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Abstract: Modern urban waste management systems tend to make use of artificial intelligence (AI) and big data 

technologies through the collection of multimodal Internet of Things (IoT) data to manage operational inefficiencies and 

unsustainability’s. Scope of a broad-stroke synthesis of AI and big data features and applications for smart urban waste 

management, alongside the relevance of established AI and smart city concepts, with conclusions that point to critical 

pathways for application and research. Actionable real-world conclusions naturally arise from a deeper understanding of 

a broad stroke thinking on smart waste as well as the interrelation between AI capabilities and urban waste management 

drivers. A smart waste management system encompasses the entire urban waste lifecycle, from generation and collection 

to recycling and reprocessing, focusing on the generation, collection, sorting, and recycling steps; and processes driven 

by data fusion and artificial intelligence. Urban waste systems logically collect heterogeneous data to inform operation. 

The potential of modern smart waste concepts rests on Internet of Things (IoT) and data-driven technologies applied to 

waste systems. 

The overwhelming amount of novel sensing devices, capable of gathering information about waste fill levels and 

additional smartness features provide the ability to create real-time fill level forecasts. Apart from the sensing on bins, 

smart containers, capable of providing additional information (e.g., temperature, smoke) have also been deployed. 

Twofold analysis improves fill level forecasting through anomalies detection and resolution. All those novelties create a 

need for a transversal analysis of all the innovations, elements, and data-enabled technologies proposed through a smart 

waste concept. 
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1. INTRODUCTION

 
Supply chains encompass the life cycle of products and services, influencing resource utilization across distinct stages 

and systems. Addressing waste management performance demands strategies that align with other decisions and external 

conditions. In the context of urban waste management, data generation sourced from Internet-of-Things (IoT) sensors 

augmented by Data Analytics, Artificial Intelligence (AI), Big Data, and Cloud Computing technologies become 

increasingly vital. Smart Waste Management Systems (SWMS) integrate these technologies and provide superior service 

quality at reduced costs. Recent initiatives within SWMS, cover the life cycle of waste collection and treatment 

operations. 

The objective is to synthesize smart waste management concepts, the use of IoT-sensing technologies, decision-making 

using data analytics, and performance evaluation with distinct attention to gaps and challenges. Waste Management 

Service encompasses Waste Generation, Collection and Treatment. Waste Generation relates the activities, processes, or 

operations of any person, organization or municipality that produce or cause waste generation and disposal. Waste 

Collection, as referred to in these articles, is an activity performed by duly constituted public entities. SWMS embrace 

the use of Smart Sensor Technologies and Communication Networks that allows the treatment of information collected 

and stored in a central server by the application of Data Analytical Techniques, Artificial Intelligence and Big Data 

Computing, for a more efficient and effective management of waste collection. 
 

1.1. Overview of Smart Waste Management Strategies 

Supporting smart city concepts, smart waste management systems aim to optimize the waste collection process through 

the intelligent deployment of Internet of Things sensing devices, the collection and integration of heterogeneous data 

sources, and the application of data analytics to support decision-making. Although most applications have focused on a 

specific system component or addressed a particular issue, the systems are presented while highlighting open challenges 
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and knowledge gaps. Here, smart waste management is understood as the automation and optimization of waste 

collection, transfer, recycling, sorting, or disposal through data-driven techniques. 

The characteristics of waste within municipalities differ from those in commercial environments, making Internet of 

Things applications less of a niche and more of a requirement for some commercial players. Evidence suggests that 

addressing the private-commercial interface represents an important step toward cost-efficient and environmentally sound 

waste management. In addition to fulfilling private and commercial demands, there is also an urgent need for smart waste 

management to support public waste collection. The use of public sensors, particularly for monitoring fill-level 

information in collection bins, can enhance operations and reduce collection costs. 

