated system combining mobile IoT infrastructure, hybrid CNN-
LSTM architecture with attention mechanisms, robust calibration algorithms, and real-time forecasting capabilities
specifically designed for dense spatial coverage and practical deployment in resource-constrained urban environments.

V. SYSTEM ARCHITECTURE

The envisioned system comprises four interconnected subsystems working cohesively to deliver comprehensive air
quality monitoring and forecasting capabilities. The mobile IoT sensing layer forms the foundation, utilizing ESP32
modules equipped with electrochemical gas sensors and optical particulate matter sensors mounted on public transport
vehicles and aerial platforms. Each sensing unit collects PM2.5, NO2, CO, and SO2 measurements alongside GPS
coordinates, timestamps, and meteorological parameters including temperature, humidity, and atmospheric pressure. Data
transmission occurs via WiFi or cellular connectivity at 15-second intervals, ensuring continuous real-time monitoring
across the deployment area. The cloud data platform provides scalable infrastructure using PostgreSQL-based storage
with geospatial indexing capabilities through PostGIS extension, enabling efficient spatial queries and location-based
services. Real-time data streams undergo comprehensive processing pipelines for outlier detection, validation checks,
and spatial-temporal aggregation, while RESTful APIs facilitate standardized data ingestion from distributed sensors and
retrieval for client applications. The prediction engine implements a hybrid CNN-LSTM architecture with attention
mechanisms performing dual critical functions: first, sensor calibration that corrects mobile sensor readings by learning
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complex mappings between low-cost sensor measurements and reference-grade data through supervised learning, and
second, AQI forecasting that predicts pollution levels for 1-6 hour horizons by processing multidimensional spatial-
temporal features. The web application provides a responsive user interface delivering essential services including secure
user authentication, hyperlocal pollution visualization through interactive maps with color-coded AQI zones, route-
specific exposure estimation enabling users to compare pollution levels across alternative paths, historical data playback
for temporal analysis, and real-time health alerts when pollution exceeds threshold levels.

Due to resource and deployment constraints during the research phase, a proof-of-concept prototype demonstrates core
system capabilities and validates the proposed architecture. The prototype hardware consists of a static ESP32-WROOM-
32 development module integrated with MQ-135, MQ-7, and MQ-136 electrochemical gas sensors along with a
GP2Y1010AUOF optical particulate matter sensor, collecting NO2, CO2, SO2, and PM2.5 measurements at regular
intervals. For cloud infrastructure, the prototype utilizes the ThingSpeak IoT platform for time-series data storage and
basic visualization, while the complete production system design specifies PostgreSQL with PostGIS for handling high-
frequency streams from multiple mobile sensors with advanced spatial indexing and query optimization. The prediction
model implements the proposed CNN-LSTM architecture with attention mechanism, processing 12 environmental
parameters across 10 consecutive timesteps using publicly available air quality datasets from government monitoring
stations combined with meteorological reanalysis data for model training and validation. The web application is built
using the Flask microframework, providing essential features including user authentication and session management,
real-time data visualization with dynamic charts and graphs, AQI prediction display with confidence intervals, and
interactive route mapping with simulated pollution hotspots demonstrating the route optimization concept for future
mobile deployment integration.
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Figure 1: Complete system architecture showing integration of mobile IoT sensors, cloud infrastructure, prediction
engine, and user interface.
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VI. METHODOLOGY

The air quality prediction system employs a comprehensive approach integrating mobile sensing hardware, cloud
infrastructure, and deep learning models to deliver real-time monitoring and forecasting capabilities. This methodology
encompasses data acquisition, preprocessing, model development, hardware implementation, and software architecture
design.

6.1 Data Acquisition and Preprocessing

Data collection occurs through ESP32-based mobile sensor modules equipped with electrochemical and optical sensors
detecting multiple pollutants including PM2.5, PM10, NO2, CO, SO2, NH3, O3, and volatile organic compounds
(benzene, toluene, xylene). Each module captures geospatial coordinates via integrated GPS with UTC-aligned
timestamps, alongside meteorological parameters such as temperature, humidity, wind speed, wind direction, and
atmospheric pressure. Data transmission to the cloud platform occurs at 15-second intervals via WiFi or cellular
connectivity, providing dense spatiotemporal coverage and enabling near real-time updates across mobile and stationary
monitoring networks. Local buffering mechanisms store readings temporarily during connectivity interruptions,
preventing data loss and supporting eventual transmission once connectivity is restored.

