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Abstract: Modern urban waste management systems tend to make use of artificial intelligence (Al) and big data
technologies through the collection of multimodal Internet of Things (10T) data to manage operational inefficiencies and
unsustainability’s. Scope of a broad-stroke synthesis of Al and big data features and applications for smart urban waste
management, alongside the relevance of established Al and smart city concepts, with conclusions that point to critical
pathways for application and research. Actionable real-world conclusions naturally arise from a deeper understanding of
a broad stroke thinking on smart waste as well as the interrelation between Al capabilities and urban waste management
drivers. A smart waste management system encompasses the entire urban waste lifecycle, from generation and collection
to recycling and reprocessing, focusing on the generation, collection, sorting, and recycling steps; and processes driven
by data fusion and artificial intelligence. Urban waste systems logically collect heterogeneous data to inform operation.
The potential of modern smart waste concepts rests on Internet of Things (10T) and data-driven technologies applied to
waste systems.

The overwhelming amount of novel sensing devices, capable of gathering information about waste fill levels and
additional smartness features provide the ability to create real-time fill level forecasts. Apart from the sensing on bins,
smart containers, capable of providing additional information (e.g., temperature, smoke) have also been deployed.
Twofold analysis improves fill level forecasting through anomalies detection and resolution. All those novelties create a
need for a transversal analysis of all the innovations, elements, and data-enabled technologies proposed through a smart
waste concept.

Keywords: Smart Urban Waste Management, Al-Driven Waste Systems, Big Data In Waste Management, loT-Enabled
Waste Collection, Multimodal Waste Sensing, Waste Lifecycle Analytics, Real-Time Fill Level Forecasting, Smart
Waste Containers, Waste Anomaly Detection, Data Fusion For Waste Systems, Urban Sustainability Technologies,
Intelligent Waste Collection Optimization, Smart City Waste Solutions, Waste Sorting And Recycling Analytics, Sensor-
Based Waste Monitoring, Predictive Waste Management, Heterogeneous Urban Data Integration, Operational Efficiency
In Waste Systems, Al Applications In Smart Cities, Data-Driven Urban Sustainability.

1. INTRODUCTION

Supply chains encompass the life cycle of products and services, influencing resource utilization across distinct stages
and systems. Addressing waste management performance demands strategies that align with other decisions and external
conditions. In the context of urban waste management, data generation sourced from Internet-of-Things (l10T) sensors
augmented by Data Analytics, Artificial Intelligence (Al), Big Data, and Cloud Computing technologies become
increasingly vital. Smart Waste Management Systems (SWMS) integrate these technologies and provide superior service
quality at reduced costs. Recent initiatives within SWMS, cover the life cycle of waste collection and treatment
operations.

The objective is to synthesize smart waste management concepts, the use of l1oT-sensing technologies, decision-making
using data analytics, and performance evaluation with distinct attention to gaps and challenges. Waste Management
Service encompasses Waste Generation, Collection and Treatment. Waste Generation relates the activities, processes, or
operations of any person, organization or municipality that produce or cause waste generation and disposal. Waste
Collection, as referred to in these articles, is an activity performed by duly constituted public entities. SWMS embrace
the use of Smart Sensor Technologies and Communication Networks that allows the treatment of information collected
and stored in a central server by the application of Data Analytical Techniques, Artificial Intelligence and Big Data
Computing, for a more efficient and effective management of waste collection.

1.1. Overview of Smart Waste Management Strategies

Supporting smart city concepts, smart waste management systems aim to optimize the waste collection process through
the intelligent deployment of Internet of Things sensing devices, the collection and integration of heterogeneous data
sources, and the application of data analytics to support decision-making. Although most applications have focused on a
specific system component or addressed a particular issue, the systems are presented while highlighting open challenges
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and knowledge gaps. Here, smart waste management is understood as the automation and optimization of waste
collection, transfer, recycling, sorting, or disposal through data-driven techniques.