 
Fig 1: Integrated IoT Ecosystems for Smart Waste Management: Bridging the Public-Commercial Interface through 

Heterogeneous Data Analytics 

 

2. BACKGROUND AND THEORETICAL FOUNDATIONS 
 

Urban waste management is recognized as one of the major challenges of cities in the Anthropocene epoch. Human 

activities create a growing amount of waste per capita and year, putting a growing pressure on urban areas and 

surroundings. Only few places in the world manage to avoid waste generation, the vast majority creates waste and most 

fail to manage it in sustainable ways. With reference to the excrement of urbanization, urban waste management is still 

one of the least developed smart city applications. From a waste policy perspective, the main objective is to reduce the 

waste that encloses a negative social environmental impact. 

The recording and analysis of data from past performance of the waste management systems constitutes a critical aspect 

facilitating decision support and the improvement of operations. Increase efficiency and reduce the related environmental 

impact is another aim of waste collection service. Its importance is determined by the significant share of fuel 

consumption and CO2 emissions within the overall municipal footprint of waste management systems. Two major 

research questions arise: (i) where to collect and transport waste? and (ii) which is the optimal size of the fleet of vehicles? 

Major regulatory and legislative frameworks among the world devote attention to the collection and transport of waste. 

Various studies show the value of data analytics to improve the efficiency of collection routes and lower environmental 

costs through proper modeling of the Vehicle Routing Problem. AI, ML, DL, geo-spatial and temporal data analysis 

contribute to optimizing such aspects. 
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Equation 1) Core data model for smart-bin fill levels 

1.1 Variables (per bin i at time t) 

• True fill level: 𝑥𝑖,𝑡 (0–100%) 

• Sensor reading: 𝑧𝑖,𝑡 

• Sensor noise: 𝜀𝑖,𝑡 

1.2 Measurement equation (from “sensing modalities measuring fill levels”) 

A standard way to model a sensor reading is: 

𝑧𝑖,𝑡 = 𝑥𝑖,𝑡 + 𝜀𝑖,𝑡 

Assume 𝜀𝑖,𝑡 ∼ 𝒩(0, 𝜎2) for many physical sensors (ultrasonic/IR/laser/load-cell), as a first approximation. 

 

2.1. Waste Management Fundamentals 

Waste management aims to eliminate littering and pollution from urban areas by minimizing the generation of waste, 

enhancing collection and disposal efficiency, and driving recycling and reuse. The goal is to divert waste from landfills 

and incinerators, simultaneously protecting the public from hazardous waste. Waste materials can be agrarian, 

biomedical, construction, demolition, electronic, industrial, municipal, oilfield-derived, radioactive, recyclables, or 

sewage sludge; the first five are the primary components of LCA studies. Optimal waste collection, in terms of both cost 

and environmental impact, heavily relies on data. 

AI technologies can significantly improve decision making in WSMS. In a WEEE reuse and recycle system, the 

authorization of legal recycling can be optimized; the lifetime prediction of reusable products can be enhanced by AI 

models; AI and big data can enhance reverse logistics including recovery points selection and routing for forecasting 

future recovery; deep-learning-based computer vision can improve sorting quality in automatic recycling stations; the 

predictive maintenance of recycling facilities can be developed. The potential of AI and big data in improving efficiency 

and reducing the ecological footprint of WSMS warrants further exploration. 
 

3. DATA INFRASTRUCTURE FOR SMART WASTE MANAGEMENT 
 

Data infrastructure encompasses the people, processes, governance structures, and data offerings needed to deliver 

meaningful data-driven solutions and services. In the context of smart waste management, a well-defined data 

management "architecture" helps structure these resources into major layers for solution and service delivery: the use-

case layer (application services), the data-hub layer (data ingestion, storage, and access), the dataset layer (data fusion 

and dynamic update), and the sensing-and-actuation layer (data generation). Each of these major layers requires 

independent design and management and operates at different timescales. In addition to the architectural design, three 

other key data-related design aspects are required to complete a comprehensive data infrastructure: data governance, 

interoperability and standards, and data quality management. 

