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Abstract: This paper presents a novel Neurosymbolic AI framework designed to enhance the accuracy and 

explainability of brain tumour diagnosis. By combining deep learning architectures (VGG16 for classification and U-

Net for segmentation) with a symbolic genomic rule engine, the system integrates structural MRI data with molecular 

biomarkers such as IDH mutation and MGMT promoter methylation status. This multi-modal approach achieves high-

fidelity risk assessments while providing clinicians with "white-box" explainability through Grad-CAM heatmaps and 

guideline-based treatment recommendations. Additionally, the system features an interactive Student Learning Lab and 

a federated learning hub to support decentralised training and medical education. 
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I. INTRODUCTION 

 

The rapid advancement of medical imaging has necessitated the development of sophisticated artificial intelligence 

tools to assist in the diagnosis of complex neurological conditions. Traditional deep learning models in neuro-oncology, 

while powerful, often function as "black boxes" that provide a diagnosis without explaining the underlying clinical 

reasoning. This project introduces a Neurosymbolic AI System designed to bridge the gap between raw imaging data 

and symbolic medical knowledge. By integrating deep learning architectures—specifically VGG16 for classification 

and U-Net for segmentation—with a Symbolic Genomic Rule Engine, the system mimics the diagnostic process of 

human specialists. It processes multimodal inputs, including MRI scans and critical genomic biomarkers such as IDH 

mutation and MGMT promoter methylation status. This synthesis allows for the identification of tumour boundaries 

while simultaneously predicting aggressive behaviour and treatment resistance. Furthermore, the system addresses the 

critical need for Explainable AI (XAI) by generating Grad-CAM heatmaps that highlight the specific anatomical 

regions influencing the model's decision. Beyond clinical use, the platform features an interactive Student Learning 

Lab to provide hands-on training for medical professionals through 3D anatomy exploration and diagnostic challenges. 

Ultimately, this framework ensures that AI predictions are not only accurate but also interpretable, actionable, and 

aligned with international clinical guidelines. 

 

1.1 Project Description                                                                                                                                                   

This project implements a multi-modal Neurosymbolic AI system that integrates deep learning architectures, such as 

VGG16 and U-Net, with a symbolic rule engine for enhanced brain tumour diagnosis. By synthesising structural MRI 

scans with genomic biomarkers like IDH mutation and MGMT methylation status, the system provides high-fidelity 

risk assessments and clinical treatment protocols. It ensures diagnostic transparency through Explainable AI (XAI) 

heatmaps and "white-box" textual logic to guide specialised medical decisions. Furthermore, it includes a Federated 

Learning hub for secure decentralised training across medical institutions and an interactive lab for student education. 

This holistic framework effectively bridges the gap between raw neural networks and rule-based medical expertise. 

 

1.2 Motivation 

The motivation for this project is driven by the urgent need to transform clinical AI from a "black-box" pattern 

recogniser into a transparent and trustworthy diagnostic partner. Current deep learning models often lack the 

interpretability required for high-stakes medical decisions, necessitating the integration of structural "Neuro" imaging 

data with "Symbolic" genomic knowledge. By synthesising MRI scans with critical biomarkers like IDH and MGMT 

status, the system provides a holistic view of tumour aggression and treatment resistance that a single data source 

cannot offer. Furthermore, the implementation of Explainable AI (XAI) heatmaps provides visual evidence that allows 

clinicians to verify the AI's focal points, thereby fostering clinical trust and safety. This effort is bolstered by a 

Federated Learning architecture that addresses strict patient privacy concerns by training on decentralised hospital 

data without the need for data transfer. Additionally, providing medical students with an interactive learning lab helps 

bridge the gap between theoretical pathology and real-world diagnostic application through gamified challenges. 

Ultimately, the system aims to improve long-term patient outcomes by delivering actionable, guideline-based treatment 

recommendations through a robust and interpretable neurosymbolic framework. 
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II.          RELATED WORK                        

 

Paper [1] explores traditional centralised deep learning models using CNN architectures to identify brain tumour 

patterns in MRI scans. Although these approaches achieve high classification accuracy, they require centralised data 

collection, which raises significant patient privacy concerns and limits data diversity. 

 

Paper [2] investigates complex segmentation models, such as U-Net, capable of identifying exact tumour boundaries 

and lesion volumes. While these models improve diagnostic precision, they function as "black boxes" that lack clinical 

interpretability and fail to incorporate molecular biomarkers. 

 

Paper [3] introduces federated learning as a privacy-preserving solution for collaborative training of medical AI across 

distributed hospital nodes. The study demonstrates that sharing model weights instead of raw MRI data reduces privacy 

risks while maintaining high diagnostic performance. 

 

Paper [4] applies multi-modal fusion techniques to oncology, combining structural imaging with genomic data. The 

results show improved prediction of tumour aggression; however, the models often struggle with real-time symbolic 

reasoning and lack explainable visual feedback for clinicians. 

 

Paper [5] reviews recent advancements in neurosymbolic systems, highlighting the need for frameworks that combine 

neural pattern recognition with rule-based medical expertise. The survey emphasises that integrating deep learning with 

symbolic logic can significantly enhance the trust and reliability of AI in clinical settings. 

