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Abstract: Data-driven models leveraging artificial intelligence (Al) and big data offer the potential for earlier detection of emerging
disease outbreaks over traditional approaches. They operate with real-time visibility, can explore a broad threat landscape, and submit
signals with varying reliability. Such capabilities can address a perennial challenge in infectious disease surveillance: signal generation
that is timely enough to meaningfully inform response efforts. Yet despite this apparent potential, these models remain largely
unexploited in public health. A candidate framework for operationalization and two case studies demonstrate the pathway: COVID-
19 incidence time series models employing social media signals and long-range influenza signals for a major city in a resource-rich
country-making timely signals available to public health decision-making.

Al- and big-data-enabled outbreak models present an alternative detection approach that shifts traditional epidemiological
assumptions. Early warnings derived from these models have distinct characteristics. Alerts can emerge at shorter lead times,
multiplexed requests—demanding different signals responding to distinct factors—can be launched simultaneously, and Al-based
models can harness digital exhaust, unfiltered datasets generated as by-products of everyday human activity. Such a vast volume of
high-frequency data could thus enable early warning systems to submit multiple signals with different reliability scores at little
additional operational overhead.
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1 INTRODUCTION

In a rapidly changing environment, infectious diseases cannot be easily predicted. Yet, climate change, urbanization, and globalization
are deeply altering pathogen dynamics. These factors are devastating biodiversity, amplifying outbreaks of vector- and zoonosis-borne
diseases, and increasing reservoir host-rich ecosystems for pathogens with cross-species transmission ability. New techniques are
urgently needed to better anticipate infectious disease threats. An Al-powered big-data approach uses climate, environmental, mobility,
social, and human-related parameters to predict outbreaks ahead of reported cases.

Despite extensive, long-standing efforts in infectious disease surveillance, the historical paradigm remains fragmented and insufficient.
Subsequent outbreaks of respiratory viruses, such as SARS-CoV-2, have shown that traditional epidemiological monitoring systems
may not be able to provide sufficiently early or reliable warning of risks such that appropriate interventions can be developed and
applied in time. The growing digital exhaust of human activity offers new opportunities for research and prediction far beyond
traditional epidemiological datasets. Big-data screening techniques from other fields are now available for use in epidemiological
studies, and recent advances in machine-learning technology enable such tools to be applied directly to potentially predictive signals
for new or re-emerging infections.

1.1. Overview of the Study

This study develops an operational architecture for predicting the likelihood of disease outbreaks in the near future. More than a
forecast system, the goal is to assess the threat of potential outbreaks, especially for highly contagious, alarming diseases that require
immediate attention.

The suggested analytical framework consists of preprocessing and assembling a large amount of early warning data for a specific
disease in a given region, selecting the models, methods, and indicators best suited for prediction, and defining alert criteria to connect
the models with the health system’s decision-making workflow. Data governance, privacy and confidentiality concerns, and ethics
must also be considered. It should not be viewed as complex but rather as a simple operation if supported by partnerships with data
source owners and with some automation. The availability of such a model for early warning is essential for any health authority in
enabling timely action, reducing morbidity and mortality, and limiting the social and economic impact of an infectious disease.
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Fig 1: From Forecasting to Frontline Action: An Operational Architecture for Epidemic Threat Assessment and Rapid Alert
Integration

2. BACKGROUND AND RATIONALE

The present research aims to identify outbreaks of infectious diseases such as influenza, dengue fever, and hand, foot, and mouth
disease early enough to enable timely response by public health authorities. Recent studies indicate that Al and big data—digital
signals generated by the mass population in cities or regions via web queries, mobility, social media, and wearable devices—are being
increasingly utilized to enable early warning of public health threats. Many of these Al methods are supervised by historical
epidemiological data. However, the use of such methods to predict temporal outbreaks has been much less explored. In addition, the
potential to use these bleeding-edge technologies to predict high-threat diseases into the future time has yet to be fully realized. Various
machine learning algorithms are embedded to capture the time-consistent characteristics of high-threat diseases, enabling the prediction
of the diseases for early warning from three to six months ahead.