Data are generated under a wide variety of contexts (circumstances, times, and locations) by different IoT sensing 

modalities (cameras, fill-level sensors, dust monitors, odor sensors, etc.). However, in order for these data to support 

meaningful services, all of them need to be stored in a common data hub accessible to users, service developers, and 

analytical model developers. This data-servicing role requires a number of sublayers of the data-hub layer. The earliest 

sublayer supports the continuous and persistent ingestion of the raw temporal-spatial data accumulated in the various 

sensing devices. These raw data often contain entry errors, inconsistent temporal-spatial-logical semantics, or outliers, 

and the detection and reconciliation of these irregularities constitute the next sublayer. 
 

3.1. Sensing and Data Acquisition 

A well-functioning smart waste management system relies on accurate sensing modalities deployed at the right locations, 

with sufficient redundancy, resilience, and durability to ensure operational viability over time while consuming minimal 

power during operation and in standby mode.  

Several sensing technologies may be used when monitoring the fill level of waste bins or containers, and each has its 

own merits and demerits. A well-thought-out decision-analysis approach may help choose the best option. Deployment 

strategies for sensing and data-acquisition networks can vary. System and operational requirements typically lead to 

trade-offs among detecting fill levels, waste-collection route optimization, waste-generation forecasting, and the 

prevention of bin overflows or blockages. Moreover, in the real world, combinations of different sensing technologies 

often deliver the best results. Energy management, calibration of sensing layers, communication interfaces, and resilience 

to extreme weather conditions are other parameters that affect the durability of sensor units and impact the operational 

costs of effective data-collection frameworks.  
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Fig 2: Optimizing Resilient Sensing Networks for Smart Waste Management: A Multi-Criteria Decision-Analysis 

Framework 

 

3.2. Data Fusion and Integration 

Data fusion, temporal and spatial alignment, metadata enrichment, and integration with external data sources represent 

critical processes for maximizing the usable knowledge from the collected data. The integration of data arriving from 

different stimuli can be viewed as a prerequisite for decision-making and AI model training. While the act of integrating 

data from multiple sources can include techniques from classical data fusion, in particular, dealing with differences in 

spatial-temporal resolution, some aspects are specific to the application domain. For instance, monitoring the fill levels 

of bins and containers and detecting anomalous situations can be viewed as a data- and sensor-fusion problem, where the 

output needs to be forecasted several steps ahead, instead of just one. Furthermore, the nature of data-driven decision-

making often requires adding metadata on top of the data that is monitored and collected. This metadata typically comes 

from external sources and analyses and can represent driving factors like seasonality, road traffic, climate, special events, 

socio-demographics, and other accessible highlighted variables. 

A basic monitoring network, such as one built on traditional general-purpose sensors, will face the challenge of assuring 

long-term, reliable, and continuous operation, so sensor types, placement, and energy management need to be defined 

accordingly. Future forecasts and anomaly-detection analysis depend heavily on the quality of the monitored data. These 

forecasts can thus be supported by dedicated computation, for instance, with dedicated models collocated with each 

sensor and operating only when required. Nevertheless, the need to raise the operational-evaluation capacity also leads 

to the design of dedicated networks, able to feed fill-level information from all monitored bins and containers. Such a 

network becomes a dedicated information-service provider for the whole waste-collection operation. 
 

 Baseline (km/day) Optimized (km/day) Savings (km/day) 

Zone 1 92 74 18 

Zone 2 110 86 24 

Zone 3 75 63 12 

Zone 4 130 101 29 

Zone 5 88 70 18 
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4. AI-DRIVEN WASTE COLLECTION OPTIMIZATION 
 

Optimization represents a promising area for AI application, delivering decision support for management of waste 

collection activities. Data-driven capabilities enable waste collection prediction, optimization, and route-planning 

methods, modelling operations of diverse complexity across scales—covering strategic network design, tactical vehicle 

fleet sizing and scheduling to operational routing of individual vehicles. pertinent optimization approaches include the 

classic Vehicle Routing Problem concerned with designing optimal routes for a homogeneous fleet of waste collection 

vehicles and other related combinatorial scheduling problems. Efficiency improvements are pursued by deploying 

heterogeneous fleets, integrating resource allocation with route planning, enabling dynamic decision making with VGI-

assisted real-time routing, and supporting predictive fleet maintenance. 