Raw data undergoes rigorous preprocessing to ensure quality and model suitability. Missing values are addressed using
forward-fill techniques for gaps under five minutes and linear interpolation for intervals between five and thirty minutes,
while longer gaps are excluded from analysis to maintain accuracy. Outlier detection employs statistical Z-score analysis
with a threshold of 3, complemented by domain-specific constraints to flag implausible measurements. All numeric
features are normalized using MinMaxScaler to achieve consistent 0-1 value ranges across heterogeneous sensor types,
ensuring compatibility across different sensor specifications and measurement scales.

Spatial aggregation maps mobile sensor readings into 500m x 500m or 1km x 1km grid cells, enabling multi-channel
representation of pollutant distribution for downstream spatial analysis. This gridding approach transforms irregular
mobile measurements into structured spatial data suitable for convolutional processing. Temporal feature extraction
captures periodic and seasonal trends through hour-of-day, day-of-week, and seasonal indicators, which are critical for
modeling diurnal and weekly patterns in urban pollution. Time-lagged variables (t-1, t-2, t-3) and rolling averages over
3-hour, 6-hour, and 24-hour windows provide historical context and smooth transient variations, enhancing the predictive
power of the models by incorporating temporal momentum and trend information.

Low-cost sensor calibration occurs through periodic co-location exercises with reference-grade monitoring stations for
2-3 day durations. Machine learning-based correction mappings are derived from these exercises, substantially reducing
measurement errors by 60—70% and improving correlation coefficients, with R? values increasing from typical ranges of
0.65-0.75 to 0.85—0.92. These calibration procedures ensure that input data fed into predictive models is both accurate
and reliable, which is critical for producing actionable forecasts. Dynamic adjustments maintain calibration integrity over
time, continuously monitoring sensor drift and applying corrections to account for aging effects and environmental
exposure.

6.2 Forecasting Architecture

The prediction system employs a hybrid Convolutional Neural Network—Long Short-Term Memory (CNN-LSTM)
architecture augmented with an attention mechanism, designed to capture both spatial patterns and temporal dependencies
in air quality data. The spatial module comprises four ConvlD layers with filter sizes of 64, 128, 128, and 256
respectively, each incorporating batch normalization and dropout regularization to extract localized spatial patterns across
aggregated grid cells. These convolutional layers identify pollution gradients, hotspot formations, and spatial correlations
between neighboring grid cells.

The extracted spatial features feed into a temporal module containing two stacked LSTM layers with 128 and 64 hidden
units that capture sequential dependencies in time-series pollutant data. The LSTM architecture's forget gates and memory
cells enable the model to retain relevant historical information while discarding irrelevant patterns, crucial for modeling
the complex temporal dynamics of atmospheric pollution. The integrated attention mechanism assigns context-aware
weights to different historical timesteps, allowing the model to focus dynamically on the most informative periods such
as morning rush hours or evening industrial activities.

Training employs the Adam optimizer with an initial learning rate of 0.001 and beta parameters (0.9, 0.999), optimized

for convergence stability. Batch size is set to 32 samples, balancing GPU memory utilization and gradient estimation
quality. L2 regularization with A = 0.001 is applied to kernel weights, while dropout rates between 0.2 and 0.4 provide
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additional regularization to prevent overfitting. Learning rate scheduling uses ReduceLROnPlateau with a reduction
factor of 0.5 and patience of 10 epochs, automatically adjusting the learning rate when validation performance plateaus.
Early stopping with patience of 20 epochs monitors validation loss to prevent overfitting and ensure generalization to
unseen data.

Model evaluation leverages multiple metrics including Mean Absolute Error (MAE), Root Mean Square Error (RMSE),
and coefficient of determination (R?), providing comprehensive assessment of prediction accuracy. AQI predictions are
mapped across six categories ranging from Good to Severe based on the highest pollutant sub-index. The training and
testing process employs chronological 70%-15%-15% splits for training, validation, and testing datasets respectively,
preserving temporal integrity and preventing data leakage from future observations into training data.

The system generates AQI forecasts for horizons ranging from 1 to 6 hours, determining AQI based on the highest
pollutant sub-index within each grid cell according to standard air quality index calculation protocols. Inference times
remain under 200 milliseconds per prediction, enabling real-time applications requiring immediate insights. The hybrid
CNN-LSTM consistently outperforms baseline models including Linear Regression, Random Forest, and pure LSTM
networks across all evaluation metrics, demonstrating the value of combining spatial and temporal feature extraction with
attention mechanisms.