Early warnings generated by such prediction models allow governments and responsible health organizations to come together,
mobilize resources, and ensure continuous surveillance for the specific infections within the area before the increasing trend. Two
approaches are adopted to transform the science of early warning systems from academic studies into practical public health
applications. First, the predictive models are connected to the online web queries and other big data serving as the digital exhaust of
the mass population to automatically send early signals. Second, technical innovations are accomplished to operationalize the
translation from model to practice, including incident-response triggering criteria based on the trend-change direction preceding further
action.

2.1. The Landscape of Big Data in Epidemiology

A wealth of big data exists that could, when harnessed effectively, offer early-warning signals for disease outbreaks in human and
animal populations. Potential data types include traditional epidemiological surveillance data that report cases, hospitalizations, or
laboratory confirmations of disease; information gleaned from human mobility patterns and travel patterns; social media signals or
data generated by people’s digital exhaust, such as web searches and inquiries; data that measure features of ecosystems and disease
vectors; and data collected from wearables and biosensors. When properly integrated, analyzed, and validated, these different data
types have the potential to provide signals of disease threats, supplementing and augmenting traditional epidemiological surveillance
systems and offering real-time information from the interconnected global community.

Although the volume of data available for inferring potential epidemiological phenomena is vast, many challenges remain in both
research and application.
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First, many classes of potential signals are weak, noisy, or confounded by other processes related to seasonality, so they require careful
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validation before being used as stand-alone predictors for public health. These validation processes differ for various predictive
modeling situations, in particular for time-series-dependent models where the temporal sequences of variables can introduce spurious
relationships. Finally, any predictive models developed using the multitude of data sources must be operationalized so that the signals
can inform preparedness and disease-response efforts in a timely fashion.

Equation 1) Data alignment and feature matrix (multi-source “digital exhaust”)

Step 1: Define time index

Lett = 1,2,..., T be discrete time points (e.g., daily/weekly/semiweekly).

Step 2: Define target (disease signal)
Let the surveillance target be

y: = reported incidence / hospitalizations / lab confirmations at time t.

Step 3: Define multi-source predictors
Suppose you have p signals (Google Trends, tweets, mobility counts, temperature, etc.). Create a vector:

)
1 2
xe = [x0x®, ...

Step 4: Build the aligned dataset
Stack over time to form:
e targetvector:y = [y, .,yr]"

o feature matrix: X = [X];X3; ...; XF]

2.2. Al Methodologies for Surveillance

Deep-learning and big-data technologies influence various aspects of everyday life, including healthcare. In recent years, this influence
has extended into outbreak prediction, a highly salient area in public health research. Relevant methods are model-agnostic and support
the early detection of diverse public health threats. Algorithms can be classified into supervised and unsupervised approaches, as well
as time-series prediction. The set of supervised learning approaches also includes state-space, recurrent, and transformer-based models.
Relevant features may be derived directly from the data or via manual or automated feature engineering. Transferability is evaluated
through spatio-temporal cross-validation. Performance metrics and relevant model properties differ depending on the requirements of
public health stakeholders. Models designed and tuned for early-warning applications should preferably minimize time to detection
rather than forecast accuracy.

3. DATA SOURCES AND INTEGRATION

A multitude of information sources serve as inputs for early-warnings signal-processing and predictive models with operating time
horizons that extend from a few days to several months. The models perform automatic computation and testing of currently available
machine-generated signals that are relevant for public health, and the results are then communicated in a machine-readable format. To
maximize the chance of predicting a disease outbreak well ahead of time, it is essential to use diverse information sources.

Striking a balance between clinical accuracy and real-time relevance, traditional epidemiological data—such as clinical case counts or
disease incidence reports—are pivotal for outbreak prediction. Such sources are often best placed to capture spikes in disease activity
and appoint identified cases to known locations. Nevertheless, public health surveillance systems often suffer from limited
spatiotemporal resolution, lagged availability, and reporting bias, poverty of information on near-zero or negative signals, and
difficulty in associating cases with environmental or population exposure.