Street-level decision support is facilitated through dynamic and real-time decision environments relying on typically non-

located data sources and real-time data streams. Human–AI collaboration is explored through the development of 

prediction models to localize support resources for human operators, highlighting roles of humans and AI in dynamic 

real-time systems. AI-equipped systems can assist risk management through the aggregation of hidden signals in large 

volumes of unstructured CCTV monitoring footages. Anomaly detection together with an AI-assisted triage system for 

real-time incident detection by less resource-demanding video sensors enables the automation of citywide anomaly 

monitoring. 
 

Equation 2) Data fusion (combining multiple sensors / sources) 

The highlights heterogeneous sensing and “data fusion and integration” as critical. 

2.1 Simple weighted fusion (two sensors as example) 

Suppose you have two independent measurements 𝑧𝑡
(1), 𝑧𝑡

(2) of the same fill level 𝑥𝑡, with variances 𝜎1
2, 𝜎2

2. 

Goal: estimate 𝑥𝑡 as a weighted average: 

𝑥𝑡 = 𝑤𝑧𝑡
(1) + (1 − 𝑤)𝑧𝑡

(2)
 

Choose 𝑤 to minimize mean squared error (MSE). Because both are unbiased: 
Var(𝑥𝑡) = 𝑤2𝜎1

2 + (1 − 𝑤)2𝜎2
2 

Differentiate w.r.t. 𝑤 and set to 0: 
𝑑

𝑑𝑤
(𝑤2𝜎1

2 + (1 − 𝑤)2𝜎2
2) = 2𝑤𝜎1

2 − 2(1 − 𝑤)𝜎2
2 = 0 𝑤𝜎1

2 = (1 − 𝑤)𝜎2
2 ⇒ 𝑤 =

𝜎2
2

𝜎1
2+𝜎2

2 

So the more reliable sensor (smaller variance) gets higher weight: 

𝑥𝑡 =
𝜎2
2

𝜎1
2 + 𝜎2

2 𝑧𝑡
(1) +

𝜎1
2

𝜎1
2 + 𝜎2

2 𝑧𝑡
(2)

 

 

 
4.1. Route Optimization and Vehicle Scheduling 

Various techniques exist for determining optimal routes in waste collection, including those for the vehicle routing 

problem (VRP) associated with CVRP, MTVRP, and other variants presented in Section 4.1. A significant amount of 

literature examines constraints dictated by the physical characteristics of waste collection operations. These may include 

the direction and order of service, the capacity limits of vehicles in terms of volume and weight, the temporal constraints 

linked to roads that can only be unloaded at specific times, and those that can only be traversed by certain vehicles. The 

objective function, also commonly found in the literature, is usually generalized as the overall distance or time travelled 

by the fleet of vehicles. The variants always seem to be characterized by the same trade-off between solution quality and 

computational effort, where heuristic techniques are more efficient than exact ones for larger instances. The exceptions 

are widely publicized or otherwise readily available small-sized instances belonging to standard benchmark collections. 
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Dynamic fleet management cheapens the solution of service routines, especially with respect to the challenges posed by 

unpredictable demand patterns in a frequently challenging real-time context. The spatio-temporal variability of the 

demand for disposal services is both inherently difficult to predict and susceptible to exogenous influences, often 

lowering prediction quality. Given the value of freshness in operational decision-making, the widespread use of real-time 

information systems able to guide service executions remains unexplored. Moreover, the information generated by the 

fleet can be exploited to warm-start appropriate predictive models, thereby improving their accuracy. As a result, the data 

provided by onboard equipment can also be used to inform dynamic maintenance planning strategies that preserve asset 

performance without incurring excessive operational costs. Finally, rather than acting independently or, worse still, at 

cross purposes, humans and AI can also work collaboratively, using the relative advantages of one another to generate 

superior outcomes. 
 