The characteristics of waste within municipalities differ from those in commercial environments, making Internet of
Things applications less of a niche and more of a requirement for some commercial players. Evidence suggests that
addressing the private-commercial interface represents an important step toward cost-efficient and environmentally sound
waste management. In addition to fulfilling private and commercial demands, there is also an urgent need for smart waste
management to support public waste collection. The use of public sensors, particularly for monitoring fill-level
information in collection bins, can enhance operations and reduce collection costs.

Folorre Hiverstion Roodny Intashont
Waste Management

— Data Apriven
Hybrid Public-Privite
10T-Driven % Contactustios
Smart ic Critay 2

Indrastctuction Data-Drted Waste
Waste Management

7 ——
& &'
= “-

=
| B B o
Integrated Smart 10ta-Prrohar
Waste Management Data-Optimizon
Management (Pubic- Cost—Driven Environnental
Effcienc) Efficiency

Fig 1: Integrated 10T Ecosystems for Smart Waste Management: Bridging the Public-Commercial Interface through
Heterogeneous Data Analytics

2. BACKGROUND AND THEORETICAL FOUNDATIONS

Urban waste management is recognized as one of the major challenges of cities in the Anthropocene epoch. Human
activities create a growing amount of waste per capita and year, putting a growing pressure on urban areas and
surroundings. Only few places in the world manage to avoid waste generation, the vast majority creates waste and most
fail to manage it in sustainable ways. With reference to the excrement of urbanization, urban waste management is still
one of the least developed smart city applications. From a waste policy perspective, the main objective is to reduce the
waste that encloses a negative social environmental impact.

The recording and analysis of data from past performance of the waste management systems constitutes a critical aspect
facilitating decision support and the improvement of operations. Increase efficiency and reduce the related environmental
impact is another aim of waste collection service. Its importance is determined by the significant share of fuel
consumption and CO2 emissions within the overall municipal footprint of waste management systems. Two major
research questions arise: (i) where to collect and transport waste? and (ii) which is the optimal size of the fleet of vehicles?
Major regulatory and legislative frameworks among the world devote attention to the collection and transport of waste.
Various studies show the value of data analytics to improve the efficiency of collection routes and lower environmental
costs through proper modeling of the Vehicle Routing Problem. Al, ML, DL, geo-spatial and temporal data analysis
contribute to optimizing such aspects.

Fill-level forecasting example (Bin_2)
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Equation 1) Core data model for smart-bin fill levels
1.1 Variables (per bin i at time t)

o Truefill level: x;, (0-100%)

e Sensor reading: z;,

e Sensor noise: ¢;,
1.2 Measurement equation (from “sensing modalities measuring fill levels”™)
A standard way to model a sensor reading is:

Zip = Xip tEip

Assume g, ~ (0, 02) for many physical sensors (ultrasonic/IR/laser/load-cell), as a first approximation.

2.1. Waste Management Fundamentals

Waste management aims to eliminate littering and pollution from urban areas by minimizing the generation of waste,
enhancing collection and disposal efficiency, and driving recycling and reuse. The goal is to divert waste from landfills
and incinerators, simultaneously protecting the public from hazardous waste. Waste materials can be agrarian,
biomedical, construction, demolition, electronic, industrial, municipal, oilfield-derived, radioactive, recyclables, or
sewage sludge; the first five are the primary components of LCA studies. Optimal waste collection, in terms of both cost
and environmental impact, heavily relies on data.

Al technologies can significantly improve decision making in WSMS. In a WEEE reuse and recycle system, the
authorization of legal recycling can be optimized; the lifetime prediction of reusable products can be enhanced by Al
models; Al and big data can enhance reverse logistics including recovery points selection and routing for forecasting
future recovery; deep-learning-based computer vision can improve sorting quality in automatic recycling stations; the
predictive maintenance of recycling facilities can be developed. The potential of Al and big data in improving efficiency
and reducing the ecological footprint of WSMS warrants further exploration.