Governance of these data sources is increasingly difficult to manage and relies on the goodwill of the data-generating organizations.
Response latency is a key weakness of many traditional approaches, and the awareness of such delay has stimulated research and
development of digital sources of key signal variables, often referred to as “digital exhaust”. Such sources include signals from Google
and other web-query services, population-level data about human mobility gleaned from mobile-phone-cell tower deployments, data
from social-media platforms, raw data from wearable technology, and real-time sensors in the ecosystem. Although the noise content
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of these signals is very high, their representativeness for the groups involved in the data-creation process can potentially be very high.
Maintaining the privacy of users while using digital footprints for public health remains a crucial issue.

Signal source (examples) | Strength Key limitation

Lab-confirmed samples High specificity Lag & capacity constraints
Web search queries High timeliness Noisy/confounded

Social media posts High timeliness Noisy/bias & platform effects
Mobility traces Captures movement-driven spread | Privacy/aggregation challenges
Wearables/biosensors Physiology in near-real time Coverage bias & privacy
Environmental sensors Vector/ecosystem monitoring Coverage, calibration

3.1. Traditional Epidemiological Data

Various types of traditional epidemiological data can be harnessed for disease outbreak warning application, including reports from
national public health agencies, public health case counts, laboratory-confirmed cases, hospitalization data, and any additional relevant
dataset that captures an outbreak signal. However, such data can come with significant biases or limitations. Under-reporting, skewed
representation within case counts, and excess mortality may hinder the detection of emergent signals, particularly when low-prevalence
diseases are concerned.

Although mortality data are considered a less biased endpoint at high numbers, under-reporting biases can be concealed despite
reflecting the very first signs of a wave, restricting their capacity to signal early resurgences. Likewise, common influenza-like
symptoms among the COVID-19 cases may mask the increase of classic seasonal diseases (e.g., influenza and RSV) during their
traditional wave periods, delaying and making warning signals appear unrealistic. Nevertheless, it remains crucial to investigate
whether warning signals can be generated when the expected incident numbers are at their lowest and the risks of under-reporting are
the greatest. In these conditions, an excess-mortality signal may be particularly valuable.
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Fig 2: Leveraging Excess-Mortality Signals for Early Outbreak Detection: Addressing Bias and Symptom Masking in
Epidemiological Surveillance
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3.2. Digital Exhaust and Real-Time Signals

The vast alterations in the functioning and behavior of societies during the pandemic have generated an abundant amount of data in
diverse online spaces and at an unprecedented speed. By observing the digital exhaust produced by internet users and devices, it is
possible to find signals that can inform the health community ahead of an outbreak or alert to different threats to the health of
populations. Several different types of signals are available, and their diversity is increasing thanks to the opening of new digital tools.
The collection of information on searches made on the web (particularly Google), queries made to different social networks, active
uses of social networks, including sharing and reading posts on different topics, and participation in discussions on platforms such as
Reddit, indicates the face of the pandemic in a real-time manner.

Equally, information derived from mobility databases shared in real time is usable from battery use in multiple telephones to
aggregation signals emitted by devices that monitor the presence of people in environments. Wearable devices in large-scale follow-
up present great real-time potential, with multiple social monitoring systems allowing for the collection of virus transmission,
detection, or non-detection signals in the environment (e. g., transmission observed by measuring particles or AntiSARSCov2 presence
in the air). The combination of many of these sources adds valuable signal quality to the analysis but must be performed with great
caution and respect for users' privacy.
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4. METHODOLOGICAL FRAMEWORKS

By design, the framework describes the full spectrum of analytic activity from data preprocessing to epidemic-level threat assessment,
as well as model validation and evaluation. The description also highlights machine-learning modeling methods and details the relevant
subcomponents.