6.3 Hardware Implementation

The ESP32-WROOM-32 microcontroller serves as the central processing unit, featuring a dual-core Tensilica LX6
processor operating at 240 MHz with 520 KB SRAM. The module provides integrated WiFi 802.11 b/g/n connectivity
at 2.4 GHz and Bluetooth v4.2 for wireless communication. It offers 12-bit analog-to-digital conversion across 18
channels and 34 programmable GPIO pins supporting UART, SPI, and I12C communication interfaces. Operating voltage
is 3.3V with average power consumption of 1.2W and temperature tolerance from -40°C to +85°C, making it suitable for
outdoor deployment in varying environmental conditions.

Gas sensing employs multiple specialized sensors: the MQ-135 detects NH3, NOx, benzene, smoke, and CO2 across a
range of 10-1000 ppm using tin dioxide (SnO:) semiconductor sensing material with response time under 10 seconds;
the MQ-7 measures carbon monoxide concentrations from 20-2000 ppm with a unique heating cycle requiring alternating
voltage (5V for 60 seconds, then 1.4V for 90 seconds) to achieve optimal sensitivity; and the MQ-136 detects hydrogen
sulfide and sulfur dioxide from 1-200 ppm, particularly valuable for industrial area monitoring. The GP2Y1010AUOF
optical dust sensor measures PM2.5 particulate matter (0-500 pg/m?) using infrared LED and photodiode positioning
with diagonal detection methodology, employing pulsed operation to reduce power consumption and minimize heating
effects.

The assembled prototype integrates all sensors with regulated power supply converting input voltage to required 5V for
sensors and 3.3V for ESP32 operation. Voltage divider networks scale down 5V sensor outputs to 3.3V levels compatible
with ESP32 ADC inputs, protecting the microcontroller from overvoltage damage. The breadboard layout includes proper
decoupling capacitors near component power pins to filter high-frequency noise, pull-up or pull-down resistors on critical
GPIO pins to maintain defined logic levels, and color-coded jumper wires distinguishing power (red), ground (black),
and data lines for enhanced maintainability. Average power consumption of 2.5 watts enables 6-8 hours autonomous
operation using standard 5000mAbh lithium-ion power banks, suitable for mobile deployment scenarios.

6.4 Software Architecture

Microcontroller firmware operates on Arduino IDE 2.0 or higher using the ESP32 Board Package by Espressif Systems,
implementing a multi-threaded FreeRTOS architecture with separate tasks for sensor acquisition, GPS processing, and
network communication running concurrently. Core libraries include WiFi.h for wireless connectivity management,
HTTPClient.h for HTTP and HTTPS requests, Wire.h for [2C communication protocol, TinyGPS++ for GPS data
parsing, and ArduinoJson for JSON serialization and deserialization. The firmware acquires sensor data through 12-bit
ADC with oversampling techniques to reduce noise, reads GPS coordinates via UART at 9600 baud rate, packages all
data into JSON format with metadata, and transmits to the cloud with automatic failover capabilities. Local circular buffer
structures store up to 100 measurements during network interruptions, while watchdog timers ensure automatic recovery
from system hangs and over-the-air (OTA) update capability enables remote firmware upgrades without physical access.

The cloud platform employs PostgreSQL version 14 or higher with PostGIS extension version 3.2 for geospatial indexing
through R-tree and GiST indices, enabling efficient spatial queries including proximity searches and polygon containment
checks. Database schema encompasses tables for users with authentication credentials, sensor readings with timestamp
and location data, grid-based aggregates for efficient spatial visualization, calibration parameters for sensor correction

© 1JARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 585


https://ijarcce.com/
https://ijarcce.com/

IJARCCE ISSN (O) 2278-1021, ISSN (P) 2319-5940

m International Journal of Advanced Research in Computer and Communication Engineering
Impact Factor 8.471 :: Peer-reviewed & Refereed journal :< Vol. 14, Issue 12, December 2025
DOI: 10.17148/IJARCCE.2025.141287

factors, and alert configurations for user notification preferences. Optimization strategies include table partitioning by
date ranges for efficient archival, materialized views updated every 15 minutes for commonly accessed aggregations, and
continuous write-ahead logging (WAL) archiving with daily full backups maintaining 30-day retention. The system
handles 50,000-100,000 measurements daily with horizontal scaling capabilities through read replicas and sharding
strategies.