4.2. Dynamic Fleet Management 

Dynamic fleet management entails revising waste collection decisions in real-time for an active fleet engaged in 

systematic operations. A static approach cannot efficiently adapt to sudden events that change the environment or system 

workload. Fleet management strategies must account for the dynamics of all processes involved. AI enables real-time 

decision support by determining the optimal allocation of waste collection vehicles to tasks at a given instant. An efficient 

routing solution minimizes operational costs. Fleet operations monitoring includes predicting vehicle failures via 

condition-based maintenance, hazard prediction for advanced human–AI collaboration, and predictive maintenance that 

considers vehicle and task similarity. Fleet allocation techniques guide the interaction between waste collection vehicles 

and bins located in hidden areas. 

Dynamic fleet management encourages collecting waste bins situated in concealed locations, which present considerable 

operational challenges when faced with a vehicle group assigned to a short-time slot. Collected bins potentially include 

bin segments with unknown or hidden fill-level variations. Driver alerts about hidden threats within the bin route must 

be considered when defining real-time vehicle and collection bin allocation. Alert conditions such as noise accumulation 

or unexpected vibrations can indicate potential hazards for drivers. Road hazard prediction and alert forwarding enhance 

human–AI collaboration. Predictive maintenance provides advanced condition management of individual vehicles 

according to their operational data similarity to other collected vehicles. 
 

5. SMART BINS, SENSING, AND ANOMALY DETECTION 
 

Recent years have seen a growing interest in sensor-enabled smart waste bins and containers capable of measuring fill 

levels, environmental conditions, and other operational parameters. Their high sensing density, fine temporal dimensions, 

and real-time communication capabilities open new avenues for data-driven operations management. However, relatively 

few applications appear to directly exploit the data communicated by these sensors. Most incorporate simple heuristics 

(e.g., schedule revisits on specific days, respond to overdue alerts) rather than making full use of the monitoring 

information in real time. Furthermore, advanced analytics are typically restricted to fill-level forecasting, with anomalies 

defined largely in terms of thresholds on predictive errors. The principal challenge lies in demonstrating the real 

operational value of these sensors and exploring the opportunities for other types of advanced analytics. 

Smart trash bins are equipped with embedded sensors that allow for measuring and monitoring the state of the trash bin. 

The integration of smart bins leads to an increased and effective waste management system by allowing waste collection 

companies to understand the fill-level state of individual bins and manage their waste collections using data-driven 

machine learning approaches. Object and gesture detection, along with image classification, are integrated with other 

state-of-the-art technologies and machine-learning approaches, resulting in smart bins that are able to monitor high-level 

activities that can be processed in real-time mode and fitted for Internet of Things applications. For waste-to-energy sites, 

high-frequency garbage bin fill-level monitoring, as well as combustion temperature anomaly detection, is proposed and 

developed to provide valuable information for waste-to-energy management through machine-learning-focused Internet 

of Things applications. 
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5.1. Sensor Technologies and Deployment 

The sensory component of smart waste management systems is critically important for generating the operational 

information required for decision making on collection, monitoring, and recycling. From a sensory perspective, critical 

issues include the selection of sensor technology, the determination of the sensory layout in the networks, the durability 

of the sensors, issues of calibration and energy management, and the trade-offs with cost and redundancy. This analysis 

includes smart bins with monitoring sensors, larger containers equipped with more complex terminals, and specialized 

sensory networks deployed across cities. 

Numerous solutions for monitoring fill levels in bins and containers have been proposed, leveraging non-intrusive 

technologies such as ultrasonic, infrared, or laser devices, and more intrusive approaches based on load cells, pressure 

sensors, or even camera vision. These technologies present different advantages and drawbacks in terms of monitoring 

precision, maintenance needs, energy consumption, and inter-sensor redundancy for dealing with failures. Ultrasonic 

sensors appear to be the most widely used solution for monitoring fill levels in waste collection and management 

applications. The monitoring of large containers provides additional challenges, since these bins are usually not equipped 

with built-in solutions. Many terminals use GSM modules for data transmission, and communication can also be achieved 

leveraging city-wide LoRa or Sigfox networks, UHF RFID systems, or even with direct connections, for example, to 

monitor the filling and emptying of underground containers. By relying on vibration, sound, or pressure, a network of 

low-cost sensors has been deployed across a city for monitoring both normal and abnormal events. 
 