Important choices shape modeling of early signals from digital-exhaust sources. The methods described here focus on machine-
learning models for temporal prediction using both labeled and unlabeled data. Temporal dependencies trending toward the present
are typically modeled with recurrent architecture or transformers. Prediction windows constituting time-series input and candidates
for lead-time validation occur at higher temporal aggregation. Supervised temporal models are trained on past data with an eye to
present prediction.

Cross-carrelation vs lag (synthetic)
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Equation 2) Windowing for temporal prediction (lead/lag learning)

Step 1: Choose an input history length L
Create an input window ending at time ¢:

X rr1:e = Xeopr1 Xeopa2) -0 Xe )

Step 2: Choose forecast horizon H
Predict H steps ahead:
Veen = fKecps1:0)

where f(-) is an ML model (RNN/transformer/state-space).

Step 3: Create supervised training pairs
For each valid t (from L to T — H), make:

Xi—r+1:60 Yern)-

4.1. machine learning Approaches for Temporal Prediction

Large-scale predictive modelling addressing detection and anticipation of disease outbreaks can be realized using a copious amount
of time-aligned data, and a subset of machine learning techniques refined to account for the temporal information of the data streams.
In particular, predictive frameworks such as recurrent neural networks (RNNSs), time-honoring transformers or state-space
representation models allow the incorporation of time information not necessarily accessible through the building of arbitrary windows.
Methods exclusively trained with temporal signals can directly capture leads, responses and lags in their learned patterns, and as a
result expand on the labor of defining input windows that optimize the output prediction quality.

Topological and temporal considerations typically determined by the context of disease emergence can further instruct the design of
the problem setup. Disease occurrences reported by a surveillance network can be transformed into continuous signals that respect

© 1IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 1172


https://ijarcce.com/
https://ijarcce.com/

IJARCCE ISSN (0) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :: Peer-reviewed & Refereed journal :< Vol. 14, Issue 12, December 2025
DOI: 10.17148/IJARCCE.2025.1412159

their semantics yet retain temporal resolution. Modelling these temporal signals through training-only attention or RNN-based
architecture enables the derivation of early signal warnings for various diseases, with a direct influence on the preparedness of the
responding departments. The underlying rationale for human populations to follow a collective behavior for the devices they use—
smartphones, wearables, searches, mobility—offers an increasingly complete view of the disruptions in the ecosystem; tracking these
changes not only serves the purpose of new surveillance paradigms monitoring the effects of previous human activity on ecosystems
and health but also of modern public health preparation through early signals observed in external networks, hubs or reservoirs.
Different modelling approaches provide the main idea for predicting different upcoming disease hotspots: the emergence of diseases,
the spreading following the hotspots and the unforeseen-return history of these returning signals.

Model family What it models Operational output
State-space models Latent disease state evolving over time | Forecast + uncertainty
RNNs (e.g., LSTM/GRU) Temporal dependencies (lags/leads) Forecast (multi-step)
Transformers (time-series) Long-range dependencies with attention | Forecast (multi-step)
Unsupervised anomaly detection | Deviation from expected baseline Anomaly score/flag

5. MODEL DEPLOYMENT IN PUBLIC HEALTH

Novel detection models require translation into actionable early warning systems that can be integrated within health organizations’
surveillance and decision workflows. This entails steps to technically implement the model output in processes or dashboards that alert
for elevated risk of disease transmission, thereby supporting public health authorities in planning incident response actions. A first
stage consists of defining alert criteria based on the Near-Time Signals architecture. Thresholds above which a signal(s) should be
considered anomalous, and hence indicative of different probabilities of exceeding the target threshold (i.e., for infectious diseases or
syndromes) need to be specified. Such thresholds can be chosen in many ways, including exploitation of the statistical properties of
the monitoring time series or of its relation to the disease signal.