3. DATA INFRASTRUCTURE FOR SMART WASTE MANAGEMENT

Data infrastructure encompasses the people, processes, governance structures, and data offerings needed to deliver
meaningful data-driven solutions and services. In the context of smart waste management, a well-defined data
management "architecture” helps structure these resources into major layers for solution and service delivery: the use-
case layer (application services), the data-hub layer (data ingestion, storage, and access), the dataset layer (data fusion
and dynamic update), and the sensing-and-actuation layer (data generation). Each of these major layers requires
independent design and management and operates at different timescales. In addition to the architectural design, three
other key data-related design aspects are required to complete a comprehensive data infrastructure: data governance,
interoperability and standards, and data quality management.

Data are generated under a wide variety of contexts (circumstances, times, and locations) by different 10T sensing
modalities (cameras, fill-level sensors, dust monitors, odor sensors, etc.). However, in order for these data to support
meaningful services, all of them need to be stored in a common data hub accessible to users, service developers, and
analytical model developers. This data-servicing role requires a number of sublayers of the data-hub layer. The earliest
sublayer supports the continuous and persistent ingestion of the raw temporal-spatial data accumulated in the various
sensing devices. These raw data often contain entry errors, inconsistent temporal-spatial-logical semantics, or outliers,
and the detection and reconciliation of these irregularities constitute the next sublayer.

3.1. Sensing and Data Acquisition

A well-functioning smart waste management system relies on accurate sensing modalities deployed at the right locations,
with sufficient redundancy, resilience, and durability to ensure operational viability over time while consuming minimal
power during operation and in standby mode.

Several sensing technologies may be used when monitoring the fill level of waste bins or containers, and each has its
own merits and demerits. A well-thought-out decision-analysis approach may help choose the best option. Deployment
strategies for sensing and data-acquisition networks can vary. System and operational requirements typically lead to
trade-offs among detecting fill levels, waste-collection route optimization, waste-generation forecasting, and the
prevention of bin overflows or blockages. Moreover, in the real world, combinations of different sensing technologies
often deliver the best results. Energy management, calibration of sensing layers, communication interfaces, and resilience
to extreme weather conditions are other parameters that affect the durability of sensor units and impact the operational
costs of effective data-collection frameworks.
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Fig 2: Optimizing Resilient Sensing Networks for Smart Waste Management: A Multi-Criteria Decision-Analysis
Framework

3.2. Data Fusion and Integration

Data fusion, temporal and spatial alignment, metadata enrichment, and integration with external data sources represent
critical processes for maximizing the usable knowledge from the collected data. The integration of data arriving from
different stimuli can be viewed as a prerequisite for decision-making and Al model training. While the act of integrating
data from multiple sources can include techniques from classical data fusion, in particular, dealing with differences in
spatial-temporal resolution, some aspects are specific to the application domain. For instance, monitoring the fill levels
of bins and containers and detecting anomalous situations can be viewed as a data- and sensor-fusion problem, where the
output needs to be forecasted several steps ahead, instead of just one. Furthermore, the nature of data-driven decision-
making often requires adding metadata on top of the data that is monitored and collected. This metadata typically comes
from external sources and analyses and can represent driving factors like seasonality, road traffic, climate, special events,
socio-demographics, and other accessible highlighted variables.

A basic monitoring network, such as one built on traditional general-purpose sensors, will face the challenge of assuring
long-term, reliable, and continuous operation, so sensor types, placement, and energy management need to be defined
accordingly. Future forecasts and anomaly-detection analysis depend heavily on the quality of the monitored data. These
forecasts can thus be supported by dedicated computation, for instance, with dedicated models collocated with each
sensor and operating only when required. Nevertheless, the need to raise the operational-evaluation capacity also leads
to the design of dedicated networks, able to feed fill-level information from all monitored bins and containers. Such a
network becomes a dedicated information-service provider for the whole waste-collection operation.