The deep learning framework utilizes Python 3.8 or higher with TensorFlow 2.12 and Keras 2.12 for model development.
Core libraries include NumPy 1.23 for numerical computations, Pandas 1.5 for data manipulation, Scikit-learn 1.2 for
preprocessing utilities, and Matplotlib 3.6 with Seaborn 0.12 for visualization. Model inference optimization includes
TensorFlow Lite conversion for reduced memory footprint, quantization to 8-bit integers for faster computation, and
ONNX export for cross-platform deployment compatibility.

The web application backend uses Flask 2.3 implementing RESTful API design patterns with JSON responses, while the
frontend combines HTMLS, CSS3 with Grid and Flexbox layouts, TailwindCSS 3.3 for responsive design, JavaScript
ES6+ for client-side interactivity, and Jinja2 templating engine for server-side rendering. Key libraries include Flask-
Login for secure authentication with session management, Flask-CORS for cross-origin resource sharing, SQLAlchemy
2.0 for database ORM, and Folium 0.14 for generating interactive Leaflet.js maps. The mapping system integrates
OpenStreetMap tiles with OSRM API for real-time route calculation, implementing custom tile layers for pollution
overlays, heat maps using gradient coloring based on AQI values, and route comparison visualizations. Security
implementations include HTTPS enforcement with SSL/TLS certificates, CSRF token validation on all POST requests,
berypt password hashing with salt rounds, rate limiting on authentication endpoints, and input sanitization preventing
SQL injection and XSS attacks.

This integrated methodology delivers a scalable, modular, and maintainable air quality monitoring and forecasting system
combining mobile sensing, robust data processing, advanced deep learning, and interactive visualization for informed
decision-making on outdoor activities and health precautions.

VIIL. IMPLEMENATION ENVIRONMENT

7.1 Hardware Implementation

The air quality monitoring system is implemented using the ESP32-WROOM-32 microcontroller as the central
processing unit, operating at 240 MHz with 520 KB SRAM. The hardware assembly integrates multiple gas sensors and
a particulate matter sensor to capture comprehensive pollution data. The MQ-135 sensor detects NH3, NOx, benzene,
smoke, and CO2 (10-1000 ppm range), while the MQ-7 measures carbon monoxide concentrations (20-2000 ppm) with
specialized heating cycles for optimal sensitivity. The MQ-136 captures hydrogen sulfide and sulfur dioxide (1-200 ppm),
and the GP2Y 1010AUOF optical sensor measures PM2.5 particulate matter (0-500 pg/m?) using infrared LED technology
with diagonal detection methodology.

The prototype features a regulated power supply system converting input voltage to 5V for sensors and 3.3V for the
ESP32 module. Voltage divider networks protect the microcontroller by scaling sensor outputs to compatible levels. The
breadboard layout incorporates decoupling capacitors for noise filtering and color-coded jumper wires (red for power,
black for ground, various colors for data lines) to enhance maintainability. Average power consumption is 2.5 watts,
enabling 6-8 hours of autonomous operation with standard 5000mAh lithium-ion power banks. The modular design
allows easy sensor replacement and future upgrades without complete system redesign.

| |l

Figure 2: Complete Assembled Hardware Prototype
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7.2 Software Implementation

The firmware operates on Arduino IDE 2.0+ using the ESP32 Board Package, implementing a multi-threaded FreeRTOS
architecture. Core libraries include WiFi.h for connectivity, HTTPClient.h for data transmission, and ArduinoJson for
JSON packaging. The firmware acquires sensor data through 12-bit ADC with oversampling for noise reduction,
packages measurements with timestamps and device metadata, and transmits to the cloud at 15-second intervals. Local
circular buffers store up to 100 measurements during network interruptions, ensuring no data loss.

The cloud infrastructure uses PostgreSQL 14+ with PostGIS extension for geospatial data management, handling 50,000-
100,000 measurements daily. The deep learning framework employs Python 3.8+ with TensorFlow 2.12 and Keras 2.12,
implementing the hybrid CNN-LSTM architecture. The model training pipeline uses NumPy for numerical operations,
Pandas for data manipulation, and Scikit-learn for preprocessing. Model optimization includes TensorFlow Lite
conversion and 8-bit quantization for efficient real-time inference under 200 milliseconds.

The web application backend is built with Flask 2.3, providing RESTful APIs with JSON responses. The frontend
combines HTMLS, CSS3, TailwindCSS 3.3, and JavaScript ES6+ for responsive design. Flask-Login handles user
authentication with secure session management, while SQLAlchemy 2.0 manages database operations. Folium 0.14
generates interactive maps using Leaflet.js with OpenStreetMap tiles, displaying pollution data through heat maps,
circular markers, and color-coded indicators. The mapping system integrates OSRM API for route optimization,
comparing multiple paths based on pollution exposure levels.