A common solution is to identify historical periods with extreme values of the surveillance reference time series. Building on the
identified thresholds, the second stage consists of describing explicit incident response planning for any detected anomalous state.
Planning aspects can cover all components of the response cycle: activation triggers, alert guidelines, identification of resources needed
for the different possible intervention scenarios, coordination mechanisms among the involved units, communication with
stakeholders, centres providing support and assistance for other phases of the cycle, information to be passed to the media. The tools
developed may also allow specifying more precisely operationalizing aspects relative to the surveillance aspect of the response cycle.
Furthermore, the framework may support scaling up the operation to larger areas, incorporating signals that reflect the zone of influence
of the territory under investigation or using different approaches and types of data to partly merge results.

5.1. Operationalizing Early Warning Systems

An early warning system aims to provide decision-makers with timely notification of possible threats that warrant intervention. It
consists of a combination of data, models, criteria for triggering alerts, and predefined incident response actions. An early warning
model represents an important component of the early warning system taxonomy. For outbreak readiness, a model forecast needs to
be translated into operational decision workflows. This requires scalable incorporation of model outputs into health systems, public
dashboards, and decision interfaces so that alerts can trigger incident response actions. User communities outside the health domain
also need to be considered.

The alert definition specifies the threshold at which a potential outbreak risk is flagged by restrictions (probability of exceedance or
prediction intervals) of model forecasts. Precision can be maximized by treating connectome-latent space embeddings as the input to
a binary classifier that predicts whether an outbreak peak will occur in the near future. A positive predictive model can then be
employed to produce operational alerts.
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Fig 3: Connectome-Latent Early Warning Systems: Bridging Predictive Analytics and Operational Decision Workflows for
Outbreak Readiness

5.2. Governance, Ethics, and Equity

The detection of new diseases, emerging mutations, and associated risks is an information-intensive procedure requiring proactive,
transparent, and equitable use of data. Models need data governance structures that determine what data can be used and how the
results from such models are used. These models generate alerts targeted at early intervention and preparedness while minimizing the
risk of false alerts. Alerts influence how public health teams allocate their limited resources to mitigate the impact of disease events
and help communities prepare for decisions at the individual level.

While ethical and equity concerns are increasingly considered in the generation of health data, there is presently no formal
consideration of such concepts in the third phase of the data cycle. Addressing these issues requires building models that are equitable
and avoid triggering biased reactions from authorities or communities, as well as protecting privacy and checking data quality. Several
approaches may be deployed: alerts to health authorities responsible for a specific region should result from a model dedicated to that
region; the community generating sample queries from search engines must represent the general population, etc. Stakeholders from
communities in data governance procedures help establish trust and representativeness.

6. CASE STUDIES AND APPLICATIONS

Empirical illustrations demonstrate method effectiveness and transferability. Machine learning (ML) models deployed in urban and
cross-species contexts illustrate predictive advances. A citywide modelling framework finds early influenza signals in multiple urban
networks and underscores the valuable role of inter-dataset correlations in city-level public-health planning. Signals from social-media
activity, web-search queries, environmental-sensor data, and inter-city mobility provide early warnings of recent dengue outbreaks
across multiple South-East Asian countries.

In the former case, semiweekly time series related to influenza infection signals (hospitalization, medical calls, laboratory-confirmed
samples) were predicted for the following 1-12 weeks using 11 different time-series ML models with different configurations. Data
sources included Google Trends searches, Mandarin- and Cantonese-language Twitter messages, traffic volume (including pedestrian
counts), mobile-phone tower traffic, and local precipitation and temperature measurements. Similar sources of influenza infection
signals in a neighboring region of the same country were also included in the analysis. The performance of the models was evaluated.
The study illustrated the effectiveness of various sources of curtain data, broad correlations across sources for early warning, and the
importance of city-to-city volume patterns.

Equation 3) Normalization (preprocessing step)

Step 1: Compute mean and std on training set

For feature j:
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6.1. Influenza Early Signals in Urban Networks

Stream flow of web queries, social media interactions, mobile phone traces, and other ambient data comprise digital exhaust that
contains valuable real-time signals for inferring and predicting spatio-temporal city dynamics. A machine learning structure processes
these diverse information sources to extract early signals of seasonal influenza outbreaks in Montreal, Quebec, Canada. These signals
provide advanced indication of epidemiological transition, substantially earlier than traditional monitoring and case-based detection
systems. This study demonstrates the capacity of urban big data to generate predictive alerts for city public health planning and
response.