 
Fig 3: Sensory Architectures for Smart Waste Management: A Trade-off Analysis of IoT Technologies for City-Scale 

Monitoring 

 

5.2. Anomaly Detection for Fill-level Forecasting 

Anomaly Detection for Fill-level Forecasting 

Anomaly detection techniques are used to anticipate fill-levels of smart bins or containers that are equipped with an array 

of sensing technologies. These techniques are not only used to identify anomalous behaviors that can be detected from 

sensed data, but also to set specific thresholds for each of the fill-level patterns recognized by the sensors. The detected 

anomalies are subsequently communicated to the waste management companies for establishing the required trajectory 
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or route of the collection trucks. Hence, a holistic approach toward anomaly detection is to generate rules based on sensed 

data such that when the rules are triggered, an alert is generated. 

Anomalies in the fill-level data can be classified into four distinct groups: (i) Detection of drastic variations of fill-level 

in such a manner that they jump above or below the average fill-level of the specific bin; (ii) Sensing fill-level behavior 

that indicates a stay significantly below the average; (iii) Prediction of the filling behavior for future days of the week, 

and raising alarms in case of insufficient or excessive filling, regarding the fill-level behavior for the specific day in 

previous weeks; and (iv) Identification of extraordinary filling behavior above a certain threshold, when considering the 

filling ratio during the stay on that specific day of the week in the previous weeks. A Dedicated Controller Controls 

During the Operation Time Each Sensor Node Acquires the Fill-Level Value and Sends It to the Gateway Node. 

The Alert Generation Algorithm Uses the Fill-Level Values in order to Detect Unexpected Events in Both Cases Garbage 

Collection and Filling of the Bin. This Involves Identification of Events Appearing in a Burst Manner, Occurring Only 

During Specific Days of the Week, that Badly Disturb the Usual Behavior of the System. Fuzzy Logic(FL) is a method 

based on degree of truth of an event, rather than the usual true or false (0 or 1). 
 

 Accuracy Energy efficiency Maintenance 

Ultrasonic 4.0 4.0 4.0 

Laser 5.0 3.0 3.0 

Load Cell 4.0 3.0 3.0 

Infrared 3.0 4.0 3.0 

Camera Vision 5.0 2.0 2.0 

 

6. RECYCLING, SORTING, AND MATERIAL FLOW ANALYTICS 
 

Waste materials can be recycled back into the production circuit, with reprocessing costs typically being lower than those 

of virgin materials. Therefore, higher quantities of waste material grades lead to greater accessibility to secondary 

material, reducing the need for extracting virgin material. Despite the increasing importance of waste recycling, it is still 

not a sustainable process. The end-of-waste criteria for recyclable materials are frequently not met. This is largely due to 

the mix of different product qualities; in particular, the quality of recycled plastics is significantly lower because of 

varying degrees of material contamination and sorting inefficiencies. Promotion of better product and waste designs, and 

better monitoring, would help to ensure that products fulfil the end-of-waste criteria. In addition, data-driven quality 

perspectives for flow material analyses and integration into automated sorting systems are crucial Research on material 

flow analytics focuses on enhancing production and storage capacities in time and space domains, and robust, reliable 

detection of anomalies. 

Automated sorting of different waste material types has been explored, and significant improvements in throughput at 

better detection quality can be achieved. Non-contact sorting sensors such as scanners, cameras, weight sensors, and 

electromagnetic sensors are already well established in post-consumer sorting; however, throughput still remains the 

biggest challenge due to high labour costs. To increase throughput, in-depth use of sensor fusion technologies that 

consider additional information to answer the fundamental question of “what is it?” have been investigated. Future sorting 

applications will not only solve the identification issue but also detect objects that do not belong in the waste stream, thus 

enhancing the quality of sorting output with respect to rejection of non-target materials such as metals, glass, wood, and 

paper, and detection of hazardous waste. Moreover, attention should be paid to materials that need to be sorted to specific 

product qualities, thus developing the concept from “just sorting” into “knowing the quality of sorted products before the 

sort.” 

 

Equation 3) Fill-level forecasting (time-series) 

The explicitly mentions real-time fill-level forecasting and that forecasts support decision-making. 