7.3 Dashboard Interface

Air Quality Prediction

Figure 3: AQI Prediction Interface
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Figure 4: AQI Prediction Results Interface
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Figure 5: Interactive Route Map Interface

Real-time AQI display with color-coded indicators
Interactive pollution map with heat overlays and grid cells
Historical trend charts for multiple pollutants

Prediction interface with 1-6 hour forecast horizons

Route comparison visualization with pollution levels

e  Alert configuration panel with threshold settings

e  User authentication and profile management screens

The dashboard provides intuitive navigation with responsive design supporting both desktop and mobile devices,
enabling users to monitor air quality, generate forecasts, analyze historical trends, and configure personalized alerts for
health protection.

VIII. MODULES

8.1 ESP32-WROOM-32 Microcontroller Module

The ESP32-WROOM-32 serves as the central processing unit, featuring a dual-core Tensilica LX6 processor operating
at 240 MHz with 520 KB SRAM. It provides integrated WiFi 802.11 b/g/n and Bluetooth v4.2 connectivity for real-time
data transmission. The module offers 12-bit ADC across 18 channels and 34 programmable GPIO pins with UART, SPI,
and 12C interfaces. Operating at 3.3V with 1.2W power consumption and temperature tolerance from -40°C to +85°C,
its compact 18mm x 25.5mm X 3.1mm form factor makes it ideal for mobile deployment.

8.2 MQ-135 Air Quality Sensor

The MQ-135 gas sensor detects NH3, NOx, benzene, smoke, and CO2 within a 10-1000 ppm range using tin dioxide
(Sn0O2) semiconductor sensing material. It operates on 5V DC supply with response time under 10 seconds and requires
24-48 hours preheat period for stabilization. The sensor exhibits highest sensitivity to ammonia and benzene, with
resistance changes converted to 0-5V analog output proportional to gas concentration. After appropriate voltage scaling,
the output is compatible with the ESP32's ADC for accurate measurements.

8.3 MQ-7 Carbon Monoxide Sensor

The MQ-7 sensor detects carbon monoxide concentrations from 20-2000 ppm with response time under 10 seconds after
a 48-hour preheat period. It features a unique heating cycle requiring alternating voltage (5V for 60 seconds, 1.4V for 90
seconds) to achieve optimal sensitivity and prevent sensor poisoning. The tin dioxide sensing layer demonstrates high
selectivity for CO over other combustible gases with low cross-sensitivity to hydrogen and methane. This selectivity
makes it particularly suitable for urban air quality monitoring in environments with multiple interfering gases.

8.4 MQ-136 Hydrogen Sulfide/Sulfur Dioxide Sensor

The MQ-136 electrochemical sensor detects hydrogen sulfide (H2S) and sulfur dioxide (SO2) within 1-200 ppm range,
operating on 5V DC supply. It provides fast response time under 10 seconds using sensitive material that changes
conductivity when exposed to sulfur-containing gases. The sensor's capability to detect low concentrations makes it
valuable for industrial area monitoring and early pollution detection. Its sensitivity to sulfur compounds enables early
warning of pollution from fossil fuel combustion and industrial emissions.
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8.5 GP2Y1010AUOF Optical Dust Sensor

The GP2Y1010AUOF measures PM2.5 particulate matter (particles smaller than 2.5 micrometers) over 0-500 pg/m?
range using optical scattering technology. It combines an infrared LED and photodiode positioned at a specific angle for
diagonal detection of scattered light. Operating on 5V DC with maximum 11 mA current consumption, it delivers
response time under one second. The pulsed LED operation reduces power consumption and minimizes heating effects
while maintaining accurate particulate detection.

IX. PERFORMANCE EVALUATION

9.1 Model Validation Testing

The CNN-LSTM prediction model was tested using a chronological train-validation-test split (70%-15%-15%) to ensure
temporal consistency and prevent data leakage. Model performance was evaluated using three key metrics: Mean
Absolute Error (MAE) measuring average deviation between predicted and observed AQI values, Root Mean Squared
Error (RMSE) emphasizing larger deviations and sensitivity to extreme pollution events, and R? score indicating the
proportion of variance explained by the model.