 

III. METHODOLOGY 

 

A. System Environment                                                                                                                                                                                           

The experimental environment is designed to evaluate the proposed Neurosymbolic framework under realistic clinical 

conditions. Multiple hospital nodes (e.g., NIMHANS, AIIMS) represent independent client systems, each generating 

local diagnostic data such as high-resolution MRI scans and molecular biomarker reports. These nodes operate 

independently and do not share raw patient data. A central federated server coordinates the learning process by 

aggregating model parameters received from participating nodes. This setup simulates a distributed medical ecosystem 

where patient privacy and data security are critical requirements. 

 

 
                                                                        Fig.1.Flowchart of methodology  

https://ijarcce.com/
https://ijarcce.com/


ISSN (O) 2278-1021, ISSN (P) 2319-5940 IJARCCE 

International Journal of Advanced Research in Computer and Communication Engineering 

Impact Factor 8.471Peer-reviewed & Refereed journalVol. 15, Issue 1, January 2026 

DOI:  10.17148/IJARCCE.2026.15110 

© IJARCCE                This work is licensed under a Creative Commons Attribution 4.0 International License                 69                                                                                                                                                                

B. Federated Learning Architecture                     

 

• Client Side Training: Each hospital node pre-processes its local MRI data and trains a local tumour detection 

model using VGG16 for classification and U-Net for segmentation. The model learns site-specific tumour 

patterns and anatomical variations based on observed scans. 

 

• Server Side Aggregation: Instead of collecting raw MRI images, the central server receives only the weight 

parameters from each client. These updates are securely aggregated using the Federated Averaging (FedAvg) 

algorithm to generate a global diagnostic model, which is then shared back with all hospitals. 

 

C. Adaptive Diagnostic Mechanism: The global model is periodically updated through iterative federated learning 

rounds. This adaptive process allows the system to learn from newly observed tumour types and rare genomic 

biomarkers across different medical centres. By continuously refining the global model, the system improves diagnostic 

accuracy for both common and emerging neuro-oncological cases without compromising data privacy. 

 

D. Implementation Flow 

1. Initialise the central federated server and distribute the initial model to client hospital nodes. 

2. Collect and preprocess MRI scans and genomic biomarkers locally at each node. 

3. Train local deep learning models (VGG16/U-Net) and the Symbolic Rule Engine. 

4. Transmit local model weight updates to the federated server. 

5. Aggregate updates using FedAvg to form an improved global model. 

6. Distribute the updated global model back to all participating medical nodes. 

7. Repeat the process to ensure continuous adaptation to new clinical data. 

 

E. Hardware and Software Requirements 

• Hardware: Professional workstation with a minimum of 16 GB RAM and an NVIDIA GPU (CUDA-enabled) 

for intensive MRI image processing. 

• Software: Python 3.8+, PyTorch/TensorFlow for deep learning, Flower or PySyft for Federated Learning, and 

MongoDB for secure biomarker storage. 

IV.    SIMULATION AND EVALUATION FRAMEWORK  

 

This section describes the overall system design, simulation process, and evaluation strategy adopted for the proposed 

Adaptive Federated Neuro-Oncology Framework. The system combines federated learning with intelligent 

diagnostic analysis to enable privacy-preserving and scalable medical monitoring in distributed clinical environments. 

The framework is implemented using Python as the primary control and orchestration layer, enabling coordinated local 

training, secure model aggregation, and real-time tumour detection across multiple hospital nodes. 

 

A. System Architecture and Workflow The proposed architecture is designed to detect brain tumour pathologies 

efficiently while ensuring that sensitive patient MRI data remains within local hospital environments. The major 

components of the system are summarised as follows: 

 

• Distributed Hospital Nodes: Each hospital node represents an independent medical centre or radiology 

domain that locally collects clinical data such as MRI scans, genomic biomarker records, and patient history. 

Local models are trained at each node without sharing raw data. 

 

• Federated Aggregation Server: The federated server coordinates the learning process by securely 

aggregating model updates received from participating hospital nodes. The aggregated global model captures 

diverse pathological patterns while preserving patient confidentiality. 

 

• Adaptive Diagnostic Module: The global model is periodically redistributed to hospital nodes, enabling 

adaptive learning and real-time tumour detection. This module continuously improves diagnostic performance 

as new tumour variations and genomic biomarkers are observed. 

 

B. Simulation Setup The simulation environment is designed to emulate a realistic distributed medical setting with 

multiple heterogeneous nodes. The setup evaluates the effectiveness of the proposed federated neurosymbolic approach 

under diverse diagnostic scenarios. 
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• Node Configuration: Multiple hospital nodes with non-identical data distributions (e.g., varying MRI scanner 

strengths or patient demographics) are simulated to reflect real-world variations in anatomical structure and 

tumour appearance. 

 

• Data Modelling: Both common tumour types and rare genomic biomarkers are injected into the system to 

assess diagnostic accuracy and robustness under varying clinical conditions. 