Baseline (km/day) | Optimized (km/day) | Savings (km/day)
Zonel | 92 74 18
Zone 2 | 110 86 24
Zone3 | 75 63 12
Zone4 | 130 101 29
Zone 5 | 88 70 18
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4. AI-DRIVEN WASTE COLLECTION OPTIMIZATION

Optimization represents a promising area for Al application, delivering decision support for management of waste
collection activities. Data-driven capabilities enable waste collection prediction, optimization, and route-planning
methods, modelling operations of diverse complexity across scales—covering strategic network design, tactical vehicle
fleet sizing and scheduling to operational routing of individual vehicles. pertinent optimization approaches include the
classic Vehicle Routing Problem concerned with designing optimal routes for a homogeneous fleet of waste collection
vehicles and other related combinatorial scheduling problems. Efficiency improvements are pursued by deploying
heterogeneous fleets, integrating resource allocation with route planning, enabling dynamic decision making with VGI-
assisted real-time routing, and supporting predictive fleet maintenance.

Street-level decision support is facilitated through dynamic and real-time decision environments relying on typically non-
located data sources and real-time data streams. Human—Al collaboration is explored through the development of
prediction models to localize support resources for human operators, highlighting roles of humans and Al in dynamic
real-time systems. Al-equipped systems can assist risk management through the aggregation of hidden signals in large
volumes of unstructured CCTV monitoring footages. Anomaly detection together with an Al-assisted triage system for
real-time incident detection by less resource-demanding video sensors enables the automation of citywide anomaly
monitoring.

Equation 2) Data fusion (combining multiple sensors / sources)
The highlights heterogeneous sensing and “data fusion and integration” as critical.
2.1 Simple weighted fusion (two sensors as example)
Suppose you have two independent measurements z >, z* of the same fill level x,, with variances oZ, o2.
Goal: estimate x, as a weighted average:
X = Wzt(l) +(1- w)zt(z)

Choose w to minimize mean squared error (MSE). Because both are unbiased:

Var(®,) = w20 + (1 — w)?c?
Differentiate w.r.t. w and set to 0:
%(wzof + (1 -w)?6?) =2we? —2(1-w)sZ2 =0wof =(1—w)o? >w =

So the more reliable sensor (smaller variance) gets higher weight:
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Anomaly detection using residual z-score (Bin_2)

z-score

4.1. Route Optimization and Vehicle Scheduling

Various techniques exist for determining optimal routes in waste collection, including those for the vehicle routing
problem (VRP) associated with CVRP, MTVRP, and other variants presented in Section 4.1. A significant amount of
literature examines constraints dictated by the physical characteristics of waste collection operations. These may include
the direction and order of service, the capacity limits of vehicles in terms of volume and weight, the temporal constraints
linked to roads that can only be unloaded at specific times, and those that can only be traversed by certain vehicles. The
objective function, also commonly found in the literature, is usually generalized as the overall distance or time travelled
by the fleet of vehicles. The variants always seem to be characterized by the same trade-off between solution quality and
computational effort, where heuristic techniques are more efficient than exact ones for larger instances. The exceptions
are widely publicized or otherwise readily available small-sized instances belonging to standard benchmark collections.
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Dynamic fleet management cheapens the solution of service routines, especially with respect to the challenges posed by
unpredictable demand patterns in a frequently challenging real-time context. The spatio-temporal variability of the
demand for disposal services is both inherently difficult to predict and susceptible to exogenous influences, often
lowering prediction quality. Given the value of freshness in operational decision-making, the widespread use of real-time
information systems able to guide service executions remains unexplored. Moreover, the information generated by the
fleet can be exploited to warm-start appropriate predictive models, thereby improving their accuracy. As a result, the data
provided by onboard equipment can also be used to inform dynamic maintenance planning strategies that preserve asset
performance without incurring excessive operational costs. Finally, rather than acting independently or, worse still, at
cross purposes, humans and Al can also work collaboratively, using the relative advantages of one another to generate
superior outcomes.