3.1 Exponential Smoothing (SES) derivation (step-by-step) 

Let observed fill level be 𝑦𝑡. We want a smoothed estimate 𝑠𝑡. 

Define a recursive update: 

𝑠𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)𝑠𝑡−1, 0 < 𝛼 < 1 

Unroll to see “exponentially decaying weights”: 

𝑠𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)𝑠𝑡−1 

Substitute 𝑠𝑡−1 = 𝛼𝑦𝑡−1 + (1 − 𝛼)𝑠𝑡−2: 

𝑠𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)𝛼𝑦𝑡−1 + (1 − 𝛼)2𝑠𝑡−2 
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Repeat: 

𝑠𝑡 = 𝛼𝑦𝑡 + 𝛼(1 − 𝛼)𝑦𝑡−1 + 𝛼(1 − 𝛼)2𝑦𝑡−2 +⋯ 

 

6.1. Automated Sorting with Computer Vision 

The need for efficient waste management and recycling technologies is growing, along with the amount and complexity 

of waste. While the volume of recyclable material is increasing, the challenge of keeping the material flows within the 

same quality range is also becoming more complex. This area of smart waste management can move towards automatic 

sorting processes to separate the different types of materials—plastic, paper, metal, and glass—for recycling. 

Computer vision can speed up the quality control of the classification of recyclable material flows by detecting the 

different classes of materials through trained classification models. Nevertheless, due to the sensor's limited field of view 

and the position of the system, it is not able to classify all materials present in the flow. In these cases, a classical sensor 

fusion technique—where the information of different sensors in the same environment is combined to achieve a more 

complete and reliable result than individual sensor would be able to do—is used to classify all types of materials flowing 

in parallel, increasing the throughput of the whole detection process. The use of smart technologies for recycling can 

improve both the efficiency of the operations and the quality of the output flows. 

 
7. CONCLUSION 

 

Current smart-waste concepts demonstrate significant diversity and complexity, being articulated in a highly 

interdisciplinary environment. A review with data-driven decisions at its core illuminates the connections between 

artificial intelligence and several construction blocks of smart-waste paradigms. The analysis indicates that, while the 

predominant technical challenges of integrating heterogeneous sensing devices and enabling better interoperability and 

data quality are being solved, concepts completing the data life cycle (from collection and analytical procedures to the 

decision-and-action process) remain under-explored. Moreover, many ideas lack empiric validation; some even include 

a fully speculative component. 

Further development and testing have the potential to induce a substantial and lasting improvement in urban waste 

management, not only increasing efficiency and decreasing costs but also reducing the environmental impacts—such as 

greenhouse-gas emissions—of the overall process, ultimately contributing to higher sustainability of cities. In fact, smart-

waste paradigms are also closely connected with the circle economy, as they enable the supervision of material flows and 

their recovery by supporting recycling systems, and they align with global environmental goals. Data-driven decision-

making in these paradigms also correlates with the widespread desire for a better use of available data within urban 

administrations. 

 
   Fig 4: Sustainability & Environmental Affordances 
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7.1. Summary of Key Insights and Future Directions 

Grounded in theoretical foundations of sustainable waste management and aligned with the City of Barcelona’s data-

driven vision, current evidence and Smart Waste concepts have been synthesized to support AI and Big Data Applications 

for urban Waste Management Systems; barriers to effective implementation are identified, thereby informing future 

research and practical applications. These efforts collectively address broad, urgent, and viable avenues for further work 

in this area. 

Cities face major waste management challenges that require significant improvements in environmental efficiency and 

impact. To achieve these goals, adequate data-driven technologies and processes are essential. Active Smart Waste 

Management uses IoT technology to sense waste state, enable online models and optimize decisions and operations. 

Nevertheless, the current use of AI and Big Data techniques in Smart Waste Management remains limited, with 

opportunities for more value-adding innovations. Such advancements not only improve operations at a lower cost, but 

also reduce environmental impact through the creation of social-ecological value in hardware, software, datasets, 

processes and people. Designing and combining these elements in a way that generates value for society is a key challenge 

for modern cities. 
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