 

C. Federated Learning and Neurosymbolic Analysis Process During simulation, each hospital node performs local 

training on its private medical data and transmits only model parameters (VGG16/U-Net weights) to the federated 

server. The server aggregates these updates to generate a global diagnostic model, which is then shared back with all 

nodes. This iterative process allows the system to adapt continuously to evolving neuro-oncological cases while 

minimising communication overhead and preserving privacy. 

 

D. Results and Observations 

• Diagnostic Performance: The proposed system successfully detected diverse tumour pathologies across all 

participating hospital nodes with high accuracy. 

 

• Collaborative Learning: Federated model aggregation enabled consistent diagnostic performance across 

heterogeneous nodes without requiring centralised data collection. 

 

• XAI Validation: The "Neurosymbolic AI Hub" dashboard provided real-time visual feedback, confirming 

that the global model successfully identified pathological features across all simulated environments. 

 

 
Fig. 2. Integrated Neurosymbolic Results and Temporal Analysis 

 

Model Adaptability and Convergence: 

• Global Model Convergence: The global diagnostic model demonstrated steady convergence across multiple 

federated training rounds, successfully integrating visual features from diverse MRI scanner types (e.g., 1.5T 

and 3T) without centralising patient data. 

• Accuracy Improvement: Diagnostic accuracy and the Dice Similarity Coefficient (DSC) for tumour 

segmentation improved significantly as symbolic genomic model updates from diverse hospital nodes were 

aggregated. 

• Heterogeneous Data Handling: The system showed robust adaptation to variations in tumour appearance and 

biomarker distributions across different clinical sites, proving the effectiveness of the FedAvg algorithm in a 

medical context. 

• XAI Validation: Grad-CAM heatmap consistency increased alongside model convergence, ensuring that the 

global model focused on the correct pathological regions rather than anatomical artifacts. 
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Fig. 3. Federated Learning Simulation Hub 

 

Impact on System Efficiency: 

• Negligible Computational Overhead: Normal hospital node operations experienced minimal performance 

impact during federated training, as local MRI processing and rule-based reasoning were optimised for 

decentralised execution. 

• Privacy-Preserving Communication: Communication costs were strictly limited to the exchange of deep 

learning model parameters (VGG16/U-Net weights), ensuring high scalability across multiple hospital nodes 

while maintaining total patient data privacy. 

 

 
 

 
Fig. 4. Student Learning Lab Workflow 
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V. RESULTS AND DISCUSSION 

 

The experimental evaluation of the Neurosymbolic AI System demonstrates its effectiveness in identifying brain 

tumour pathologies while maintaining a strict privacy-preserving architecture within distributed medical environments. 

By achieving a final convergence accuracy of approximately 94.2%, the system proves that federated model 

aggregation can enable consistent diagnostic performance across heterogeneous hospital nodes, such as Apollo and 

AIIMS, without ever requiring the centralisation of raw patient MRI data. 

 

The integration of the U-Net segmentation module alongside VGG16 classification allows for precise lesion 

localisation, which is visually verified through Grad-CAM heatmaps that highlight pathological regions for clinical 

review. This neurosymbolic approach successfully bridges the gap between traditional "black-box" neural networks and 

rule-based medical expertise by providing "white-box" logic grounded in genomic biomarkers such as IDH and 

MGMT status. 

 

Furthermore, the simulation results confirm that communication costs remain negligible since only model parameters 

are exchanged, ensuring the system is both scalable and compliant with global health data privacy standards. 

Ultimately, these findings suggest that synthesised radiogenomic analysis not only improves diagnostic confidence but 

also provides an actionable, guideline-based framework for personalised clinical decision-making. 

VI.  CONCLUSION 

 

This paper presented a novel Neurosymbolic AI framework designed for accurate and interpretable brain tumour 

diagnosis within a privacy-preserving federated learning environment. By combining deep learning architectures 

(VGG16 for classification and U-Net for segmentation) with a symbolic genomic rule engine, the system enables 

robust multi-modal analysis locally at distributed hospital nodes without sharing raw patient data. Simulation results 

demonstrated high diagnostic accuracy, improved segmentation performance across heterogeneous clinical datasets, 

and enhanced clinical trust through Explainable AI (XAI) heatmaps. 

 

VII.  FUTURE WORK 

 

The future work for this project will focus on enhancing the Neurosymbolic Engine by incorporating a broader 

spectrum of rare genomic biomarkers and integrating longitudinal patient data to support predictive prognosis over 

time. I plan to optimise the Federated Learning aggregation protocols to better handle non-IID (Independent and 

Identically Distributed) medical datasets, ensuring higher accuracy across diverse hospital scanner types. Additionally, 

the system will be expanded to include blockchain-based immutable logging for model weight exchanges, providing 

an extra layer of security and auditability for institutional collaborations. To further improve the educational 

component, I aim to implement a VR-based 3D brain exploration module within the Student Learning Lab, allowing 

for more immersive anatomical training. Finally, I will seek clinical validation through pilot studies in partnership with 

neuro-oncology departments to refine the Explainable AI (XAI) outputs based on real-world expert feedback. 
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