Digital hot spots of search queries on seasonal influenza extract variations in web user interests. The machine learning model uses the
number of search queries as the predictive feature to generate early signals for seasonal influenza activity. Following two earlier
Model-inter-comparison Experiments, the model is adapted with additional modeling features and input data, and its performance—
based on the mean absolute percentage error—is evaluated against that of a human expert providing an external baseline forecast. The
rapid web-search signal identification of seasonal influenza boosters in the city network substantiates its capacity for classifying early
epidemic influenza signals.

7. CONCLUSION

Research in Al- and big data-driven forecasting models has progressed rapidly, ranging from fast-response alerts of potential disease
outbreaks to the prediction of disease trajectories weeks, months, or even years in advance. Additionally, Al- and big data-powered
models trained on a multitude of signals beyond traditional epidemiological data have demonstrated performance competitive with
traditional models. Notable challenges remain in deploying these models into practice. However, an interdisciplinary study has
proposed frameworks for translating predictions into public health action and for developing early-warning systems that automatically
scan all available Al-driven predictions from multiple sources and trigger responses based on alert thresholds. Innovation in these
domains has the potential to greatly enrich the methods available for operational and applied epidemiology.

Empirical case studies supporting these frameworks have illustrated model applicability and functionality in a range of urbanized
settings. Although this set of examples has emphasized influenza alerts in urbanized areas, the core methods are also amenable to
detecting and predicting other diseases with sufficient historical evidence of spatial-temporal recurrence. Beyond urbanized areas, the
methods may also be useful in regions for which only coarse-resolutions for mobility, public health, and economic activity are
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available, such as the USA. The emergence of increasingly larger big-data sets—produced by the deep digital footprint of human
activity, by the Internet of Things and by digital ecosystem monitoring, among many others—presents an opportunity for enhancing
the research topics that these models address. In parallel, the ongoing development of new deep-learning approaches, especially for

systematic classification of unstructured data, promises to improve prediction accuracies.
Operational Architecture Focus

Public Health Translatien

Deep Leamin g Classification

Big Data Foatprint (ioT/Mobility)

Fig 4: Operational Architecture Focus

7.1. Final Thoughts and Future Directions

Existing studies demonstrate how artificial intelligence and diverse data modalities enhance spatiotemporal compound prediction
accuracy. Continued work in these areas, including partnerships providing new data sources, will improve prediction biases and offer
early warning signals for an expanding range of diseases and conditions, thereby benefiting public health in practice. Operationalizing
alerts requires scrutinizing data-sharing agreements, assessing potential harms or benefits for affected communities, involving
communities in oversight during model updates, and improving explainability across the user spectrum, particularly for decision-
makers in real time. Integrating equity into research within the wider context of current public discourse on technology’s potential for
eradicating racism, sexism, inequality, and other forms of injustice is also essential. Consensus on operational guidelines using these
techniques will guide monitoring and prediction of new diseases, epidemic and pandemic magnitude detection, zoning risk
identification, and phasing of early-warning signals for diseases that can overwhelm divided response systems.

Predictive-power indicators from classic epidemiology using infection counts, climate, or barrier-modelling signals remain key. When
displayed in dashboards, caution is needed to avoid encouraging prediction fatigue or complacency while ensuring consistency with
already-implemented response systems, thereby enabling operationalization. Real-time-signal noise and predictive-information
content—M icrosoft’s recent work on trademarked ‘Fakespot® ultra-fast deliveries is a striking example—uwill continue to be vital
topics, especially in epidemiology and related disciplines. the analysis optimally leverages user-generated data without personal
identification for signals that directly affect compartmentalization. Signals bypassing conventional societies and systems remain
caution-inducing; from sensor networks, predictive information must be balanced with authenticity potential.
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