Multiple algorithmic approaches were trained and systematically compared, including Linear Regression, Random
Forest, pure LSTM networks, standard CNN-LSTM models, and CNN-LSTM models with Attention mechanism. Linear
Regression served as a baseline, Random Forest captured non-linear relationships but lacked temporal modeling, LSTM
captured temporal dependencies, while the hybrid CNN-LSTM leveraged both spatial correlations and temporal
sequences. The Attention mechanism dynamically focused on the most relevant timesteps, prioritizing influential
historical patterns for accurate forecasting.

The CNN-LSTM with Attention emerged as the best-performing architecture, achieving the highest R? scores, lowest
MAE and RMSE, and demonstrating consistent performance across different pollutants and forecast horizons.

9.2 Hardware Reliability Testing

The prototype hardware underwent 72-hour continuous operation testing to assess stability and data transmission
reliability. Testing monitored data transmission success rate, power consumption, WiFi connectivity uptime, and sensor
reading consistency measured by coefficient of variation.

9.3 Web Application Performance Testing

The Flask-based web application was subjected to load testing with 50 concurrent users to evaluate responsiveness and
throughput capacity. Performance metrics included average response time, error rate, requests per second throughput,
database query execution time, and model inference latency. End-to-end integration tests evaluated the complete
workflow from sensor data collection through preprocessing, prediction, alert generation, to dashboard visualization.

9.4 Result Analysis

9.4.1 Dataset Characteristics
The model was trained using publicly available air quality datasets.

Pollutant Mean Min Max
PM2.5 (ug/m3) 78.4 64.2 89.9
NO2 (pg/m?) 23.5 19.3 30.9
CO (mg/m?) 0.12 0.09 0.16
SO2 (ug/m?) 18.3 10.6 33.6
AQI 184 173 198

9.4.2 Model Performance Comparison

Model MSE MAE R?

Linear Regression 4200 58 0.62
Random Forest 3100 48 0.72
Pure LSTM 1800 35 0.82
CNN-LSTM 1200 28 0.85
CNN-LSTM + Attention 950 24 0.87
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9.4.3 Training Results
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Figure 7: Mean Absolute Error Progression
X. CONCLUSION

This research developed and validated a comprehensive mobile air quality monitoring and forecasting system that
addresses critical limitations in traditional environmental monitoring infrastructure. By integrating IoT sensors, mobile
deployment platforms, and hybrid deep learning architectures, the system demonstrates substantial improvements in
spatial coverage, predictive accuracy, and accessibility of air quality information.

The implemented CNN-LSTM model with attention mechanism achieved strong predictive performance with MAE of
24.0 AQI units, RMSE of 30.8, and R? score of 0.87, representing a 58% MAE reduction compared to linear regression
and 31% enhancement over pure LSTM networks. The hybrid architecture effectively captures spatial correlations
through convolutional layers and temporal dependencies via LSTM cells, while the attention mechanism dynamically
focuses on relevant historical observations. Multi-horizon forecasts ranging from 1 to 6 hours support proactive health
protection and urban planning.

The prototype hardware demonstrated exceptional reliability during 72-hour continuous testing, achieving 99.8% data
transmission success rate and maintaining sensor consistency with coefficient of variation below 5%. ESP32-based
modules successfully integrated multiple electrochemical gas detectors and optical particulate matter sensors into a
compact, cost-effective package with average power consumption of 1.2W, enabling efficient battery operation.

The web application provided interactive visualizations, real-time AQI forecasts, and live sensor data through a
responsive interface. Performance evaluations with 50 concurrent users showed average response times under 2 seconds
and model inference latencies around 150ms, demonstrating real-time capability. The system contributes to sustainable
development by supporting climate action through emission monitoring, promoting sustainable cities with actionable
environmental data, and protecting public health through timely air quality awareness.
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10.1 Future Work

Future enhancements could dramatically improve urban environmental monitoring. Hardware improvements include
integrating high-precision sensors for ozone and ammonia with sub-ppm sensitivity, optical particle counters for PM1,
PM2.5, and PM10 fractions, and advanced metal oxide sensors with improved selectivity. Enhanced calibration through
transfer learning, multi-sensor fusion, and Gaussian Process regression could provide uncertainty quantification alongside
predictions.

Algorithmically, the CNN-LSTM architecture can integrate additional contextual features including traffic density,
industrial activity, land-use patterns, and meteorological forecasts. Multi-task learning frameworks could simultaneously
predict multiple pollutants while sharing representations. Hierarchical spatio-temporal attention layers could capture
interactions between distributed sensors and dynamic pollution sources. Ensemble learning, probabilistic forecasting, and
physics-informed neural networks could enhance robustness for extreme events.
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