4.2. Dynamic Fleet Management

Dynamic fleet management entails revising waste collection decisions in real-time for an active fleet engaged in
systematic operations. A static approach cannot efficiently adapt to sudden events that change the environment or system
workload. Fleet management strategies must account for the dynamics of all processes involved. Al enables real-time
decision support by determining the optimal allocation of waste collection vehicles to tasks at a given instant. An efficient
routing solution minimizes operational costs. Fleet operations monitoring includes predicting vehicle failures via
condition-based maintenance, hazard prediction for advanced human—Al collaboration, and predictive maintenance that
considers vehicle and task similarity. Fleet allocation techniques guide the interaction between waste collection vehicles
and bins located in hidden areas.

Dynamic fleet management encourages collecting waste bins situated in concealed locations, which present considerable
operational challenges when faced with a vehicle group assigned to a short-time slot. Collected bins potentially include
bin segments with unknown or hidden fill-level variations. Driver alerts about hidden threats within the bin route must
be considered when defining real-time vehicle and collection bin allocation. Alert conditions such as noise accumulation
or unexpected vibrations can indicate potential hazards for drivers. Road hazard prediction and alert forwarding enhance
human—Al collaboration. Predictive maintenance provides advanced condition management of individual vehicles
according to their operational data similarity to other collected vehicles.

5. SMART BINS, SENSING, AND ANOMALY DETECTION

Recent years have seen a growing interest in sensor-enabled smart waste bins and containers capable of measuring fill
levels, environmental conditions, and other operational parameters. Their high sensing density, fine temporal dimensions,
and real-time communication capabilities open new avenues for data-driven operations management. However, relatively
few applications appear to directly exploit the data communicated by these sensors. Most incorporate simple heuristics
(e.g., schedule revisits on specific days, respond to overdue alerts) rather than making full use of the monitoring
information in real time. Furthermore, advanced analytics are typically restricted to fill-level forecasting, with anomalies
defined largely in terms of thresholds on predictive errors. The principal challenge lies in demonstrating the real
operational value of these sensors and exploring the opportunities for other types of advanced analytics.

Smart trash bins are equipped with embedded sensors that allow for measuring and monitoring the state of the trash bin.
The integration of smart bins leads to an increased and effective waste management system by allowing waste collection
companies to understand the fill-level state of individual bins and manage their waste collections using data-driven
machine learning approaches. Object and gesture detection, along with image classification, are integrated with other
state-of-the-art technologies and machine-learning approaches, resulting in smart bins that are able to monitor high-level
activities that can be processed in real-time mode and fitted for Internet of Things applications. For waste-to-energy sites,
high-frequency garbage bin fill-level monitoring, as well as combustion temperature anomaly detection, is proposed and
developed to provide valuable information for waste-to-energy management through machine-learning-focused Internet
of Things applications.
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Route optimization impact (illustrative)
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5.1. Sensor Technologies and Deployment

The sensory component of smart waste management systems is critically important for generating the operational
information required for decision making on collection, monitoring, and recycling. From a sensory perspective, critical
issues include the selection of sensor technology, the determination of the sensory layout in the networks, the durability
of the sensors, issues of calibration and energy management, and the trade-offs with cost and redundancy. This analysis
includes smart bins with monitoring sensors, larger containers equipped with more complex terminals, and specialized
sensory networks deployed across cities.

Numerous solutions for monitoring fill levels in bins and containers have been proposed, leveraging non-intrusive
technologies such as ultrasonic, infrared, or laser devices, and more intrusive approaches based on load cells, pressure
sensors, or even camera vision. These technologies present different advantages and drawbacks in terms of monitoring
precision, maintenance needs, energy consumption, and inter-sensor redundancy for dealing with failures. Ultrasonic
sensors appear to be the most widely used solution for monitoring fill levels in waste collection and management
applications. The monitoring of large containers provides additional challenges, since these bins are usually not equipped
with built-in solutions. Many terminals use GSM modules for data transmission, and communication can also be achieved
leveraging city-wide LoRa or Sigfox networks, UHF RFID systems, or even with direct connections, for example, to
monitor the filling and emptying of underground containers. By relying on vibration, sound, or pressure, a network of
low-cost sensors has been deployed across a city for monitoring both normal and abnormal events.

Type-Off Analysis
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Fig 3: Sensory Architectures for Smart Waste Management: A Trade-off Analysis of 10T Technologies for City-Scale
Monitoring

5.2. Anomaly Detection for Fill-level Forecasting

Anomaly Detection for Fill-level Forecasting

Anomaly detection techniques are used to anticipate fill-levels of smart bins or containers that are equipped with an array
of sensing technologies. These techniques are not only used to identify anomalous behaviors that can be detected from
sensed data, but also to set specific thresholds for each of the fill-level patterns recognized by the sensors. The detected
anomalies are subsequently communicated to the waste management companies for establishing the required trajectory

© 1IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 1151


https://ijarcce.com/
https://ijarcce.com/

IJARCCE ISSN (0) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :: Peer-reviewed & Refereed journal :< Vol. 14, Issue 12, December 2025
DOI: 10.17148/IJARCCE.2025.1412157

or route of the collection trucks. Hence, a holistic approach toward anomaly detection is to generate rules based on sensed
data such that when the rules are triggered, an alert is generated.

Anomalies in the fill-level data can be classified into four distinct groups: (i) Detection of drastic variations of fill-level
in such a manner that they jump above or below the average fill-level of the specific bin; (ii) Sensing fill-level behavior
that indicates a stay significantly below the average; (iii) Prediction of the filling behavior for future days of the week,
and raising alarms in case of insufficient or excessive filling, regarding the fill-level behavior for the specific day in
previous weeks; and (iv) Identification of extraordinary filling behavior above a certain threshold, when considering the
filling ratio during the stay on that specific day of the week in the previous weeks. A Dedicated Controller Controls
During the Operation Time Each Sensor Node Acquires the Fill-Level Value and Sends It to the Gateway Node.

The Alert Generation Algorithm Uses the Fill-Level Values in order to Detect Unexpected Events in Both Cases Garbage
Collection and Filling of the Bin. This Involves Identification of Events Appearing in a Burst Manner, Occurring Only
During Specific Days of the Week, that Badly Disturb the Usual Behavior of the System. Fuzzy Logic(FL) is a method
based on degree of truth of an event, rather than the usual true or false (0 or 1).

Accuracy | Energy efficiency | Maintenance
Ultrasonic 4.0 4.0 4.0
Laser 5.0 3.0 3.0
Load Cell 4.0 3.0 3.0
Infrared 3.0 4.0 3.0
Camera Vision | 5.0 2.0 2.0

6. RECYCLING, SORTING, AND MATERIAL FLOW ANALYTICS

Waste materials can be recycled back into the production circuit, with reprocessing costs typically being lower than those
of virgin materials. Therefore, higher quantities of waste material grades lead to greater accessibility to secondary
material, reducing the need for extracting virgin material. Despite the increasing importance of waste recycling, it is still
not a sustainable process. The end-of-waste criteria for recyclable materials are frequently not met. This is largely due to
the mix of different product qualities; in particular, the quality of recycled plastics is significantly lower because of
varying degrees of material contamination and sorting inefficiencies. Promotion of better product and waste designs, and
better monitoring, would help to ensure that products fulfil the end-of-waste criteria. In addition, data-driven quality
perspectives for flow material analyses and integration into automated sorting systems are crucial Research on material
flow analytics focuses on enhancing production and storage capacities in time and space domains, and robust, reliable
detection of anomalies.

Automated sorting of different waste material types has been explored, and significant improvements in throughput at
better detection quality can be achieved. Non-contact sorting sensors such as scanners, cameras, weight sensors, and
electromagnetic sensors are already well established in post-consumer sorting; however, throughput still remains the
biggest challenge due to high labour costs. To increase throughput, in-depth use of sensor fusion technologies that
consider additional information to answer the fundamental question of “what is it?” have been investigated. Future sorting
applications will not only solve the identification issue but also detect objects that do not belong in the waste stream, thus
enhancing the quality of sorting output with respect to rejection of non-target materials such as metals, glass, wood, and
paper, and detection of hazardous waste. Moreover, attention should be paid to materials that need to be sorted to specific
product qualities, thus developing the concept from “just sorting” into “knowing the quality of sorted products before the
sort.”

Equation 3) Fill-level forecasting (time-series)
The explicitly mentions real-time fill-level forecasting and that forecasts support decision-making.
3.1 Exponential Smoothing (SES) derivation (step-by-step)
Let observed fill level be y,. We want a smoothed estimate s,.
Define a recursive update:

ss=ay; +(1—a)s;.y, 0<axl1
Unroll to see “exponentially decaying weights™:

se=ay: + (1 —a)s;_4

Substitute s;_; = ay,_1 + (1 — @)s;_,:

se=aye+ (1 —a)aye_, + (1 —a)’s,,
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Repeat:
se=ay;+a(l— )y, +a(l —a)’y,_p +

6.1. Automated Sorting with Computer Vision

The need for efficient waste management and recycling technologies is growing, along with the amount and complexity
of waste. While the volume of recyclable material is increasing, the challenge of keeping the material flows within the
same quality range is also becoming more complex. This area of smart waste management can move towards automatic
sorting processes to separate the different types of materials—plastic, paper, metal, and glass—for recycling.

Computer vision can speed up the quality control of the classification of recyclable material flows by detecting the
different classes of materials through trained classification models. Nevertheless, due to the sensor's limited field of view
and the position of the system, it is not able to classify all materials present in the flow. In these cases, a classical sensor
fusion technique—where the information of different sensors in the same environment is combined to achieve a more
complete and reliable result than individual sensor would be able to do—is used to classify all types of materials flowing
in parallel, increasing the throughput of the whole detection process. The use of smart technologies for recycling can
improve both the efficiency of the operations and the quality of the output flows.

Sensor selection (illustrative MCDA weighted score)
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7. CONCLUSION

Current smart-waste concepts demonstrate significant diversity and complexity, being articulated in a highly
interdisciplinary environment. A review with data-driven decisions at its core illuminates the connections between
artificial intelligence and several construction blocks of smart-waste paradigms. The analysis indicates that, while the
predominant technical challenges of integrating heterogeneous sensing devices and enabling better interoperability and
data quality are being solved, concepts completing the data life cycle (from collection and analytical procedures to the
decision-and-action process) remain under-explored. Moreover, many ideas lack empiric validation; some even include
a fully speculative component.

Further development and testing have the potential to induce a substantial and lasting improvement in urban waste
management, not only increasing efficiency and decreasing costs but also reducing the environmental impacts—such as
greenhouse-gas emissions—of the overall process, ultimately contributing to higher sustainability of cities. In fact, smart-
waste paradigms are also closely connected with the circle economy, as they enable the supervision of material flows and
their recovery by supporting recycling systems, and they align with global environmental goals. Data-driven decision-
making in these paradigms also correlates with the widespread desire for a better use of available data within urban
administrations.

Sustainability & Environmental Affordances
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Fig 4: Sustainability & Environmental Affordances
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7.1. Summary of Key Insights and Future Directions

Grounded in theoretical foundations of sustainable waste management and aligned with the City of Barcelona’s data-
driven vision, current evidence and Smart Waste concepts have been synthesized to support Al and Big Data Applications
for urban Waste Management Systems; barriers to effective implementation are identified, thereby informing future
research and practical applications. These efforts collectively address broad, urgent, and viable avenues for further work
in this area.

Cities face major waste management challenges that require significant improvements in environmental efficiency and
impact. To achieve these goals, adequate data-driven technologies and processes are essential. Active Smart Waste
Management uses 0T technology to sense waste state, enable online models and optimize decisions and operations.
Nevertheless, the current use of Al and Big Data techniques in Smart Waste Management remains limited, with
opportunities for more value-adding innovations. Such advancements not only improve operations at a lower cost, but
also reduce environmental impact through the creation of social-ecological value in hardware, software, datasets,
processes and people. Designing and combining these elements in a way that generates value for society is a key challenge
for modern cities.
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